Volume 34 Issue 12
Nov.  2022
Turn off MathJax
Article Contents
Ying Songlin, Hu Dan, Liu Kai. Real time phase calculation of phase shifted structured light based on one-dimensional look-up table[J]. High Power Laser and Particle Beams, 2022, 34: 121003. doi: 10.11884/HPLPB202234.220159
Citation: Ying Songlin, Hu Dan, Liu Kai. Real time phase calculation of phase shifted structured light based on one-dimensional look-up table[J]. High Power Laser and Particle Beams, 2022, 34: 121003. doi: 10.11884/HPLPB202234.220159

Real time phase calculation of phase shifted structured light based on one-dimensional look-up table

doi: 10.11884/HPLPB202234.220159
  • Received Date: 2022-05-16
  • Accepted Date: 2022-06-20
  • Rev Recd Date: 2022-05-29
  • Available Online: 2022-11-02
  • Publish Date: 2022-11-02
  • We propose a fast phase decoding algorithm based on a one-dimensional look-up table. Firstly, according to the property of the arctangent function in the phase calculation formula, the phase relationship between the four quadrants is obtained. A linear function is used to map the coordinate points in the first quadrant to a discrete integer interval, and a one-dimensional look-up table of phases is established in advance by combining the interval with the linear function. In the process of phase calculation, firstly, the index of the one-dimensional look-up table is calculated by using relevant information to directly obtain the phase value, and then the phase value is adjusted by the linear interpolation method and phase relationship to obtain the final real phase. Experiments have verified the effectiveness of the proposed algorithm. Compared with the traditional phase calculation method, the proposed method can improve the speed by 3.97 times, 1.29 times compared with the traditional polynomial approximation algorithm, and 1.20 times compared with the traditional one-dimensional look-up table algorithm.
  • loading
  • [1]
    苏显渝, 张启灿, 陈文静. 结构光三维成像技术[J]. 中国激光, 2014, 41:0209001 doi: 10.3788/CJL201441.0209001

    Su Xianyu, Zhang Qican, Chen Wenjing. Three-dimensional imaging based on structured illumination[J]. Chinese Journal of Lasers, 2014, 41: 0209001 doi: 10.3788/CJL201441.0209001
    [2]
    丁榆德, 杨斌. 三维数字化扫描及测量技术在下颌前突畸形诊治中的应用[J]. 中国组织工程研究, 2016, 20(20):2992-2999 doi: 10.3969/j.issn.2095-4344.2016.20.015

    Ding Yude, Yang Bin. Application of three-dimensional scanning and measuring techniques in the diagnosis and treatment of mandibular prognathism[J]. Chinese Journal of Tissue Engineering Research, 2016, 20(20): 2992-2999 doi: 10.3969/j.issn.2095-4344.2016.20.015
    [3]
    Sansoni G, Trebeschi M, Docchio F. State-of-the-art and applications of 3D imaging sensors in industry, cultural heritage, medicine, and criminal investigation[J]. Sensors, 2009, 9(1): 568-601. doi: 10.3390/s90100568
    [4]
    喻彩丽. 基于逆向工程的三维测量技术的研究[J]. 计量与测试技术, 2010, 37(7):38-39 doi: 10.3969/j.issn.1004-6941.2010.07.024

    Yu Caili. Research of 3D measurement based on reverse-engineering[J]. Metrology & Measurement Technique, 2010, 37(7): 38-39 doi: 10.3969/j.issn.1004-6941.2010.07.024
    [5]
    Zuo Chao, Feng Shijie, Huang Lei, et al. Phase shifting algorithms for fringe projection profilometry: a review[J]. Optics and Lasers in Engineering, 2018, 109: 23-59. doi: 10.1016/j.optlaseng.2018.04.019
    [6]
    刘凯, 龙云飞, 王帅军, 等. 相位测量轮廓术中结合几何标定的非线性校正[J]. 强激光与粒子束, 2015, 27:071005 doi: 10.11884/HPLPB201527.071005

