Xi Xiaoming, Yang Baolai, Zhang Hanwei, et al. 20 kW monolithic fiber amplifier directly pumped by LDs[J]. High Power Laser and Particle Beams, 2023, 35: 021001. doi: 10.11884/HPLPB202335.220424
Citation: Ying Songlin, Hu Dan, Liu Kai. Real time phase calculation of phase shifted structured light based on one-dimensional look-up table[J]. High Power Laser and Particle Beams, 2022, 34: 121003. doi: 10.11884/HPLPB202234.220159

Real time phase calculation of phase shifted structured light based on one-dimensional look-up table

doi: 10.11884/HPLPB202234.220159
  • Received Date: 2022-05-16
  • Accepted Date: 2022-06-20
  • Rev Recd Date: 2022-05-29
  • Available Online: 2022-11-02
  • Publish Date: 2022-11-02
  • We propose a fast phase decoding algorithm based on a one-dimensional look-up table. Firstly, according to the property of the arctangent function in the phase calculation formula, the phase relationship between the four quadrants is obtained. A linear function is used to map the coordinate points in the first quadrant to a discrete integer interval, and a one-dimensional look-up table of phases is established in advance by combining the interval with the linear function. In the process of phase calculation, firstly, the index of the one-dimensional look-up table is calculated by using relevant information to directly obtain the phase value, and then the phase value is adjusted by the linear interpolation method and phase relationship to obtain the final real phase. Experiments have verified the effectiveness of the proposed algorithm. Compared with the traditional phase calculation method, the proposed method can improve the speed by 3.97 times, 1.29 times compared with the traditional polynomial approximation algorithm, and 1.20 times compared with the traditional one-dimensional look-up table algorithm.
  • [1]
    苏显渝, 张启灿, 陈文静. 结构光三维成像技术[J]. 中国激光, 2014, 41:0209001 doi: 10.3788/CJL201441.0209001

    Su Xianyu, Zhang Qican, Chen Wenjing. Three-dimensional imaging based on structured illumination[J]. Chinese Journal of Lasers, 2014, 41: 0209001 doi: 10.3788/CJL201441.0209001
    [2]
    丁榆德, 杨斌. 三维数字化扫描及测量技术在下颌前突畸形诊治中的应用[J]. 中国组织工程研究, 2016, 20(20):2992-2999 doi: 10.3969/j.issn.2095-4344.2016.20.015

    Ding Yude, Yang Bin. Application of three-dimensional scanning and measuring techniques in the diagnosis and treatment of mandibular prognathism[J]. Chinese Journal of Tissue Engineering Research, 2016, 20(20): 2992-2999 doi: 10.3969/j.issn.2095-4344.2016.20.015
    [3]
    Sansoni G, Trebeschi M, Docchio F. State-of-the-art and applications of 3D imaging sensors in industry, cultural heritage, medicine, and criminal investigation[J]. Sensors, 2009, 9(1): 568-601. doi: 10.3390/s90100568
    [4]
    喻彩丽. 基于逆向工程的三维测量技术的研究[J]. 计量与测试技术, 2010, 37(7):38-39 doi: 10.3969/j.issn.1004-6941.2010.07.024

    Yu Caili. Research of 3D measurement based on reverse-engineering[J]. Metrology & Measurement Technique, 2010, 37(7): 38-39 doi: 10.3969/j.issn.1004-6941.2010.07.024
    [5]
    Zuo Chao, Feng Shijie, Huang Lei, et al. Phase shifting algorithms for fringe projection profilometry: a review[J]. Optics and Lasers in Engineering, 2018, 109: 23-59. doi: 10.1016/j.optlaseng.2018.04.019
    [6]
    刘凯, 龙云飞, 王帅军, 等. 相位测量轮廓术中结合几何标定的非线性校正[J]. 强激光与粒子束, 2015, 27:071005 doi: 10.11884/HPLPB201527.071005

