Citation: | Qu Miao, Yan Sha. Dependence of tungsten melting and resolidification on pulse parameters under transient heat flow[J]. High Power Laser and Particle Beams, 2022, 34: 126002. doi: 10.11884/HPLPB202234.220192 |
[1] |
Li Yu. Thermo-mechanical behavior of tungsten under fusion-relevant hydrogen plasma loads[D]. Eindhoven: Technische Universiteit Eindhoven, 2021.
|
[2] |
Matera R, Federici G, The ITER Joint Central Team. Design requirements for plasma facing materials in ITER[J]. Journal of Nuclear Materials, 1996, 233/237: 17-25. doi: 10.1016/S0022-3115(96)00317-0
|
[3] |
张洋. EAST装置偏滤器靶板的可靠性研究[D]. 合肥: 中国科学技术大学, 2019
Zhang Yang. Research on reliability of EAST divertor targets[D]. Hefei: University of Science and Technology of China, 2019
|
[4] |
Hassanein A, Sizyuk V. Potential design problems for ITER fusion device[J]. Scientific Reports, 2021, 11: 2069. doi: 10.1038/s41598-021-81510-2
|
[5] |
Arshad K, Ding Dan, Wang Jun, et al. Surface cracking of tungsten-vanadium alloys under transient heat loads[J]. Nuclear Materials and Energy, 2015, 3/4: 32-36. doi: 10.1016/j.nme.2015.05.001
|
[6] |
Minissale M, Durif A, Kermouche G, et al. Grain growth and damages induced by transient heat loads on W[J]. Physica Scripta, 2021, 96: 124032. doi: 10.1088/1402-4896/ac27df
|
[7] |
Makhlai V A, Garkusha I E, Herashchenko S S, et al. Contribution of leading edge shape to a damaging of castellated tungsten targets exposed to repetitive QSPA plasma loads[J]. Physica Scripta, 2021, 96: 124043. doi: 10.1088/1402-4896/ac2d86
|
[8] |
Kasatov A A, Arakcheev A S, Burdakov A V, et al. Observation of dust particles ejected from tungsten surface under impact of intense transient heat load[J]. AIP Conference Proceedings, 2016, 1771: 060007.
|
[9] |
倪明玖. 磁约束核聚变反应堆研发相关的金属流体力学问题研究[J]. 中国科学:物理学 力学 天文学, 2013, 43(12):1570-1578
Ni Mingjiu. Liquid metal hydrodynamics relevant to R&D of magnetocondined fusion reactor[J]. Scientia Sinica Physica, Mechanica & Astronomica, 2013, 43(12): 1570-1578
|
[10] |
Makhlai V A, Herashchenko S S, Aksenov N N, et al. Damaging of inclined/misaligned castellated tungsten surfces exposed to a large number of repetitive QSPA plasma loads[J]. Physica Scripta, 2020, T171: 014047. doi: 10.1088/1402-4896/ab4e52
|
[11] |
Wittlich K, Hirai T, Compan J, et al. Damage structure in divertor armor materials exposed to multiple ITER relevant ELM loads[J]. Fusion Engineering and Design, 2009, 84(7/11): 1982-1986.
|
[12] |
Bazylev B, Janeschitz G, Landman I, et al. Behaviour of melted tungsten plasma facing components under ITER-like transient heat loads: simulations and experiments[J]. Fusion Engineering and Design, 2008, 83(7/9): 1077-1081.
|
[13] |
Budaev V P, Martynenko Y V, Karpov A V, et al. Tungsten recrystallization and cracking under ITER-relevant heat loads[J]. Journal of Nuclear Materials, 2015, 463: 237-240. doi: 10.1016/j.jnucmat.2014.11.129
|
[14] |
Garkusha I E, Bandura A N, Byrka O V, et al. Damage to preheated tungsten targets after multiple plasma impacts simulating ITER ELMs[J]. Journal of Nuclear Materials, 2009, 386/388: 127-131. doi: 10.1016/j.jnucmat.2008.12.083
|
[15] |
Kudaktsin R S, Astashynski V M, Kuzmitski A M. Characteristic features of the surface relief formation of metals modified by compression plasma flows[J]. High Temperature Material Processes: An International Quarterly of High-Technology Plasma Processes, 2019, 23(3): 275-282. doi: 10.1615/HighTempMatProc.2019031163
|
[16] |
Shymanski V I, Uglov V V, Cherenda N N, et al. Structure and phase composition of tungsten alloys modified by compression plasma flows and high-intense pulsed ion beam impacts[J]. Applied Surface Science, 2019, 491: 43-52. doi: 10.1016/j.apsusc.2019.06.113
|
[17] |
Qu Miao, Kong Fanhang, Yan Sha, et al. Damages on pure tungsten irradiated by compression plasma flows[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2019, 444: 33-37.
