Citation: | Xu Qiuyue, Zhou Jiaxin, Shan Lianqiang, et al. Optimized simulation of D3He proton source for exploding pusher target[J]. High Power Laser and Particle Beams, 2022, 34: 122003. doi: 10.11884/HPLPB202234.220199 |
[1] |
Li C K, Séguin F H, Rygg J R, et al. Monoenergetic-proton-radiography measurements of implosion dynamics in direct-drive inertial-confinement fusion[J]. Physical Review Letters, 2008, 100: 225001. doi: 10.1103/PhysRevLett.100.225001
|
[2] |
Snavely R A, Key M H, Hatchett S P, et al. Intense high-energy proton beams from petawatt-laser irradiation of solids[J]. Physical Review Letters, 2000, 85(14): 2945-2948. doi: 10.1103/PhysRevLett.85.2945
|
[3] |
Zylstra A B, Li C K, Rinderknecht H G, et al. Using high-intensity laser-generated energetic protons to radiograph directly driven implosions[J]. Review of Scientific Instruments, 2012, 83: 013511. doi: 10.1063/1.3680110
|
[4] |
Li C K, Séguin F H, Frenje J A, et al. Charged-particle probing of X-ray–driven inertial-fusion implosions[J]. Science, 2010, 327(5970): 1231-1235. doi: 10.1126/science.1185747
|
[5] |
Craxton R S, Anderson K S, Boehly T R, et al. Direct-drive inertial confinement fusion: a review[J]. Physics of Plasmas, 2015, 22: 110501. doi: 10.1063/1.4934714
|
[6] |
Manuel M J E, Zylstra A B, Rinderknecht H G, et al. Source characterization and modeling development for monoenergetic-proton radiography experiments on OMEGA[J]. Review of Scientific Instruments, 2012, 83: 063506. doi: 10.1063/1.4730336
|
[7] |
Rygg J R, Zylstra A B, Séguin F H, et al. Note: a monoenergetic proton backlighter for the National Ignition Facility[J]. Review of Scientific Instruments, 2015, 86: 116104. doi: 10.1063/1.4935581
|
[8] |
Manuel M J E, Li C K, Séguin F H, et al. First measurements of Rayleigh-Taylor-induced magnetic fields in laser-produced plasmas[J]. Physical Review Letters, 2012, 108: 255006. doi: 10.1103/PhysRevLett.108.255006
|
[9] |
Rigg P A, Schwartz C L, Hixson R S, et al. Proton radiography and accurate density measurements: a window into shock wave processes[J]. Physical Review B, 2008, 77: 220101(R). doi: 10.1103/PhysRevB.77.220101
|
[10] |
Li C K, Séguin F H, Frenje J A, et al. Observation of megagauss-field topology changes due to magnetic reconnection in laser-produced plasmas[J]. Physical Review Letters, 2007, 99: 055001. doi: 10.1103/PhysRevLett.99.055001
|
[11] |
Frenje J A, Grabowski P E, Li C K, et al. Measurements of ion stopping around the Bragg peak in high-energy-density plasmas[J]. Physical Review Letters, 2015, 115: 205001. doi: 10.1103/PhysRevLett.115.205001
|
[12] |
Zylstra A B, Frenje J A, Grabowski P E, et al. Measurement of charged-particle stopping in warm dense plasma[J]. Physical Review Letters, 2015, 114: 215002. doi: 10.1103/PhysRevLett.114.215002
|
[13] |
Zheng Wanguo, Wei Xiaofeng, Zhu Qihua, et al. Laser performance upgrade for precise ICF experiment in SG-Ⅲ laser facility[J]. Matter and Radiation at Extremes, 2017, 2(5): 243-255. doi: 10.1016/j.mre.2017.07.004
|
[14] |
Séguin F H, Frenje J A, Li C K, et al. Spectrometry of charged particles from inertial-confinement-fusion plasmas[J]. Review of Scientific Instruments, 2003, 74(2): 975-995. doi: 10.1063/1.1518141
|
[15] |
滕建, 赵宗清, 丁永坤, 等. 基于D3He反应产生的单能质子对ICF内爆过程的照相模拟研究[J]. 强激光与粒子束, 2011, 23(1):137-140 doi: 10.3788/HPLPB20112301.0137
Teng Jian, Zhao Zongqing, Ding Yongkun, et al. Simulation of D3He fusion monoenergetic proton radiography of ICF implosions[J]. High Power Laser and Particle Beams, 2011, 23(1): 137-140 doi: 10.3788/HPLPB20112301.0137
|
[16] |
MacFarlane J J, Golovkin I E, Woodruff P R. HELIOS-CR – A 1-D radiation-magnetohydrodynamics code with inline atomic kinetics modeling[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2006, 99(1/3): 381-397.
