Li Jia, Zhao Quantang, Ran Zhaohui, et al. Design and beam dynamic analysis of 270° achromatic deflection magnet system[J]. High Power Laser and Particle Beams, 2022, 34: 124002. doi: 10.11884/HPLPB202234.220180
Citation: Li Jia, Zhao Quantang, Ran Zhaohui, et al. Design and beam dynamic analysis of 270° achromatic deflection magnet system[J]. High Power Laser and Particle Beams, 2022, 34: 124002. doi: 10.11884/HPLPB202234.220180

Design and beam dynamic analysis of 270° achromatic deflection magnet system

doi: 10.11884/HPLPB202234.220180
  • Received Date: 2022-06-02
  • Accepted Date: 2022-08-12
  • Rev Recd Date: 2022-07-20
  • Available Online: 2022-11-02
  • Publish Date: 2022-11-02
  • The 270° beam deflection system with magnets is widely used in medical electron linear accelerators and high-energy electron industrial irradiation accelerators. In this paper, three common structures of 270° deflection magnet are systematically analyzed and discussed. Numerical calculation and simulation methods are used for the two-magnet asymmetric deflection structure, the three 90° magnets deflection structure and the 70°+130°+70° deflection structure. The achromatic transmission conditions of the deflection systems are given, and the changes of beam envelope in the deflection and exit beam line are analyzed. After analysis and comparison, the advantages and disadvantages of the three structures are listed in detail, which has certain guiding significance for the selection of structures in specific application fields. The two-magnet asymmetric deflection structure is suitable for medical accelerators. The three 90° magnets deflection structure is suitable for irradiation accelerators that require long-distance drift at the exit. The 70°+130°+70° deflection structure can satisfy the non-destructive drift of a certain distance from the exit, and it achieves relatively low cost, therefore, it which is a more economical and suitable choice for industrial irradiation accelerators.
  • [1]
    李金海. 射频电子辐照加速器原理与关键技术[M]. 上海: 上海交通大学出版社, 2020

    Li Jinhai. Principles and key technologies of radio frequency accelerators for electron irradiation[M]. Shanghai: Shanghai Jiao Tong University Press, 2020
    [2]
    Cleland M R. Industrial applications of electron accelerators[R]. Zeegse, The Netherlands: CERN Accelerator School, 2006: 383-416.
    [3]
    Amano Y. Atoms in industry: radiation technology supports development[N/OL]. Vienna: IAEA Bulletin, 2015. https://www.iaea.org/publications/magazines/bulletin/56-3.
    [4]
    Hamm R W. Review of industrial accelerators and their applications[R]. AP/IA-12, 2009.
    [5]
    Shahzad A A, Patil B J, Pethe S N, et al. Design of electron beam bending magnet system for electron and photon therapy: a simulation approach[J]. Indian Journal of Pure & Applied Physics, 2019, 57(7): 492-497.
    [6]
    Akhter S, Bhoraskar V N, Dhole S D. 270° electron beam bending system using two sector magnets for therapy application[C]//Proceeding of IBIC 2012. 2012: 50-53.
    [7]
    杨绍洲, 杨光, 沈庆贤, 等. 医用电子直线加速器的射束偏转系统[J]. 中国医学物理学杂志, 2000, 17(3):129-131,133 doi: 10.3969/j.issn.1005-202X.2000.03.001

    Yang Shaozhou, Yang Guang, Shen Qinxian, et al. The beam bend magnet system of medical electron accelerator[J]. Chinese Journal of medical Physics, 2000, 17(3): 129-131,133 doi: 10.3969/j.issn.1005-202X.2000.03.001
    [8]
    刘迺泉. 270°消色差偏转磁铁束流传输特性[J]. 核科学与工程, 1983, 3(1):79-89

    Liu Naiquan. Beam transport characteristics of the 270° doubly achromatic bending magnet[J]. Chinese Journal of Nuclear Science and Engineering, 1983, 3(1): 79-89
    [9]
    陈万忠, 纪东泽, 成希革. 270°束流偏转系统研制[J]. 医学装备, 2009, 22(8):46-48