|
[18] |
Li Changjun, Zhu Dahuan, Li Xiangbin, et al. Performance of W-1%Y2O3-0.5%Ti plasma-facing composite under fusion relevant transient heat flux[J]. Fusion Science and Technology, 2021, 77(4): 310-315. doi: 10.1080/15361055.2021.1874765
|
[19] |
Lian Youyun, Liu Xiang, Cheng Zhengkui, et al. Thermal shock performance of CVD tungsten coating at elevated temperatures[J]. Journal of Nuclear Materials, 2014, 455(1/3): 371-375.
|
[20] |
彭广威, 刘健, 李理, 等. 定向凝固理论及技术的研究现状[J]. 铸造设备研究, 2005(4):44-47
Peng Guangwei, Liu Jian, Li Li, et al. Progress of technic and theory of directional solidification[J]. Research Studies on Foundry Equipment, 2005(4): 44-47
|
[21] |
丁国陆, 黄卫东, 林鑫, 等. 定向凝固界面高梯度绝对稳定性的临界条件[J]. 自然科学进展——国家重点实验室通讯, 1996, 6(5):602-607
Ding Guolu, Huang Weidong, Lin Xin, et al. Critical conditions for high gradient absolute stability of directional and solidification interfaces[J]. Progress in Natural Science: Communication of State Key Laboratories of China, 1996, 6(5): 602-607
|
[22] |
Huang S C, Laforce R P, Ritter A M, et al. Rapid solidification characteristics in melt spinning a Ni-base superalloy[J]. Metallurgical Transactions A, 1985, 16(10): 1773-1779. doi: 10.1007/BF02670365
|
[23] |
Kurz W, Trivedi R. Overview No. 87 Solidification microstructures: recent developments and future directions[J]. Acta Metallurgica et Materialia, 1990, 38(1): 1-17. doi: 10.1016/0956-7151(90)90129-5
|
[24] |
杨扬, 徐锦锋, 翟秋亚. 急冷条件下Cu-Sn合金的快速枝晶生长[J]. 中国有色金属学报, 2007, 17(9):1521-1526 doi: 10.3321/j.issn:1004-0609.2007.09.023
Yang Yang, Xu Jinfeng, Zhai Qiuya. Rapid dendritic growth in melt-spun Cu−Sn alloys[J]. The Chinese Journal of Nonferrous Metals, 2007, 17(9): 1521-1526 doi: 10.3321/j.issn:1004-0609.2007.09.023
|
[25] |
王刚, 安琳. COMSOL Multiphysics工程实践与理论仿真: 多物理场数值分析技术[M]. 北京: 电子工业出版社, 2012: 24-25
Wang Gang, An Lin. Engineering practice and theoretical simulation in COMSOL Multiphysics: multi physical field numerical analysis technology[M]. Beijing: Publishing House of Electronics Industry, 2012: 24-25
|
[1] | Xie Rong, Hao Jianhong, Zhao Qiang, Zhang Fang, Fan Jieqing, Xue Bixi, Dong Zhiwei, Cao Xiangchun. Research on Monte Carlo calculation method for photon absorbed dose[J]. High Power Laser and Particle Beams, 2024, 36(10): 106003. doi: 10.11884/HPLPB202436.240037 |
[2] | Li Kewei, Ling Yongsheng, Zhang Haojia, Shan Qing, Hei Daqian, Jia Wenbao. In-situ detection method of harmful elements in landfill[J]. High Power Laser and Particle Beams, 2018, 30(2): 026002. doi: 10.11884/HPLPB201830.170226 |
[3] | Li Jie, Li Yunzhao, Wu Hongchun, Zheng Qi. Weighted Monte Carlo solution of neutron kinetics equations[J]. High Power Laser and Particle Beams, 2018, 30(1): 016009. doi: 10.11884/HPLPB201830.170242 |
[4] | Shen Jingwen, Hu Ye, Zheng Yu, Ma Xubo. Three-dimensional Monte Carlo transport code JMCT in shielding engineering application[J]. High Power Laser and Particle Beams, 2018, 30(4): 046002. doi: 10.11884/HPLPB201830.170222 |
[5] | Shao Wencheng, Tang Xiaobin, Geng Changran, Shu Diyun, Gong Chunhui, Ai Yao, Zhang Xudong, Yu Haiyan. Novel magnetic-modulated proton therapy method and corresponding modulation mechanism[J]. High Power Laser and Particle Beams, 2017, 29(12): 126015. doi: 10.11884/HPLPB201729.170220 |
[6] | Han Feng, Liu Yu, Wang Bin. Method for evaluating radiation harden performance of electronic system based on system status[J]. High Power Laser and Particle Beams, 2016, 28(08): 084001. doi: 10.11884/HPLPB201628.150695 |