|
[17] |
Miles A R, Chung H K, Heeter R, et al. Numerical simulation of thin-shell direct drive DHe3-filled capsules fielded at OMEGA[J]. Physics of Plasmas, 2012, 19: 072702. doi: 10.1063/1.4737052
|
[18] |
Rosenberg M J, Zylstra A B, Séguin F H, et al. A direct-drive exploding-pusher implosion as the first step in development of a monoenergetic charged-particle backlighting platform at the National Ignition Facility[J]. High Energy Density Physics, 2016, 18: 38-44. doi: 10.1016/j.hedp.2016.01.001
|
[19] |
张钧, 姜荣洪, 曾先才. 爆炸推进层靶的理论模型[J]. 核聚变与等离子体物理, 1988, 8(4):207-211 doi: 10.16568/j.0254-6086.1988.04.003
Zhang Jun, Jiang Ronghong, Zeng Xiancai. A theoretical model of exploding pusher targets[J]. Nuclear Fusion and Plasma Physics, 1988, 8(4): 207-211 doi: 10.16568/j.0254-6086.1988.04.003
|
[20] |
Dodd E S, Benage J F, Kyrala G A, et al. The effects of laser absorption on direct-drive capsule experiments at OMEGA[J]. Physics of Plasmas, 2012, 19: 042703. doi: 10.1063/1.3700187
|
[21] |
Laffite S, Bourgade J L, Caillaud T, et al. Time history prediction of direct-drive implosions on the Omega facility[J]. Physics of Plasmas, 2016, 23: 012706. doi: 10.1063/1.4939833
|
[22] |
Richardson M C, Craxton R S, Delettrez J, et al. Absorption physics at 351 nm in spherical geometry[J]. Physical Review Letters, 1985, 54(15): 1656-1659. doi: 10.1103/PhysRevLett.54.1656
|
[23] |
Storm E K, Larsen J T, Nuckolls J H, et al. Simple scaling model for exploding pusher targets[R]. UCRL-79788, 1977.
|
[24] |
Garban-Labaune C, Fabre E, Max C E, et al. Effect of laser wavelength and pulse duration on laser-light absorption and back reflection[J]. Physical Review Letters, 1982, 48(15): 1018-1021. doi: 10.1103/PhysRevLett.48.1018
|
[25] |
Kitagawa Y, Miyanaga N, Kato Y, et al. Optimum design of exploding pusher target to produce maximum neutrons[J]. Japanese Journal of Applied Physics, 1986, 25(4R): 586-589.
|
[26] |
单连强, 吴凤娟, 袁宗强, 等. 激光惯性约束聚变动理学效应研究进展[J]. 强激光与粒子束, 2021, 33:012004 doi: 10.11884/HPLPB202133.200235
Shan Lianqiang, Wu Fengjuan, Yuan Zongqiang, et al. Research progress of kinetic effects in laser inertial confinement fusion[J]. High Power Laser and Particle Beams, 2021, 33: 012004 doi: 10.11884/HPLPB202133.200235
|
[27] |
Rinderknecht H G, Amendt P A, Wilks S C, et al. Kinetic physics in ICF: present understanding and future directions[J]. Plasma Physics and Controlled Fusion, 2018, 60: 064001. doi: 10.1088/1361-6587/aab79f
|
[28] |
Hoffman N M, Zimmerman G B, Molvig K, et al. Approximate models for the ion-kinetic regime in inertial-confinement-fusion capsule implosions[J]. Physics of Plasmas, 2015, 22: 052707. doi: 10.1063/1.4921130
|
[29] |
Rosenberg M J, Rinderknecht H G, Hoffman N M, et al. Exploration of the transition from the hydrodynamiclike to the strongly kinetic regime in shock-driven implosions[J]. Physical Review Letters, 2014, 112: 185001. doi: 10.1103/PhysRevLett.112.185001
|
[30] |
Rosenberg M J, Zylstra A B, Séguin F H, et al. Investigation of ion kinetic effects in direct-drive exploding-pusher implosions at the NIF[J]. Physics of Plasmas, 2014, 21: 122712. doi: 10.1063/1.4905064
|
[31] |