    Liu Kai, Long Yunfei, Wang Shuaijun, et al. Nonlinearity calibration incorporated with geometrical calibration for phase measuring profilometry[J]. High Power Laser and Particle Beams, 2015, 27: 071005 doi: 10.11884/HPLPB201527.071005
    [7]
    边心田, 程菊, 左芬, 等. 基于光栅预校正的三维面形测量方法[J]. 激光与光电子学进展, 2017, 54:011202

    Bian Xintian, Cheng Ju, Zuo Fen, et al. A method of 3D shape measurement based on alignment grating projection[J]. Laser & Optoelectronics Progress, 2017, 54: 011202
    [8]
    Huang P S, Zhang Chengping, Chiang F P. High-speed 3-D shape measurement based on digital fringe projection[J]. Optical Engineering, 2003, 42(1): 163-168. doi: 10.1117/1.1525272
    [9]
    Griesser A, Koninckx T P, Van Gool L. Adaptive real-time 3D acquisition and contour tracking within a multiple structured light system[C]//Proceedings of the 12th Pacific Conference on Computer Graphics and Applications. 2004: 361-370.
    [10]
    Huang P S, Zhang Song, Chiang F P. Trapezoidal phase-shifting method for three-dimensional shape measurement[J]. Optical Engineering, 2005, 44: 123601. doi: 10.1117/1.2147311
    [11]
    Jia Peirong, Kofman J, English C E. Two-step triangular-pattern phase-shifting method for three-dimensional object-shape measurement[J]. Optical Engineering, 2007, 46: 083201. doi: 10.1117/1.2768616
    [12]
    Liu Kai, Song Jianwen, Lau D L, et al. Reconstructing 3D point clouds in real time with look-up tables for structured light scanning along both horizontal and vertical directions[J]. Optics Letters, 2019, 44(24): 6029-6032. doi: 10.1364/OL.44.006029
    [13]
    Liu Kai, Zhang Kangkang, Wei Jinghe, et al. Extending epipolar geometry for real-time structured light illumination[J]. Optics Letters, 2020, 45(12): 3280-3283. doi: 10.1364/OL.390212
    [14]
    Guo Hongwei, Liu Guoqing. Approximations for the arctangent function in efficient fringe pattern analysis[J]. Optics Express, 2007, 15(6): 3053-3066. doi: 10.1364/OE.15.003053
    [15]
    周珺, 郭红卫. 三角函数逼近算法及其在光学条纹图像分析中的应用[J]. 光学仪器, 2013, 35(1):22-29 doi: 10.3969/j.issn.1005-5630.2013.01.005

    Zhou Jun, Guo Hongwei. Approximation of trigonometric function and its application in optical fringe analysis[J]. Optical Instruments, 2013, 35(1): 22-29 doi: 10.3969/j.issn.1005-5630.2013.01.005
    [16]
    Pilato L, Fanucci L, Saponara S. Real-time and high-accuracy arctangent computation using CORDIC and fast magnitude estimation[J]. Electronics, 2017, 6: 22. doi: 10.3390/electronics6010022
    [17]
    Torres V, Valls J. A fast and low-complexity operator for the computation of the arctangent of a complex number[J]. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2017, 25(9): 2663-2667. doi: 10.1109/TVLSI.2017.2700519
    [18]
    Benammar M, Alassi A, Gastli A, et al. New fast arctangent approximation algorithm for generic real-time embedded applications[J]. Sensors, 2019, 19: 5148. doi: 10.3390/s19235148
    [19]
    Liu Kai, Wang Yongchang, Lau D L, et al. Dual-frequency pattern scheme for high-speed 3D shape measurement[J]. Optics Express, 2010, 18(5): 5229-5244. doi: 10.1364/OE.18.005229
    [20]
    Ukil A, Shah V H, Deck B. Fast computation of arctangent functions for embedded applications: a comparative analysis[C]//Proceedings of 2011 IEEE International Symposium on Industrial Electronics. 2011: 1206-1211.
  • Relative Articles