    Chen Wanzhong, Ji Dongze, Cheng Xige. Development of 270° beam deflection system[J]. Medical Equipment, 2009, 22(8): 46-48
    [10]
    李泉凤, 孔巢城, 郭冰琪, 等. 束流在270°偏转磁铁系统输运过程中的损失计算[J]. 高能物理与核物理, 2007, 31(8):787-791 doi: 10.3321/j.issn:0254-3052.2007.08.018

    Li Quanfeng, Kong Chaocheng, Guo Bingqi, et al. Calculation of the beam loss in the 270° bending magnet system of the medical accelerator[J]. High Energy Physics and Nuclear Physics, 2007, 31(8): 787-791 doi: 10.3321/j.issn:0254-3052.2007.08.018
    [11]
    Chemerisov S D, Gromov R, Bailey J L, et al. Beamline design and beam diagnostic for Mo-99 production facility utilizing high power electron accelerators[R]. Argonne: Argonne National Lab, 2019.
    [12]
    Shahzad A, Phatangare A B, Bharud V D, et al. Design and development of the 6-18 MeV electron beam system for medical and other applications[J]. Radiation Effects and Defects in Solids, 2017, 172(11/12): 931-951.
    [13]
    Brown K L, Turnbull W G. Achromatic magnetic beam deflection system: 3867635[P]. 1975-02-18.
    [14]
    Hutcheon R M, Heighway E A. A new compact doubly achromatic asymmetric two-magnet beam deflection system[J]. Nuclear Instruments and Methods in Physics Research, 1981, 187(1): 81-87. doi: 10.1016/0029-554X(81)90473-0
    [15]
    Jongen Y, Abs M, Zaremba S, et al. Realignment of a diverging electron beam: a new beam delivery system for Rhodotrons[C]//Proceedings of 1997 Particle Accelerator Conference. Vancouver: IEEE, 1997: 3857-3859.
    [16]
    李泉凤, 邹昀. 双消色散270°偏转磁铁的物理设计[J]. 原子能科学技术, 1995, 29(5):423-427

    Li Quanfeng, Zhou Yun. Physical design of a 270° double achromatic bending magnet[J]. Atomic Energy Science and Technology, 1995, 29(5): 423-427
    [17]
    Michael B. User’s Manual for elegant[EB/OL]. Michael Borland: Advanced Photon Source, 2016. https://www3.aps.anl.gov/forums/elegant/.
    [18]
    M B, Makino K. COSY INFINITY 9.1 programmer’s manual[EB/OL]. East Lansing: Michigan State University, 2011. http://cosyinfinity.org.
    [19]
    魏开煜. 带电束流传输理论[M]. 北京: 科学出版社, 1986

    Wei Kaiyu. Charged beam transport theory[M]. Beijing: Science Press, 1986
  • Relative Articles

