Zhang Haoran, Zeng Qin, Chen Chong, et al. Testing and analysis of coupled program of MCNP and FISPACT[J]. High Power Laser and Particle Beams, 2017, 29: 036025. doi: 10.11884/HPLPB201729.160424
Citation: Qu Miao, Yan Sha. Dependence of tungsten melting and resolidification on pulse parameters under transient heat flow[J]. High Power Laser and Particle Beams, 2022, 34: 126002. doi: 10.11884/HPLPB202234.220192

Dependence of tungsten melting and resolidification on pulse parameters under transient heat flow

doi: 10.11884/HPLPB202234.220192
  • Received Date: 2022-06-08
  • Accepted Date: 2022-10-19
  • Rev Recd Date: 2022-10-14
  • Available Online: 2022-10-22
  • Publish Date: 2022-11-02
  • To study the influence of different pulse parameters on the melting and resolidification behavior of tungsten after its temperature reaches the melting point under transient heat flow, the differences in morphology and structure of tungsten after melting and resolidification under IPEB (5 ms) and CPF (0.1 ms) were experimentally observed. The dependence of hierarchical structure and columnar crystal grain on pulse parameters was analyzed considering the driving force of molten layer motion, cooling rate, temperature gradient and other factors. The reason why the columnar crystal grains appear on tungsten at pulse width of 0.1 ms but not at pulse width of 5 ms was analyzed by calculating the thermal action characteristics for two heat sources. It is found that the beam with high current intensity and short pulse width is easy to promote the formation of hierarchical structure. The reason is that the high current intensity of the pulse beam can cause the molten layer motion on the surface of the material, while the short pulse width of the pulse beam can make the molten traces too late to recover and be quickly cooled and solidified. When the sample melts under transient heat flow, short pulse width is beneficial to the formation of columnar crystal grains and long pulse width is beneficial to the formation of equiaxed grains and grain growth.
  • [1]
    Li Yu. Thermo-mechanical behavior of tungsten under fusion-relevant hydrogen plasma loads[D]. Eindhoven: Technische Universiteit Eindhoven, 2021.
    [2]
    Matera R, Federici G, The ITER Joint Central Team. Design requirements for plasma facing materials in ITER[J]. Journal of Nuclear Materials, 1996, 233/237: 17-25. doi: 10.1016/S0022-3115(96)00317-0
    [3]
    张洋. EAST装置偏滤器靶板的可靠性研究[D]. 合肥: 中国科学技术大学, 2019

    Zhang Yang. Research on reliability of EAST divertor targets[D]. Hefei: University of Science and Technology of China, 2019
    [4]
    Hassanein A, Sizyuk V. Potential design problems for ITER fusion device[J]. Scientific Reports, 2021, 11: 2069. doi: 10.1038/s41598-021-81510-2
    [5]
    Arshad K, Ding Dan, Wang Jun, et al. Surface cracking of tungsten-vanadium alloys under transient heat loads[J]. Nuclear Materials and Energy, 2015, 3/4: 32-36. doi: 10.1016/j.nme.2015.05.001
    [6]
    Minissale M, Durif A, Kermouche G, et al. Grain growth and damages induced by transient heat loads on W[J]. Physica Scripta, 2021, 96: 124032. doi: 10.1088/1402-4896/ac27df
    [7]
    Makhlai V A, Garkusha I E, Herashchenko S S, et al. Contribution of leading edge shape to a damaging of castellated tungsten targets exposed to repetitive QSPA plasma loads[J]. Physica Scripta, 2021, 96: 124043. doi: 10.1088/1402-4896/ac2d86
    [8]
    Kasatov A A, Arakcheev A S, Burdakov A V, et al. Observation of dust particles ejected from tungsten surface under impact of intense transient heat load[J]. AIP Conference Proceedings, 2016, 1771: 060007.
    [9]
    倪明玖. 磁约束核聚变反应堆研发相关的金属流体力学问题研究[J]. 中国科学:物理学 力学 天文学, 2013, 43(12):1570-1578