    [1]Wang Peng, Meng Xiangming, Wu Hanshuo, Ye Yun, Yang Baolai, Xi Xiaoming, Shi Chen, Zhang Hanwei, Wang Xiaolin, Xi Fengjie, Wang Zefeng, Xu Xiaojun, Zhou Pu, Chen Jinbao. 2 kW fiber laser pumped by long-wavelength laser diodes[J]. High Power Laser and Particle Beams, 2024, 36(3): 031001. doi: 10.11884/HPLPB202436.240035
    [2]Wang Peng, Xi Xiaoming, Zhang Hanwei, Yang Baolai, Shi Chen, Xiao Hu, Chen Zilun, Pan Zhiyong, Wang Xiaolin, Wang Zefeng, Zhou Pu, Xu Xiaojun, Chen Jinbao. Laser-diode-pumped fiber laser amplifier for 13 kW high-beam-quality output[J]. High Power Laser and Particle Beams, 2022, 34(12): 121001. doi: 10.11884/HPLPB202234.220247
    [3]Gao Cong, Liu Nian, Li Fengyun, Liu Yu, Dai Jiangyun, Shen Changle, He Hongle, Lü Jiakun, Li Fang, Zhang Lihua, Li Yuwei, Jiang Lei, Guo Chao, Tao Rumao, Ke Weiwei, Zhang Haoyu, Wang Jianjun, Lin Honghuan, Jing Feng. 17.4 kW (1+1) long distance side-pumped laser fiber[J]. High Power Laser and Particle Beams, 2022, 34(5): 051002. doi: 10.11884/HPLPB202234.220070
    [4]Yang Baolai, Zhang Hanwei, Wang Peng, Xi Xiaoming, Wang Xiaolin, Xu Xiaojun, Chen Jinbao. 4 kW single mode narrow linewidth fiber laser achieved in single-end pumped fiber amplifier[J]. High Power Laser and Particle Beams, 2022, 34(4): 041002. doi: 10.11884/HPLPB202234.210504
    [5]Xi Xiaoming, Yang Huan, Zeng Lingfa, Huang Liangjin, Ye Yun, Zhang Hanwei, Pan Zhiyong, Wang Xiaolin, Wang Zefeng, Zhou Pu, Xu Xiaojun, Chen Jinbao. 5 kW all-fiber amplifier based on homemade spindle-shaped Yb-doped fiber[J]. High Power Laser and Particle Beams, 2021, 33(2): 021001. doi: 10.11884/HPLPB202133.200309
    [6]Ma Xiaoyu, Zhang Naling, Zhong Li, Liu Suping, Jing Hongqi. Research progress of high power semiconductor laser pump source[J]. High Power Laser and Particle Beams, 2020, 32(12): 121010. doi: 10.11884/HPLPB202032.200236
    [7]Xiao Hu, Leng Jinyong, Zhang Hanwei, Huang Liangjin, Guo Shaofeng, Zhou Pu, Chen Jinbao. A 2.14 kW tandem pumped fiber amplifier[J]. High Power Laser and Particle Beams, 2015, 27(01): 010103. doi: 10.11884/HPLPB201527.010103