    [1]Zhang Gang, He Xiaozhong, Du Yang, Shi Jinshui, Yang Guojun. Beam dynamics calculation of cyclotron based on Geant4[J]. High Power Laser and Particle Beams, 2022, 34(7): 074002. doi: 10.11884/HPLPB202234.210458
    [2]Wu Tong, Lai Longwei, Yu Luyang, Yuan Renxian, Chen Jian, Yan Yingbing, Leng Yongbin. Design of stripline beam position monitor for Shanghai soft X-ray free electron laser[J]. High Power Laser and Particle Beams, 2021, 33(5): 054003. doi: 10.11884/HPLPB202133.210015
    [3]Sui Yanfeng, Cao Jianshe, Ma Huizhou, He Jun, Zhao Ying, Yu Lingda, Zhao Xiaoyan, Wei Shujun, Ye Qiang, Yue Junhui, Wang Lin. Introduction of beam instrumentation for China Accelerator Driven Subcritical System’s Injector Ⅰ[J]. High Power Laser and Particle Beams, 2017, 29(11): 115102. doi: 10.11884/HPLPB201729.170170
    [4]Qiu Yongfeng, Yang Jianhua, Liu Jinliang, Cheng Xinbing. Control system of repetitively pulsed intense-electron-beam accelerator charged by capacitive energy storage[J]. High Power Laser and Particle Beams, 2016, 28(07): 075101. doi: 10.11884/HPLPB201628.075101
    [5]Zhao Xiangxue, Liang Lizhen, Hu Chundong, Wei Jianglong, Wang Yan. Beam transmission characteristics simulation of EAST-NBI magnetic deflection system[J]. High Power Laser and Particle Beams, 2015, 27(04): 046002. doi: 10.11884/HPLPB201527.046002
    [6]Li Zhongping, Cao Shuchun, Zhang Zimin, Wang Bin, Yang Chunming. Development of self-correcting scanning system for DG-type electron accelerators[J]. High Power Laser and Particle Beams, 2013, 25(02): 481-484. doi: 10.3788/HPLPB20132502.0481
    [7]sun jilei, ruan yufang, xiao shuai, peng jun, wang biao, li fang, xu taoguang. Design of beam profile and halo measurement system for high-intensity RFQ accelerator[J]. High Power Laser and Particle Beams, 2011, 23(01): 0- .
    [8]shen lin, tian junlin, liu zhiguo, xiong shengming. Influence of bias voltage of APS ion source on performance of hafnium films deposited with ion-assisted technology[J]. High Power Laser and Particle Beams, 2009, 21(01): 0- .
    [9]kang yifan, feng dayi, zhou libin, wang chao, tian xiaona, tian jinshou, liu hulin, tang tiantong. A novel combined focusing-deflection system for streak image tube[J]. High Power Laser and Particle Beams, 2009, 21(07): 0- .
    [10]feng de-ren, wang xiang-qi, xu yu-cun, hao hao, pei yuan-ji, hong yi-lin. Development of scanning magnet power-supply used in industrial radiation accelerator[J]. High Power Laser and Particle Beams, 2008, 20(04): 0- .
    [11]liang li-zhen, hu chun-dong, liu zhi-min, hu li-qun. Effect of neutral beam quality on design of window in bending system[J]. High Power Laser and Particle Beams, 2008, 20(05): 0- .
    [12]yang guo-jun, zhang zhuo, he xiao-zhong. Beam dynamics design of a 750 keV radio frequency quadrupole injector[J]. High Power Laser and Particle Beams, 2007, 19(09): 0- .
    [13]yu cheng-hui, wang lin, wei yuan-yuan. Beam-beam deflection effect in Beijing electron positron collider[J]. High Power Laser and Particle Beams, 2005, 17(11): 0- .
    [14]liu jin liang, zhong hui huang, tan qi mei, li chuan lu, zhang jian de. Teslatransformertype electron beam accelerator[J]. High Power Laser and Particle Beams, 2002, 14(06): 0- .
    [16]zhou changbing, xi dexun, zhuang ya. SCANNING CONTROL OF ELECTRON BEAM FOR IRRADIATION LINAC[J]. High Power Laser and Particle Beams, 1998, 10(04): 0- .
    [17]hu hongqing, yang zhonghai. STUDY OF THE ELECTRON BEAMDYNAMICAL BEHAVIOR IN CROSS FIELD GAP[J]. High Power Laser and Particle Beams, 1998, 10(01): 0- .
  • Cited by

    Periodical cited type(1)

    1. 任三孩,邢艳军,彭忠,黄惠军. 粒子束空间传输影响因素及应对方法. 国防科技大学学报. 2023(02): 138-145 .