    Ni Mingjiu. Liquid metal hydrodynamics relevant to R&D of magnetocondined fusion reactor[J]. Scientia Sinica Physica, Mechanica & Astronomica, 2013, 43(12): 1570-1578
    [10]
    Makhlai V A, Herashchenko S S, Aksenov N N, et al. Damaging of inclined/misaligned castellated tungsten surfces exposed to a large number of repetitive QSPA plasma loads[J]. Physica Scripta, 2020, T171: 014047. doi: 10.1088/1402-4896/ab4e52
    [11]
    Wittlich K, Hirai T, Compan J, et al. Damage structure in divertor armor materials exposed to multiple ITER relevant ELM loads[J]. Fusion Engineering and Design, 2009, 84(7/11): 1982-1986.
    [12]
    Bazylev B, Janeschitz G, Landman I, et al. Behaviour of melted tungsten plasma facing components under ITER-like transient heat loads: simulations and experiments[J]. Fusion Engineering and Design, 2008, 83(7/9): 1077-1081.
    [13]
    Budaev V P, Martynenko Y V, Karpov A V, et al. Tungsten recrystallization and cracking under ITER-relevant heat loads[J]. Journal of Nuclear Materials, 2015, 463: 237-240. doi: 10.1016/j.jnucmat.2014.11.129
    [14]
    Garkusha I E, Bandura A N, Byrka O V, et al. Damage to preheated tungsten targets after multiple plasma impacts simulating ITER ELMs[J]. Journal of Nuclear Materials, 2009, 386/388: 127-131. doi: 10.1016/j.jnucmat.2008.12.083
    [15]
    Kudaktsin R S, Astashynski V M, Kuzmitski A M. Characteristic features of the surface relief formation of metals modified by compression plasma flows[J]. High Temperature Material Processes: An International Quarterly of High-Technology Plasma Processes, 2019, 23(3): 275-282. doi: 10.1615/HighTempMatProc.2019031163
    [16]
    Shymanski V I, Uglov V V, Cherenda N N, et al. Structure and phase composition of tungsten alloys modified by compression plasma flows and high-intense pulsed ion beam impacts[J]. Applied Surface Science, 2019, 491: 43-52. doi: 10.1016/j.apsusc.2019.06.113
    [17]
    Qu Miao, Kong Fanhang, Yan Sha, et al. Damages on pure tungsten irradiated by compression plasma flows[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2019, 444: 33-37.
    [18]
    Li Changjun, Zhu Dahuan, Li Xiangbin, et al. Performance of W-1%Y2O3-0.5%Ti plasma-facing composite under fusion relevant transient heat flux[J]. Fusion Science and Technology, 2021, 77(4): 310-315. doi: 10.1080/15361055.2021.1874765
    [19]
    Lian Youyun, Liu Xiang, Cheng Zhengkui, et al. Thermal shock performance of CVD tungsten coating at elevated temperatures[J]. Journal of Nuclear Materials, 2014, 455(1/3): 371-375.
    [20]
    彭广威, 刘健, 李理, 等. 定向凝固理论及技术的研究现状[J]. 铸造设备研究, 2005(4):44-47

    Peng Guangwei, Liu Jian, Li Li, et al. Progress of technic and theory of directional solidification[J]. Research Studies on Foundry Equipment, 2005(4): 44-47
    [21]
    丁国陆, 黄卫东, 林鑫, 等. 定向凝固界面高梯度绝对稳定性的临界条件[J]. 自然科学进展——国家重点实验室通讯, 1996, 6(5):602-607

    Ding Guolu, Huang Weidong, Lin Xin, et al. Critical conditions for high gradient absolute stability of directional and solidification interfaces[J]. Progress in Natural Science: Communication of State Key Laboratories of China, 1996, 6(5): 602-607
    [22]
    Huang S C, Laforce R P, Ritter A M, et al. Rapid solidification characteristics in melt spinning a Ni-base superalloy[J]. Metallurgical Transactions A, 1985, 16(10): 1773-1779. doi: 10.1007/BF02670365
    [23]
    Kurz W, Trivedi R. Overview No. 87 Solidification microstructures: recent developments and future directions[J]. Acta Metallurgica et Materialia, 1990, 38(1): 1-17. doi: 10.1016/0956-7151(90)90129-5
    [24]
    杨扬, 徐锦锋, 翟秋亚. 急冷条件下Cu-Sn合金的快速枝晶生长[J]. 中国有色金属学报, 2007, 17(9):1521-1526 doi: 10.3321/j.issn:1004-0609.2007.09.023

    Yang Yang, Xu Jinfeng, Zhai Qiuya. Rapid dendritic growth in melt-spun Cu−Sn alloys[J]. The Chinese Journal of Nonferrous Metals, 2007, 17(9): 1521-1526 doi: 10.3321/j.issn:1004-0609.2007.09.023
    [25]
    王刚, 安琳. COMSOL Multiphysics工程实践与理论仿真: 多物理场数值分析技术[M]. 北京: 电子工业出版社, 2012: 24-25

    Wang Gang, An Lin. Engineering practice and theoretical simulation in COMSOL Multiphysics: multi physical field numerical analysis technology[M]. Beijing: Publishing House of Electronics Industry, 2012: 24-25
  • Relative Articles