    [8]Zhou Zepeng, Gao Xin, Bo Baoxue, Wang Yunhua, Zhou Lu, Wang Wen, Xu Liuyang. Fiber coupling analysis of multi-chip laser diodes[J]. High Power Laser and Particle Beams, 2014, 26(03): 031013. doi: 10.3788/HPLPB201426.031013
    [9]Yu Junhong, Guo Linhui, Wang Zhao, Tan Hao, Gao Songxin, Wu Deyong, Zhang Kai. High brightness fiber coupled diode laser module with 200 W class output power[J]. High Power Laser and Particle Beams, 2014, 26(11): 111001. doi: 10.11884/HPLPB201426.111001
    [10]Yu Junhong, Guo Linhui, Gao Songxin, Tan Hao, Yin Xinqi. Research on high-power single emitter fiber-coupled diode laser[J]. High Power Laser and Particle Beams, 2014, 26(05): 051005. doi: 10.11884/HPLPB201426.051005
    [11]Li Zhiyong, Tan Rongqing, Xu Cheng, Li Lin. Laser doide array with narrow linewidth for rubidium vapor laser pumping[J]. High Power Laser and Particle Beams, 2013, 25(04): 875-878.
    [12]Wei Tao, Tan Zhiying, Li Jianfeng, Zhu Jianhua. Pump pulse width optimization of Yb-doped fiber amplifier[J]. High Power Laser and Particle Beams, 2012, 24(11): 2571-2575. doi: 10.3788/HPLPB20122411.2571
    [13]ren guangjun, yao jianquan. Double-end pump polarization-maintaining fiber laser[J]. High Power Laser and Particle Beams, 2011, 23(04): 0- .
    [14]zhou pu, wang xiaolin, ma yanxing, leng jinyong, ma haotong, wang jianhua, xu xiaojun, liu zejin. Measurement of phase noise in strong pumped fiber amplifier[J]. High Power Laser and Particle Beams, 2009, 21(11): 0- .
    [15]feng jie, zhou xiaojun, zhang zhiyao, qin zujun, liu yong. Inelastic scatterings in high-power back-pumped ytterbium-doped double-clad fiber amplifiers[J]. High Power Laser and Particle Beams, 2009, 21(08): 0- .
    [16]zhao zhen-yu, duan kai-liang, wang jian-ming, zhao wei, wang yi-shan. Experimental study of gain characteristics of high power photonic crystal fiber amplifier[J]. High Power Laser and Particle Beams, 2008, 20(12): 0- .
    [17]zhang fan, wang chun-can, ning ti-gang, gen rui, jian shui-sheng. Pump light leakage at coupler of side-pumped double-clad fiber laser with a novel dielectric-metal-dielectric sandwich structure[J]. High Power Laser and Particle Beams, 2007, 19(04): 0- .