    Other cited types(0)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-040102030405060
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 26.4 %FULLTEXT: 26.4 %META: 65.7 %META: 65.7 %PDF: 7.8 %PDF: 7.8 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 5.8 %其他: 5.8 %其他: 0.3 %其他: 0.3 %上海: 5.4 %上海: 5.4 %上莱茵省: 0.1 %上莱茵省: 0.1 %东莞: 0.2 %东莞: 0.2 %中山: 0.1 %中山: 0.1 %临汾: 0.1 %临汾: 0.1 %丹东: 0.1 %丹东: 0.1 %乌得勒支: 0.1 %乌得勒支: 0.1 %保定: 0.2 %保定: 0.2 %兰州: 1.4 %兰州: 1.4 %北京: 3.5 %北京: 3.5 %十堰: 0.2 %十堰: 0.2 %南京: 0.1 %南京: 0.1 %南昌: 0.5 %南昌: 0.5 %南通: 0.2 %南通: 0.2 %台州: 0.3 %台州: 0.3 %合肥: 0.7 %合肥: 0.7 %哈尔滨: 0.2 %哈尔滨: 0.2 %哥伦布: 0.3 %哥伦布: 0.3 %喀什: 0.4 %喀什: 0.4 %嘉兴: 0.2 %嘉兴: 0.2 %圣巴巴拉: 0.1 %圣巴巴拉: 0.1 %天津: 1.0 %天津: 1.0 %孟买: 0.7 %孟买: 0.7 %宁波: 0.3 %宁波: 0.3 %宣城: 0.2 %宣城: 0.2 %常州: 0.4 %常州: 0.4 %常德: 0.2 %常德: 0.2 %广州: 0.2 %广州: 0.2 %张家口: 1.1 %张家口: 1.1 %徐州: 0.2 %徐州: 0.2 %惠州: 0.3 %惠州: 0.3 %成都: 1.4 %成都: 1.4 %扬州: 0.3 %扬州: 0.3 %新余: 0.2 %新余: 0.2 %昆明: 0.5 %昆明: 0.5 %晋城: 0.1 %晋城: 0.1 %普洱: 0.1 %普洱: 0.1 %朝阳: 0.1 %朝阳: 0.1 %杭州: 0.3 %杭州: 0.3 %桂林: 0.2 %桂林: 0.2 %榆林: 0.1 %榆林: 0.1 %武汉: 0.4 %武汉: 0.4 %沈阳: 0.1 %沈阳: 0.1 %泉州: 0.1 %泉州: 0.1 %济南: 0.2 %济南: 0.2 %深圳: 0.7 %深圳: 0.7 %温州: 0.2 %温州: 0.2 %湖州: 0.9 %湖州: 0.9 %漯河: 1.8 %漯河: 1.8 %益阳: 0.2 %益阳: 0.2 %石家庄: 0.5 %石家庄: 0.5 %秦皇岛: 0.1 %秦皇岛: 0.1 %绵阳: 0.7 %绵阳: 0.7 %芒廷维尤: 23.7 %芒廷维尤: 23.7 %芝加哥: 0.8 %芝加哥: 0.8 %苏州: 0.6 %苏州: 0.6 %衡阳: 0.1 %衡阳: 0.1 %衢州: 0.2 %衢州: 0.2 %西宁: 30.2 %西宁: 30.2 %西安: 1.0 %西安: 1.0 %诺沃克: 5.3 %诺沃克: 5.3 %贵阳: 0.3 %贵阳: 0.3 %运城: 1.1 %运城: 1.1 %邯郸: 0.6 %邯郸: 0.6 %郑州: 0.8 %郑州: 0.8 %重庆: 0.1 %重庆: 0.1 %长沙: 0.7 %长沙: 0.7 %阿姆斯特丹: 0.3 %阿姆斯特丹: 0.3 %陇南: 0.1 %陇南: 0.1 %青岛: 0.2 %青岛: 0.2 %其他其他上海上莱茵省东莞中山临汾丹东乌得勒支保定兰州北京十堰南京南昌南通台州合肥哈尔滨哥伦布喀什嘉兴圣巴巴拉天津孟买宁波宣城常州常德广州张家口徐州惠州成都扬州新余昆明晋城普洱朝阳杭州桂林榆林武汉沈阳泉州济南深圳温州湖州漯河益阳石家庄秦皇岛绵阳芒廷维尤芝加哥苏州衡阳衢州西宁西安诺沃克贵阳运城邯郸郑州重庆长沙阿姆斯特丹陇南青岛

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(4)

    Article views (892) PDF downloads(148) Cited by(1)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return