    [1]Xie Rong, Hao Jianhong, Zhao Qiang, Zhang Fang, Fan Jieqing, Xue Bixi, Dong Zhiwei, Cao Xiangchun. Research on Monte Carlo calculation method for photon absorbed dose[J]. High Power Laser and Particle Beams, 2024, 36(10): 106003. doi: 10.11884/HPLPB202436.240037
    [2]Li Kewei, Ling Yongsheng, Zhang Haojia, Shan Qing, Hei Daqian, Jia Wenbao. In-situ detection method of harmful elements in landfill[J]. High Power Laser and Particle Beams, 2018, 30(2): 026002. doi: 10.11884/HPLPB201830.170226
    [3]Li Jie, Li Yunzhao, Wu Hongchun, Zheng Qi. Weighted Monte Carlo solution of neutron kinetics equations[J]. High Power Laser and Particle Beams, 2018, 30(1): 016009. doi: 10.11884/HPLPB201830.170242
    [4]Shen Jingwen, Hu Ye, Zheng Yu, Ma Xubo. Three-dimensional Monte Carlo transport code JMCT in shielding engineering application[J]. High Power Laser and Particle Beams, 2018, 30(4): 046002. doi: 10.11884/HPLPB201830.170222
    [5]Shao Wencheng, Tang Xiaobin, Geng Changran, Shu Diyun, Gong Chunhui, Ai Yao, Zhang Xudong, Yu Haiyan. Novel magnetic-modulated proton therapy method and corresponding modulation mechanism[J]. High Power Laser and Particle Beams, 2017, 29(12): 126015. doi: 10.11884/HPLPB201729.170220
    [6]Han Feng, Liu Yu, Wang Bin. Method for evaluating radiation harden performance of electronic system based on system status[J]. High Power Laser and Particle Beams, 2016, 28(08): 084001. doi: 10.11884/HPLPB201628.150695
    [7]Cheng Zhenbo, Liu Xiaolong, Yan Junkai. Evaluation of uncertainty in peak detector calibration based on Monte-Carlo method[J]. High Power Laser and Particle Beams, 2016, 28(11): 113007. doi: 10.11884/HPLPB201628.151066
    [8]Mu Weibing, Zheng Peng, Shi Zhengjun, Liu Jianbo. Rapid interpolation calculation method based on physical rules with MCNP simulation results[J]. High Power Laser and Particle Beams, 2015, 27(08): 086002. doi: 10.11884/HPLPB201527.086002
    [9]Zhu Jinhui, Xie Honggang, Niu Shengli, Zuo Yinghong. A fast calculation method for Compton current induced by gamma-ray in uniform atmosphere[J]. High Power Laser and Particle Beams, 2015, 27(07): 076005. doi: 10.11884/HPLPB201527.076005
    [10]Zhang Jie, Zhang Ying, Chen Xiulian, Pang Beibei, Bai Lixin. Geometric factor calculation program based on Monte Carlo method[J]. High Power Laser and Particle Beams, 2015, 27(01): 014002. doi: 10.11884/HPLPB201527.014002
    [11]Chen Li, Ma Hao, Zeng Zhi, Li Junli, Cheng Jianping. Monte Carlo-based sourceless efficiency calibration method of HPGe γ spectrometer[J]. High Power Laser and Particle Beams, 2013, 25(01): 201-206. doi: 10.3788/HPLPB20132501.0201
    [12]Zuo Yinghong, Wang Jianguo, . Application of Monte Carlo method to solving boundary value problem of differential equations[J]. High Power Laser and Particle Beams, 2012, 24(12): 3023-3027. doi: 10.3788/HPLPB20122412.3023
    [13]Su Jian, Zeng Zhi, Liu Yue, Yue Qian, Ma Hao, Cheng Jianping. Monte Carlo simulation of muon radiation environment in China Jinping Underground Laboratory[J]. High Power Laser and Particle Beams, 2012, 24(12): 3015-3018. doi: 10.3788/HPLPB20122412.3015
    [14]Zhang Xuan, Huang Jiaofeng, Liu Jun, Guan Yonghong, Liu Jin. Application of Monte Carlo method to boundary location of flash radiographs[J]. High Power Laser and Particle Beams, 2012, 24(12): 2983-2986. doi: 10.3788/HPLPB20122412.2983
    [15]Xie Qin, Geng Changran, Chen Feida, Tang Xiaobin, Yao Ze'en. Calculation of cellular S values for α particle based on Monte Carlo simulation[J]. High Power Laser and Particle Beams, 2012, 24(12): 2970-2974. doi: 10.3788/HPLPB20122412.2970
    [16]Chen Feida, Tang Xiaobin, Wang Peng, Chen Da. Neutron shielding material design based on Monte Carlo simulation[J]. High Power Laser and Particle Beams, 2012, 24(12): 3006-3010. doi: 10.3788/HPLPB20122412.3006
    [17]Wang Ruihong, Ji Zhicheng, Pei Lucheng. Adaptive sampling method in deep-penetration particle transport problem[J]. High Power Laser and Particle Beams, 2012, 24(12): 2941-2945. doi: 10.3788/HPLPB20122412.2941
    [18]fan ruyu, han feng, guo hongxia. Assessment method of gamma-dose radiation hardness of power supply system[J]. High Power Laser and Particle Beams, 2011, 23(02): 0- .
    [19]zhang huabin, zhao xiang, zhou haijing, huang kama. Probabilistic and statistical analysis of mode stirred reverberation chamber and its Monte Carlo simulation[J]. High Power Laser and Particle Beams, 2011, 23(09): 0- .
    [20]chen nan, li cheng-gang, dai wen-hua, li hong, zhou zhi. Application of Monte Carlo method to spot size measurement of X-ray sources[J]. High Power Laser and Particle Beams, 2008, 20(06): 0- .
  • Cited by

