Li Wenhuai, Wang Junling, Zhang Xiangju, et al. Optimization of periodical physical flux map test[J]. High Power Laser and Particle Beams, 2017, 29: 016004. doi: 10.11884/HPLPB201729.160199
Citation: Qu Miao, Yan Sha. Dependence of tungsten melting and resolidification on pulse parameters under transient heat flow[J]. High Power Laser and Particle Beams, 2022, 34: 126002. doi: 10.11884/HPLPB202234.220192

Dependence of tungsten melting and resolidification on pulse parameters under transient heat flow

doi: 10.11884/HPLPB202234.220192
  • Received Date: 2022-06-08
  • Accepted Date: 2022-10-19
  • Rev Recd Date: 2022-10-14
  • Available Online: 2022-10-22
  • Publish Date: 2022-11-02
  • To study the influence of different pulse parameters on the melting and resolidification behavior of tungsten after its temperature reaches the melting point under transient heat flow, the differences in morphology and structure of tungsten after melting and resolidification under IPEB (5 ms) and CPF (0.1 ms) were experimentally observed. The dependence of hierarchical structure and columnar crystal grain on pulse parameters was analyzed considering the driving force of molten layer motion, cooling rate, temperature gradient and other factors. The reason why the columnar crystal grains appear on tungsten at pulse width of 0.1 ms but not at pulse width of 5 ms was analyzed by calculating the thermal action characteristics for two heat sources. It is found that the beam with high current intensity and short pulse width is easy to promote the formation of hierarchical structure. The reason is that the high current intensity of the pulse beam can cause the molten layer motion on the surface of the material, while the short pulse width of the pulse beam can make the molten traces too late to recover and be quickly cooled and solidified. When the sample melts under transient heat flow, short pulse width is beneficial to the formation of columnar crystal grains and long pulse width is beneficial to the formation of equiaxed grains and grain growth.
  • [1]
    Li Yu. Thermo-mechanical behavior of tungsten under fusion-relevant hydrogen plasma loads[D]. Eindhoven: Technische Universiteit Eindhoven, 2021.
    [2]
    Matera R, Federici G, The ITER Joint Central Team. Design requirements for plasma facing materials in ITER[J]. Journal of Nuclear Materials, 1996, 233/237: 17-25. doi: 10.1016/S0022-3115(96)00317-0
    [3]
    张洋. EAST装置偏滤器靶板的可靠性研究[D]. 合肥: 中国科学技术大学, 2019

    Zhang Yang. Research on reliability of EAST divertor targets[D]. Hefei: University of Science and Technology of China, 2019
    [4]
    Hassanein A, Sizyuk V. Potential design problems for ITER fusion device[J]. Scientific Reports, 2021, 11: 2069. doi: 10.1038/s41598-021-81510-2
    [5]
    Arshad K, Ding Dan, Wang Jun, et al. Surface cracking of tungsten-vanadium alloys under transient heat loads[J]. Nuclear Materials and Energy, 2015, 3/4: 32-36. doi: 10.1016/j.nme.2015.05.001
    [6]
    Minissale M, Durif A, Kermouche G, et al. Grain growth and damages induced by transient heat loads on W[J]. Physica Scripta, 2021, 96: 124032. doi: 10.1088/1402-4896/ac27df
    [7]
    Makhlai V A, Garkusha I E, Herashchenko S S, et al. Contribution of leading edge shape to a damaging of castellated tungsten targets exposed to repetitive QSPA plasma loads[J]. Physica Scripta, 2021, 96: 124043. doi: 10.1088/1402-4896/ac2d86
    [8]
    Kasatov A A, Arakcheev A S, Burdakov A V, et al. Observation of dust particles ejected from tungsten surface under impact of intense transient heat load[J]. AIP Conference Proceedings, 2016, 1771: 060007.
    [9]
    倪明玖. 磁约束核聚变反应堆研发相关的金属流体力学问题研究[J]. 中国科学:物理学 力学 天文学, 2013, 43(12):1570-1578