[7] | Cheng Zhenbo, Liu Xiaolong, Yan Junkai. Evaluation of uncertainty in peak detector calibration based on Monte-Carlo method[J]. High Power Laser and Particle Beams, 2016, 28(11): 113007. doi: 10.11884/HPLPB201628.151066 |
[8] | Mu Weibing, Zheng Peng, Shi Zhengjun, Liu Jianbo. Rapid interpolation calculation method based on physical rules with MCNP simulation results[J]. High Power Laser and Particle Beams, 2015, 27(08): 086002. doi: 10.11884/HPLPB201527.086002 |
[9] | Zhu Jinhui, Xie Honggang, Niu Shengli, Zuo Yinghong. A fast calculation method for Compton current induced by gamma-ray in uniform atmosphere[J]. High Power Laser and Particle Beams, 2015, 27(07): 076005. doi: 10.11884/HPLPB201527.076005 |
[10] | Zhang Jie, Zhang Ying, Chen Xiulian, Pang Beibei, Bai Lixin. Geometric factor calculation program based on Monte Carlo method[J]. High Power Laser and Particle Beams, 2015, 27(01): 014002. doi: 10.11884/HPLPB201527.014002 |
[11] | Chen Li, Ma Hao, Zeng Zhi, Li Junli, Cheng Jianping. Monte Carlo-based sourceless efficiency calibration method of HPGe γ spectrometer[J]. High Power Laser and Particle Beams, 2013, 25(01): 201-206. doi: 10.3788/HPLPB20132501.0201 |
[12] | Zuo Yinghong, Wang Jianguo, . Application of Monte Carlo method to solving boundary value problem of differential equations[J]. High Power Laser and Particle Beams, 2012, 24(12): 3023-3027. doi: 10.3788/HPLPB20122412.3023 |
[13] | Su Jian, Zeng Zhi, Liu Yue, Yue Qian, Ma Hao, Cheng Jianping. Monte Carlo simulation of muon radiation environment in China Jinping Underground Laboratory[J]. High Power Laser and Particle Beams, 2012, 24(12): 3015-3018. doi: 10.3788/HPLPB20122412.3015 |
[14] | Zhang Xuan, Huang Jiaofeng, Liu Jun, Guan Yonghong, Liu Jin. Application of Monte Carlo method to boundary location of flash radiographs[J]. High Power Laser and Particle Beams, 2012, 24(12): 2983-2986. doi: 10.3788/HPLPB20122412.2983 |
[15] | Xie Qin, Geng Changran, Chen Feida, Tang Xiaobin, Yao Ze'en. Calculation of cellular S values for α particle based on Monte Carlo simulation[J]. High Power Laser and Particle Beams, 2012, 24(12): 2970-2974. doi: 10.3788/HPLPB20122412.2970 |
[16] | Chen Feida, Tang Xiaobin, Wang Peng, Chen Da. Neutron shielding material design based on Monte Carlo simulation[J]. High Power Laser and Particle Beams, 2012, 24(12): 3006-3010. doi: 10.3788/HPLPB20122412.3006 |
[17] | Wang Ruihong, Ji Zhicheng, Pei Lucheng. Adaptive sampling method in deep-penetration particle transport problem[J]. High Power Laser and Particle Beams, 2012, 24(12): 2941-2945. doi: 10.3788/HPLPB20122412.2941 |
[18] | fan ruyu, han feng, guo hongxia. Assessment method of gamma-dose radiation hardness of power supply system[J]. High Power Laser and Particle Beams, 2011, 23(02): 0- . |
[19] | zhang huabin, zhao xiang, zhou haijing, huang kama. Probabilistic and statistical analysis of mode stirred reverberation chamber and its Monte Carlo simulation[J]. High Power Laser and Particle Beams, 2011, 23(09): 0- . |
[20] | chen nan, li cheng-gang, dai wen-hua, li hong, zhou zhi. Application of Monte Carlo method to spot size measurement of X-ray sources[J]. High Power Laser and Particle Beams, 2008, 20(06): 0- . |
1. | 刘利,左应红,牛胜利,朱金辉,李夏至. 中子在大气中产生氮俘获γ的蒙特卡罗模拟研究. 强激光与粒子束. 2022(08): 162-168 . ![]() | |
2. | 王梦琪,郑征,梅其良,黎辉,程汤培. 全局减方差方法在乏燃料干式贮存容器屏蔽计算中的应用. 原子能科学技术. 2019(05): 884-892 . ![]() |