    Periodical cited type(2)

    1. 刘利,左应红,牛胜利,朱金辉,李夏至. 中子在大气中产生氮俘获γ的蒙特卡罗模拟研究. 强激光与粒子束. 2022(08): 162-168 . 本站查看
    2. 王梦琪,郑征,梅其良,黎辉,程汤培. 全局减方差方法在乏燃料干式贮存容器屏蔽计算中的应用. 原子能科学技术. 2019(05): 884-892 .

    Other cited types(1)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-040510152025
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 22.7 %FULLTEXT: 22.7 %META: 75.3 %META: 75.3 %PDF: 2.0 %PDF: 2.0 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 3.5 %其他: 3.5 %China: 0.4 %China: 0.4 %India: 0.1 %India: 0.1 %Taiwan, China: 0.1 %Taiwan, China: 0.1 %United States: 0.2 %United States: 0.2 %[]: 0.2 %[]: 0.2 %上海: 1.1 %上海: 1.1 %中山: 0.1 %中山: 0.1 %临汾: 0.1 %临汾: 0.1 %丹东: 0.1 %丹东: 0.1 %北京: 11.7 %北京: 11.7 %台州: 1.1 %台州: 1.1 %合肥: 0.2 %合肥: 0.2 %哥伦布: 0.2 %哥伦布: 0.2 %嘉兴: 0.1 %嘉兴: 0.1 %天津: 0.2 %天津: 0.2 %宣城: 0.2 %宣城: 0.2 %广州: 0.1 %广州: 0.1 %张家口: 2.5 %张家口: 2.5 %扬州: 0.2 %扬州: 0.2 %晋城: 0.1 %晋城: 0.1 %普洱: 0.1 %普洱: 0.1 %杭州: 1.8 %杭州: 1.8 %武汉: 0.1 %武汉: 0.1 %济南: 0.1 %济南: 0.1 %深圳: 0.9 %深圳: 0.9 %温州: 0.1 %温州: 0.1 %湖州: 0.2 %湖州: 0.2 %漯河: 0.7 %漯河: 0.7 %珠海: 0.2 %珠海: 0.2 %秦皇岛: 0.1 %秦皇岛: 0.1 %绵阳: 0.1 %绵阳: 0.1 %芒廷维尤: 17.6 %芒廷维尤: 17.6 %芝加哥: 0.4 %芝加哥: 0.4 %衡阳: 0.1 %衡阳: 0.1 %衢州: 0.3 %衢州: 0.3 %西宁: 52.0 %西宁: 52.0 %西安: 0.6 %西安: 0.6 %贵阳: 0.2 %贵阳: 0.2 %达尔斯: 0.1 %达尔斯: 0.1 %运城: 0.3 %运城: 0.3 %郑州: 0.7 %郑州: 0.7 %重庆: 0.1 %重庆: 0.1 %长沙: 0.1 %长沙: 0.1 %韩国大邱: 0.1 %韩国大邱: 0.1 %其他ChinaIndiaTaiwan, ChinaUnited States[]上海中山临汾丹东北京台州合肥哥伦布嘉兴天津宣城广州张家口扬州晋城普洱杭州武汉济南深圳温州湖州漯河珠海秦皇岛绵阳芒廷维尤芝加哥衡阳衢州西宁西安贵阳达尔斯运城郑州重庆长沙韩国大邱

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(1)

    Article views (679) PDF downloads(85) Cited by(3)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return