    Liu Kai, Long Yunfei, Wang Shuaijun, et al. Nonlinearity calibration incorporated with geometrical calibration for phase measuring profilometry[J]. High Power Laser and Particle Beams, 2015, 27: 071005 doi: 10.11884/HPLPB201527.071005
    [7]
    边心田, 程菊, 左芬, 等. 基于光栅预校正的三维面形测量方法[J]. 激光与光电子学进展, 2017, 54:011202

    Bian Xintian, Cheng Ju, Zuo Fen, et al. A method of 3D shape measurement based on alignment grating projection[J]. Laser & Optoelectronics Progress, 2017, 54: 011202
    [8]
    Huang P S, Zhang Chengping, Chiang F P. High-speed 3-D shape measurement based on digital fringe projection[J]. Optical Engineering, 2003, 42(1): 163-168. doi: 10.1117/1.1525272
    [9]
    Griesser A, Koninckx T P, Van Gool L. Adaptive real-time 3D acquisition and contour tracking within a multiple structured light system[C]//Proceedings of the 12th Pacific Conference on Computer Graphics and Applications. 2004: 361-370.
    [10]
    Huang P S, Zhang Song, Chiang F P. Trapezoidal phase-shifting method for three-dimensional shape measurement[J]. Optical Engineering, 2005, 44: 123601. doi: 10.1117/1.2147311
    [11]
    Jia Peirong, Kofman J, English C E. Two-step triangular-pattern phase-shifting method for three-dimensional object-shape measurement[J]. Optical Engineering, 2007, 46: 083201. doi: 10.1117/1.2768616
    [12]
    Liu Kai, Song Jianwen, Lau D L, et al. Reconstructing 3D point clouds in real time with look-up tables for structured light scanning along both horizontal and vertical directions[J]. Optics Letters, 2019, 44(24): 6029-6032. doi: 10.1364/OL.44.006029
    [13]
    Liu Kai, Zhang Kangkang, Wei Jinghe, et al. Extending epipolar geometry for real-time structured light illumination[J]. Optics Letters, 2020, 45(12): 3280-3283. doi: 10.1364/OL.390212
    [14]
    Guo Hongwei, Liu Guoqing. Approximations for the arctangent function in efficient fringe pattern analysis[J]. Optics Express, 2007, 15(6): 3053-3066. doi: 10.1364/OE.15.003053
    [15]
    周珺, 郭红卫. 三角函数逼近算法及其在光学条纹图像分析中的应用[J]. 光学仪器, 2013, 35(1):22-29 doi: 10.3969/j.issn.1005-5630.2013.01.005

    Zhou Jun, Guo Hongwei. Approximation of trigonometric function and its application in optical fringe analysis[J]. Optical Instruments, 2013, 35(1): 22-29 doi: 10.3969/j.issn.1005-5630.2013.01.005
    [16]
    Pilato L, Fanucci L, Saponara S. Real-time and high-accuracy arctangent computation using CORDIC and fast magnitude estimation[J]. Electronics, 2017, 6: 22. doi: 10.3390/electronics6010022
    [17]
    Torres V, Valls J. A fast and low-complexity operator for the computation of the arctangent of a complex number[J]. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2017, 25(9): 2663-2667. doi: 10.1109/TVLSI.2017.2700519
    [18]
    Benammar M, Alassi A, Gastli A, et al. New fast arctangent approximation algorithm for generic real-time embedded applications[J]. Sensors, 2019, 19: 5148. doi: 10.3390/s19235148
    [19]
    Liu Kai, Wang Yongchang, Lau D L, et al. Dual-frequency pattern scheme for high-speed 3D shape measurement[J]. Optics Express, 2010, 18(5): 5229-5244. doi: 10.1364/OE.18.005229
    [20]
    Ukil A, Shah V H, Deck B. Fast computation of arctangent functions for embedded applications: a comparative analysis[C]//Proceedings of 2011 IEEE International Symposium on Industrial Electronics. 2011: 1206-1211.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(3)

    Article views (751) PDF downloads(92) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return