    Ni Mingjiu. Liquid metal hydrodynamics relevant to R&D of magnetocondined fusion reactor[J]. Scientia Sinica Physica, Mechanica & Astronomica, 2013, 43(12): 1570-1578
    [10]
    Makhlai V A, Herashchenko S S, Aksenov N N, et al. Damaging of inclined/misaligned castellated tungsten surfces exposed to a large number of repetitive QSPA plasma loads[J]. Physica Scripta, 2020, T171: 014047. doi: 10.1088/1402-4896/ab4e52
    [11]
    Wittlich K, Hirai T, Compan J, et al. Damage structure in divertor armor materials exposed to multiple ITER relevant ELM loads[J]. Fusion Engineering and Design, 2009, 84(7/11): 1982-1986.
    [12]
    Bazylev B, Janeschitz G, Landman I, et al. Behaviour of melted tungsten plasma facing components under ITER-like transient heat loads: simulations and experiments[J]. Fusion Engineering and Design, 2008, 83(7/9): 1077-1081.
    [13]
    Budaev V P, Martynenko Y V, Karpov A V, et al. Tungsten recrystallization and cracking under ITER-relevant heat loads[J]. Journal of Nuclear Materials, 2015, 463: 237-240. doi: 10.1016/j.jnucmat.2014.11.129
    [14]
    Garkusha I E, Bandura A N, Byrka O V, et al. Damage to preheated tungsten targets after multiple plasma impacts simulating ITER ELMs[J]. Journal of Nuclear Materials, 2009, 386/388: 127-131. doi: 10.1016/j.jnucmat.2008.12.083
    [15]
    Kudaktsin R S, Astashynski V M, Kuzmitski A M. Characteristic features of the surface relief formation of metals modified by compression plasma flows[J]. High Temperature Material Processes: An International Quarterly of High-Technology Plasma Processes, 2019, 23(3): 275-282. doi: 10.1615/HighTempMatProc.2019031163
    [16]
    Shymanski V I, Uglov V V, Cherenda N N, et al. Structure and phase composition of tungsten alloys modified by compression plasma flows and high-intense pulsed ion beam impacts[J]. Applied Surface Science, 2019, 491: 43-52. doi: 10.1016/j.apsusc.2019.06.113
    [17]
    Qu Miao, Kong Fanhang, Yan Sha, et al. Damages on pure tungsten irradiated by compression plasma flows[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2019, 444: 33-37.
    [18]
    Li Changjun, Zhu Dahuan, Li Xiangbin, et al. Performance of W-1%Y2O3-0.5%Ti plasma-facing composite under fusion relevant transient heat flux[J]. Fusion Science and Technology, 2021, 77(4): 310-315. doi: 10.1080/15361055.2021.1874765
    [19]
    Lian Youyun, Liu Xiang, Cheng Zhengkui, et al. Thermal shock performance of CVD tungsten coating at elevated temperatures[J]. Journal of Nuclear Materials, 2014, 455(1/3): 371-375.
    [20]
    彭广威, 刘健, 李理, 等. 定向凝固理论及技术的研究现状[J]. 铸造设备研究, 2005(4):44-47

    Peng Guangwei, Liu Jian, Li Li, et al. Progress of technic and theory of directional solidification[J]. Research Studies on Foundry Equipment, 2005(4): 44-47
    [21]
    丁国陆, 黄卫东, 林鑫, 等. 定向凝固界面高梯度绝对稳定性的临界条件[J]. 自然科学进展——国家重点实验室通讯, 1996, 6(5):602-607

    Ding Guolu, Huang Weidong, Lin Xin, et al. Critical conditions for high gradient absolute stability of directional and solidification interfaces[J]. Progress in Natural Science: Communication of State Key Laboratories of China, 1996, 6(5): 602-607
    [22]
    Huang S C, Laforce R P, Ritter A M, et al. Rapid solidification characteristics in melt spinning a Ni-base superalloy[J]. Metallurgical Transactions A, 1985, 16(10): 1773-1779. doi: 10.1007/BF02670365
    [23]
    Kurz W, Trivedi R. Overview No. 87 Solidification microstructures: recent developments and future directions[J]. Acta Metallurgica et Materialia, 1990, 38(1): 1-17. doi: 10.1016/0956-7151(90)90129-5
    [24]
    杨扬, 徐锦锋, 翟秋亚. 急冷条件下Cu-Sn合金的快速枝晶生长[J]. 中国有色金属学报, 2007, 17(9):1521-1526 doi: 10.3321/j.issn:1004-0609.2007.09.023

    Yang Yang, Xu Jinfeng, Zhai Qiuya. Rapid dendritic growth in melt-spun Cu−Sn alloys[J]. The Chinese Journal of Nonferrous Metals, 2007, 17(9): 1521-1526 doi: 10.3321/j.issn:1004-0609.2007.09.023
    [25]
    王刚, 安琳. COMSOL Multiphysics工程实践与理论仿真: 多物理场数值分析技术[M]. 北京: 电子工业出版社, 2012: 24-25

    Wang Gang, An Lin. Engineering practice and theoretical simulation in COMSOL Multiphysics: multi physical field numerical analysis technology[M]. Beijing: Publishing House of Electronics Industry, 2012: 24-25
  • Relative Articles