Rygg J R, Frenje J A, Li C K, et al. Observations of the collapse of asymmetrically driven convergent shocks[J]. Physics of Plasmas, 2008, 15: 034505. doi: 10.1063/1.2892025
|
[32] |
Johnson T M, Birkel A, Ramirez H E, et al. Yield degradation due to laser drive asymmetry in D3He backlit proton radiography experiments at OMEGA[J]. Review of Scientific Instruments, 2021, 92: 043551. doi: 10.1063/5.0043004
|
[33] |
Skupsky S, Marozas J A, Craxton R S, et al. Polar direct drive on the National Ignition Facility[J]. Physics of Plasmas, 2004, 11(5): 2763-2770. doi: 10.1063/1.1689665
|
[34] |
Tian Chao, Chen Jia, Zhang Bo, et al. High direct drive illumination uniformity achieved by multi-parameter optimization approach: a case study of Shenguang III laser facility[J]. Optics Express, 2015, 23(9): 12362-12372. doi: 10.1364/OE.23.012362
|
[35] |
田超, 单连强, 周维民, 等. 神光Ⅲ原型装置直接驱动均匀辐照设计及在快点火中的潜在应用[J]. 强激光与粒子束, 2015, 27:092010 doi: 10.11884/HPLPB201527.092010
Tian Chao, Shan Lianqiang, Zhou Weimin, et al. Optimization of illumination uniformity of Shenguang Ⅲ prototype facility and its potential application in fast ignition[J]. High Power Laser and Particle Beams, 2015, 27: 092010 doi: 10.11884/HPLPB201527.092010
|
[36] |
Ramis R, Temporal M, Canaud B, et al. Three-dimensional symmetry analysis of a direct-drive irradiation scheme for the laser megajoule facility[J]. Physics of Plasmas, 2014, 21: 082710. doi: 10.1063/1.4893311
|
[1] | Xie Rong, Hao Jianhong, Zhao Qiang, Zhang Fang, Fan Jieqing, Xue Bixi, Dong Zhiwei, Cao Xiangchun. Research on Monte Carlo calculation method for photon absorbed dose[J]. High Power Laser and Particle Beams, 2024, 36(10): 106003. doi: 10.11884/HPLPB202436.240037 |
[2] | Li Kewei, Ling Yongsheng, Zhang Haojia, Shan Qing, Hei Daqian, Jia Wenbao. In-situ detection method of harmful elements in landfill[J]. High Power Laser and Particle Beams, 2018, 30(2): 026002. doi: 10.11884/HPLPB201830.170226 |
[3] | Li Jie, Li Yunzhao, Wu Hongchun, Zheng Qi. Weighted Monte Carlo solution of neutron kinetics equations[J]. High Power Laser and Particle Beams, 2018, 30(1): 016009. doi: 10.11884/HPLPB201830.170242 |
[4] | Shen Jingwen, Hu Ye, Zheng Yu, Ma Xubo. Three-dimensional Monte Carlo transport code JMCT in shielding engineering application[J]. High Power Laser and Particle Beams, 2018, 30(4): 046002. doi: 10.11884/HPLPB201830.170222 |
[5] | Shao Wencheng, Tang Xiaobin, Geng Changran, Shu Diyun, Gong Chunhui, Ai Yao, Zhang Xudong, Yu Haiyan. Novel magnetic-modulated proton therapy method and corresponding modulation mechanism[J]. High Power Laser and Particle Beams, 2017, 29(12): 126015. doi: 10.11884/HPLPB201729.170220 |
[6] | Han Feng, Liu Yu, Wang Bin. Method for evaluating radiation harden performance of electronic system based on system status[J]. High Power Laser and Particle Beams, 2016, 28(08): 084001. doi: 10.11884/HPLPB201628.150695 |
[7] | Cheng Zhenbo, Liu Xiaolong, Yan Junkai. Evaluation of uncertainty in peak detector calibration based on Monte-Carlo method[J]. High Power Laser and Particle Beams, 2016, 28(11): 113007. doi: 10.11884/HPLPB201628.151066 |