    [18]ding guang-lei, shen hua, yang ling-zhen, wang yi-shan, zhao wei, chen guo-fu. High repetition rate femtosecond Yb-doped fiber amplifier[J]. High Power Laser and Particle Beams, 2006, 18(06): 0- .
    [19]shen hua, ding guang-lei, wang yi-shan, zhao wei. Experiment of cladding pumped femtosecond fiber amplifier[J]. High Power Laser and Particle Beams, 2005, 17(09): 0- .
    [20]ding guang-lei, shen hua, yang ling-zhen, zhao wei, chen guo-fu, duan zuo-liang, cheng zhao. ps fiber amplifier and gratings compressor[J]. High Power Laser and Particle Beams, 2005, 17(07): 0- .
  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-040255075100125150
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 17.3 %FULLTEXT: 17.3 %META: 69.5 %META: 69.5 %PDF: 13.2 %PDF: 13.2 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 7.8 %其他: 7.8 %其他: 1.5 %其他: 1.5 %Bradford: 0.3 %Bradford: 0.3 %Falls Church: 3.3 %Falls Church: 3.3 %Indianapolis: 0.1 %Indianapolis: 0.1 %Japan: 0.8 %Japan: 0.8 %Nahant: 0.5 %Nahant: 0.5 %Osaka: 0.0 %Osaka: 0.0 %San Lorenzo: 0.1 %San Lorenzo: 0.1 %Seattle: 0.0 %Seattle: 0.0 %Taichung: 0.2 %Taichung: 0.2 %[]: 0.6 %[]: 0.6 %上海: 2.4 %上海: 2.4 %上饶: 0.1 %上饶: 0.1 %东莞: 0.3 %东莞: 0.3 %中卫: 0.0 %中卫: 0.0 %中山: 0.1 %中山: 0.1 %临汾: 0.1 %临汾: 0.1 %丹东: 0.0 %丹东: 0.0 %丽水: 0.0 %丽水: 0.0 %九江: 0.2 %九江: 0.2 %京畿道: 0.1 %京畿道: 0.1 %保定: 0.2 %保定: 0.2 %信阳: 0.1 %信阳: 0.1 %兰州: 0.2 %兰州: 0.2 %内江: 0.1 %内江: 0.1 %北京: 6.2 %北京: 6.2 %十堰: 0.3 %十堰: 0.3 %南京: 1.7 %南京: 1.7 %南平: 0.0 %南平: 0.0 %南昌: 0.4 %南昌: 0.4 %南通: 0.1 %南通: 0.1 %博阿努瓦: 0.0 %博阿努瓦: 0.0 %厦门: 0.0 %厦门: 0.0 %台中: 0.0 %台中: 0.0 %台州: 0.5 %台州: 0.5 %合肥: 0.2 %合肥: 0.2 %吉林: 0.0 %吉林: 0.0 %呼和浩特: 0.1 %呼和浩特: 0.1 %和田: 0.0 %和田: 0.0 %哈尔滨: 0.0 %哈尔滨: 0.0 %哥伦布: 0.0 %哥伦布: 0.0 %唐山: 0.1 %唐山: 0.1 %商洛: 0.0 %商洛: 0.0 %嘉兴: 0.5 %嘉兴: 0.5 %大连: 0.6 %大连: 0.6 %大阪: 0.6 %大阪: 0.6 %大阪府: 0.3 %大阪府: 0.3 %天安: 0.1 %天安: 0.1 %天津: 2.7 %天津: 2.7 %太原: 0.2 %太原: 0.2 %威海: 0.0 %威海: 0.0 %宁波: 0.1 %宁波: 0.1 %安康: 0.0 %安康: 0.0 %安顺: 0.1 %安顺: 0.1 %官坑: 0.4 %官坑: 0.4 %宜春: 0.0 %宜春: 0.0 %宣城: 0.1 %宣城: 0.1 %密蘇里城: 0.1 %密蘇里城: 0.1 %巴中: 0.0 %巴中: 0.0 %巴登-符腾堡州: 0.0 %巴登-符腾堡州: 0.0 %巴黎: 0.4 %巴黎: 0.4 %常州: 0.4 %常州: 0.4 %常德: 0.3 %常德: 0.3 %广州: 0.3 %广州: 0.3 %廊坊: 0.3 %廊坊: 0.3 %张家口: 0.2 %张家口: 0.2 %张家界: 0.0 %张家界: 0.0 %徐州: 0.1 %徐州: 0.1 %德黑兰: 0.2 %德黑兰: 0.2 %怀化: 0.0 %怀化: 0.0 %悉尼: 0.1 %悉尼: 0.1 %成都: 2.8 %成都: 2.8 %扬州: 0.5 %扬州: 0.5 %揭阳: 0.1 %揭阳: 0.1 %新余: 0.1 %新余: 0.1 %无锡: 0.0 %无锡: 0.0 %昆明: 1.2 %昆明: 1.2 %昌吉: 0.0 %昌吉: 0.0 %晋城: 0.2 %晋城: 0.2 %普洱: 0.0 %普洱: 0.0 %杭州: 0.7 %杭州: 0.7 %桂林: 0.2 %桂林: 0.2 %梅州: 0.1 %梅州: 0.1 %武汉: 3.0 %武汉: 3.0 %汕头: 0.0 %汕头: 0.0 %江门: 0.0 %江门: 0.0 %沈阳: 0.3 %沈阳: 0.3 %泸州: 0.0 %泸州: 0.0 %洛杉矶: 0.1 %洛杉矶: 0.1 %洛阳: 0.1 %洛阳: 0.1 %济南: 0.3 %济南: 0.3 %海得拉巴: 0.1 %海得拉巴: 0.1 %淄博: 0.2 %淄博: 0.2 %淮南: 0.0 %淮南: 0.0 %深圳: 2.9 %深圳: 2.9 %温州: 0.3 %温州: 0.3 %湖州: 0.2 %湖州: 0.2 %湘西: 0.1 %湘西: 0.1 %漯河: 1.7 %漯河: 1.7 %潍坊: 0.1 %潍坊: 0.1 %班加罗尔: 0.0 %班加罗尔: 0.0 %百色: 0.1 %百色: 0.1 %石家庄: 0.0 %石家庄: 0.0 %福州: 0.1 %福州: 0.1 %秦皇岛: 0.2 %秦皇岛: 0.2 %纽约: 0.1 %纽约: 0.1 %绵阳: 1.2 %绵阳: 1.2 %罗马: 0.2 %罗马: 0.2 %芒廷维尤: 15.6 %芒廷维尤: 15.6 %芝加哥: 0.6 %芝加哥: 0.6 %苏州: 0.5 %苏州: 0.5 %萨默维尔: 0.1 %萨默维尔: 0.1 %衡水: 0.4 %衡水: 0.4 %衡阳: 0.3 %衡阳: 0.3 %衢州: 0.3 %衢州: 0.3 %襄阳: 0.0 %襄阳: 0.0 %西宁: 16.1 %西宁: 16.1 %西安: 0.6 %西安: 0.6 %许昌: 0.1 %许昌: 0.1 %诺沃克: 1.4 %诺沃克: 1.4 %贵阳: 0.2 %贵阳: 0.2 %费利蒙: 0.0 %费利蒙: 0.0 %辽源: 0.1 %辽源: 0.1 %运城: 0.9 %运城: 0.9 %遵义: 0.1 %遵义: 0.1 %邯郸: 0.1 %邯郸: 0.1 %郑州: 0.9 %郑州: 0.9 %都伯林: 0.4 %都伯林: 0.4 %重庆: 0.2 %重庆: 0.2 %铁岭: 0.0 %铁岭: 0.0 %长春: 0.6 %长春: 0.6 %长沙: 4.1 %长沙: 4.1 %长治: 0.0 %长治: 0.0 %阿勒泰: 0.0 %阿勒泰: 0.0 %阿坝: 0.1 %阿坝: 0.1 %阿菲永卡拉希萨尔: 0.2 %阿菲永卡拉希萨尔: 0.2 %青岛: 0.6 %青岛: 0.6 %首尔特别: 0.1 %首尔特别: 0.1 %香港特别行政区: 0.0 %香港特别行政区: 0.0 %其他其他BradfordFalls ChurchIndianapolisJapanNahantOsakaSan LorenzoSeattleTaichung[]上海上饶东莞中卫中山临汾丹东丽水九江京畿道保定信阳兰州内江北京十堰南京南平南昌南通博阿努瓦厦门台中台州合肥吉林呼和浩特和田哈尔滨哥伦布唐山商洛嘉兴大连大阪大阪府天安天津太原威海宁波安康安顺官坑宜春宣城密蘇里城巴中巴登-符腾堡州巴黎常州常德广州廊坊张家口张家界徐州德黑兰怀化悉尼成都扬州揭阳新余无锡昆明昌吉晋城普洱杭州桂林梅州武汉汕头江门沈阳泸州洛杉矶洛阳济南海得拉巴淄博淮南深圳温州湖州湘西漯河潍坊班加罗尔百色石家庄福州秦皇岛纽约绵阳罗马芒廷维尤芝加哥苏州萨默维尔衡水衡阳衢州襄阳西宁西安许昌诺沃克贵阳费利蒙辽源运城遵义邯郸郑州都伯林重庆铁岭长春长沙长治阿勒泰阿坝阿菲永卡拉希萨尔青岛首尔特别香港特别行政区

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(3)

    Article views (809) PDF downloads(92) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return