    [1]Tan Xiao, Deng Li, Zhang Lingyu, Li Rui, Fu Yuanguang, Shi Dunfu, Liu Peng, Yang Chao. Development and tests of functions of proton, low-energy photon and electron transport in JMCT3.0 Monte Carlo particle transport program[J]. High Power Laser and Particle Beams, 2024, 36(9): 096002. doi: 10.11884/HPLPB202436.240117
    [2]Tan Qun, Fan Jieqing, Zhao Qiang, Zhang Fang, Li Yao, Hao Jianhong, Dong Zhiwei. Three-dimensional Monte Carlo simulation of electron radiation effects on CCD[J]. High Power Laser and Particle Beams, 2022, 34(4): 044004. doi: 10.11884/HPLPB202234.210390
    [3]He Hui, Yu Haijun, Wang Yi, Dai Wenhua. Design of bremsstrahlung target of 4 MeV flash X-ray machine[J]. High Power Laser and Particle Beams, 2019, 31(12): 125102. doi: 10.11884/HPLPB201931.190273
    [4]Wang Yi, Li Qin, Dai Zhiyong. Analysis on influence of beam emittance on spatial distribution of exposure using Monte Carlo simulation[J]. High Power Laser and Particle Beams, 2017, 29(06): 065006. doi: 10.11884/HPLPB201729.170029
    [5]Liang Yuqin, Shao Hao, Sun Jun, Huo Shaofei, Bai Xianchen, Zhang Xiaowei. Influence of kinetic energy on energy deposition of incident electron beams in collectors[J]. High Power Laser and Particle Beams, 2016, 28(03): 033025. doi: 10.11884/HPLPB201628.033025
    [6]Zhang Liang, Ma Tengyue, Yang Ning, Hu Pan, Song Wei, Liang Yuqin. Electron energy deposition in RBWO collector[J]. High Power Laser and Particle Beams, 2015, 27(12): 123008. doi: 10.11884/HPLPB201527.123008
    [7]Wu Sizhong, Zhang Hua, Zhou Cangtao, Wu Junfeng, Cai Hongbo, Cao Lihua, He Minqing, Zhu Shaoping, He Xiantu. Energy deposition of fast electrons in fast ignition[J]. High Power Laser and Particle Beams, 2015, 27(03): 032010. doi: 10.11884/HPLPB201527.032010
    [8]Liang Yuqin, Shao Hao, Sun Jun, Yao Zhiming, Huo Shaofei, Zhang Xiaowei. Influence of guiding magnetic field on energy deposition of electrons in collector[J]. High Power Laser and Particle Beams, 2014, 26(06): 063010. doi: 10.11884/HPLPB201426.063010
    [9]Huo Shaofei, Sun Jun, Chen Changhua, Liang Yuqin, Wu Ping, Zhang Xiaowei, Bai Xianchen. Preliminary study on space density distribution of intense electron beam in foilless diode[J]. High Power Laser and Particle Beams, 2014, 26(04): 043006. doi: 10.11884/HPLPB201426.043006
    [10]Yu Hui, Zin Cho. Comparison of stochastic models in Monte Carlo simulation of coated particle fuels[J]. High Power Laser and Particle Beams, 2013, 25(01): 143-146. doi: 10.3788/HPLPB20132501.0143
    [11]Hu Lin, Lei Yian, Zhu Jun. Simulation on distributed target material impacted by high intensity current multi-pulse electron beam[J]. High Power Laser and Particle Beams, 2013, 25(08): 2125-2129. doi: 10.3788/HPLPB20132508.2125
    [12]Dong Pan, Dai Zhiyong, Xie Yutong, Liao Shuqing, Zhu Jun, Zhuang Huang. Particle-in-cell simulation on focusing of intense electron beam[J]. High Power Laser and Particle Beams, 2012, 24(08): 1970-1974. doi: 10.3788/HPLPB20122408.1970
    [13]Yang Jie, Shu Ting, Zhang Jun, Fan Yuwei, Yang Jianhua, Liu Lie, Yin Yi, Luo Lin. Optical diagnosis system for intense electron beam diode plasma[J]. High Power Laser and Particle Beams, 2012, 24(04): 963-967. doi: 10.3788/HPLPB20122404.0963