[8] | Mu Weibing, Zheng Peng, Shi Zhengjun, Liu Jianbo. Rapid interpolation calculation method based on physical rules with MCNP simulation results[J]. High Power Laser and Particle Beams, 2015, 27(08): 086002. doi: 10.11884/HPLPB201527.086002 |
[9] | Zhu Jinhui, Xie Honggang, Niu Shengli, Zuo Yinghong. A fast calculation method for Compton current induced by gamma-ray in uniform atmosphere[J]. High Power Laser and Particle Beams, 2015, 27(07): 076005. doi: 10.11884/HPLPB201527.076005 |
[10] | Zhang Jie, Zhang Ying, Chen Xiulian, Pang Beibei, Bai Lixin. Geometric factor calculation program based on Monte Carlo method[J]. High Power Laser and Particle Beams, 2015, 27(01): 014002. doi: 10.11884/HPLPB201527.014002 |
[11] | Chen Li, Ma Hao, Zeng Zhi, Li Junli, Cheng Jianping. Monte Carlo-based sourceless efficiency calibration method of HPGe γ spectrometer[J]. High Power Laser and Particle Beams, 2013, 25(01): 201-206. doi: 10.3788/HPLPB20132501.0201 |
[12] | Zuo Yinghong, Wang Jianguo, . Application of Monte Carlo method to solving boundary value problem of differential equations[J]. High Power Laser and Particle Beams, 2012, 24(12): 3023-3027. doi: 10.3788/HPLPB20122412.3023 |
[13] | Su Jian, Zeng Zhi, Liu Yue, Yue Qian, Ma Hao, Cheng Jianping. Monte Carlo simulation of muon radiation environment in China Jinping Underground Laboratory[J]. High Power Laser and Particle Beams, 2012, 24(12): 3015-3018. doi: 10.3788/HPLPB20122412.3015 |
[14] | Zhang Xuan, Huang Jiaofeng, Liu Jun, Guan Yonghong, Liu Jin. Application of Monte Carlo method to boundary location of flash radiographs[J]. High Power Laser and Particle Beams, 2012, 24(12): 2983-2986. doi: 10.3788/HPLPB20122412.2983 |
[15] | Xie Qin, Geng Changran, Chen Feida, Tang Xiaobin, Yao Ze'en. Calculation of cellular S values for α particle based on Monte Carlo simulation[J]. High Power Laser and Particle Beams, 2012, 24(12): 2970-2974. doi: 10.3788/HPLPB20122412.2970 |
[16] | Chen Feida, Tang Xiaobin, Wang Peng, Chen Da. Neutron shielding material design based on Monte Carlo simulation[J]. High Power Laser and Particle Beams, 2012, 24(12): 3006-3010. doi: 10.3788/HPLPB20122412.3006 |
[17] | Wang Ruihong, Ji Zhicheng, Pei Lucheng. Adaptive sampling method in deep-penetration particle transport problem[J]. High Power Laser and Particle Beams, 2012, 24(12): 2941-2945. doi: 10.3788/HPLPB20122412.2941 |
[18] | fan ruyu, han feng, guo hongxia. Assessment method of gamma-dose radiation hardness of power supply system[J]. High Power Laser and Particle Beams, 2011, 23(02): 0- . |
[19] | zhang huabin, zhao xiang, zhou haijing, huang kama. Probabilistic and statistical analysis of mode stirred reverberation chamber and its Monte Carlo simulation[J]. High Power Laser and Particle Beams, 2011, 23(09): 0- . |
[20] | chen nan, li cheng-gang, dai wen-hua, li hong, zhou zhi. Application of Monte Carlo method to spot size measurement of X-ray sources[J]. High Power Laser and Particle Beams, 2008, 20(06): 0- . |
1. | 刘利,左应红,牛胜利,朱金辉,李夏至. 中子在大气中产生氮俘获γ的蒙特卡罗模拟研究. 强激光与粒子束. 2022(08): 162-168 . ![]() | |
2. | 王梦琪,郑征,梅其良,黎辉,程汤培. 全局减方差方法在乏燃料干式贮存容器屏蔽计算中的应用. 原子能科学技术. 2019(05): 884-892 . ![]() |