    [14]song falun, zhang yonghui, xiang fei, gan yanqing, luo min, kang qiang, li mingjia, ju bingquan, liu zhong. Structure design and experimental study of intense beam diode insulator[J]. High Power Laser and Particle Beams, 2009, 21(04): 0- .
    [15]liu xi-san. Physics sense of ν/γ parameter in intense relativistic electron beam[J]. High Power Laser and Particle Beams, 2007, 19(06): 0- .
    [16]liu zhan-jun, zheng chun-yang, li bin, zhu shao-ping, cao li-hua. Energy deposition of relativistic electron beam in plasmas[J]. High Power Laser and Particle Beams, 2005, 17(01): 0- .
    [17]xia guo xing, xia jia wen, yin xue jun, wu jun xia, liu wei, yang jian cheng, zhao hong wei, wei bao wen. Study on the envelope oscillation of intense electron beam in CSR ecooler system[J]. High Power Laser and Particle Beams, 2004, 16(03): 0- .
    [18]zhang yong-hui, ma qiao sheng, chang an-bi, zhou chuan-ming, gan yan-qing, liu zhong. Study of repetition rate and intense current electron-beam diodes[J]. High Power Laser and Particle Beams, 2004, 16(11): 0- .
    [19]yang hai-liang, qiu ai-ci, zhang jia-sheng, huang jian-jun, sun jian-feng. Simulation calculation for the energy deposition profile and the transmission fraction of intense pulsed electron beamat various incident angles[J]. High Power Laser and Particle Beams, 2002, 14(05): 0- .
    [20]shao hao, liu guo-zhi, song zhi-min, huang weng-hua, hu yong-ei, ning hui. 2-D modification to the current-voltage correlation in inward-emitting coaxial diode[J]. High Power Laser and Particle Beams, 2001, 13(05): 0- .
  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-040510152025
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 20.4 %FULLTEXT: 20.4 %META: 77.2 %META: 77.2 %PDF: 2.4 %PDF: 2.4 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 3.1 %其他: 3.1 %其他: 0.2 %其他: 0.2 %China: 0.6 %China: 0.6 %India: 0.1 %India: 0.1 %Taiwan, China: 0.1 %Taiwan, China: 0.1 %United States: 0.1 %United States: 0.1 %[]: 0.4 %[]: 0.4 %上海: 0.4 %上海: 0.4 %东京: 0.2 %东京: 0.2 %中山: 0.1 %中山: 0.1 %临汾: 0.1 %临汾: 0.1 %丹东: 0.2 %丹东: 0.2 %凤凰城: 0.1 %凤凰城: 0.1 %北京: 14.7 %北京: 14.7 %十堰: 0.1 %十堰: 0.1 %南京: 0.2 %南京: 0.2 %南通: 0.1 %南通: 0.1 %台州: 0.1 %台州: 0.1 %合肥: 0.2 %合肥: 0.2 %咸阳: 0.2 %咸阳: 0.2 %哥伦布: 0.1 %哥伦布: 0.1 %嘉兴: 0.2 %嘉兴: 0.2 %天津: 0.2 %天津: 0.2 %安康: 0.2 %安康: 0.2 %宣城: 0.2 %宣城: 0.2 %常州: 0.1 %常州: 0.1 %广州: 0.3 %广州: 0.3 %张家口: 0.9 %张家口: 0.9 %成都: 0.1 %成都: 0.1 %扬州: 0.1 %扬州: 0.1 %晋城: 0.1 %晋城: 0.1 %普洱: 0.1 %普洱: 0.1 %杭州: 1.7 %杭州: 1.7 %武汉: 0.1 %武汉: 0.1 %济南: 0.1 %济南: 0.1 %深圳: 0.1 %深圳: 0.1 %湖州: 0.1 %湖州: 0.1 %湘潭: 0.1 %湘潭: 0.1 %漯河: 0.8 %漯河: 0.8 %石家庄: 0.1 %石家庄: 0.1 %福州: 0.1 %福州: 0.1 %秦皇岛: 0.1 %秦皇岛: 0.1 %绵阳: 0.1 %绵阳: 0.1 %芒廷维尤: 10.6 %芒廷维尤: 10.6 %芝加哥: 0.1 %芝加哥: 0.1 %西宁: 59.8 %西宁: 59.8 %西安: 0.9 %西安: 0.9 %贵阳: 0.3 %贵阳: 0.3 %运城: 0.3 %运城: 0.3 %邯郸: 0.1 %邯郸: 0.1 %郑州: 0.4 %郑州: 0.4 %重庆: 0.1 %重庆: 0.1 %铁岭: 0.1 %铁岭: 0.1 %长沙: 0.2 %长沙: 0.2 %长治: 0.1 %长治: 0.1 %韩国大邱: 0.1 %韩国大邱: 0.1 %其他其他ChinaIndiaTaiwan, ChinaUnited States[]上海东京中山临汾丹东凤凰城北京十堰南京南通台州合肥咸阳哥伦布嘉兴天津安康宣城常州广州张家口成都扬州晋城普洱杭州武汉济南深圳湖州湘潭漯河石家庄福州秦皇岛绵阳芒廷维尤芝加哥西宁西安贵阳运城邯郸郑州重庆铁岭长沙长治韩国大邱

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(1)

    Article views (676) PDF downloads(85) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return