Volume 34 Issue 12
Nov.  2022
Turn off MathJax
Article Contents
Xu Qiuyue, Zhou Jiaxin, Shan Lianqiang, et al. Optimized simulation of D3He proton source for exploding pusher target[J]. High Power Laser and Particle Beams, 2022, 34: 122003. doi: 10.11884/HPLPB202234.220199
Citation: Xu Qiuyue, Zhou Jiaxin, Shan Lianqiang, et al. Optimized simulation of D3He proton source for exploding pusher target[J]. High Power Laser and Particle Beams, 2022, 34: 122003. doi: 10.11884/HPLPB202234.220199

Optimized simulation of D3He proton source for exploding pusher target

doi: 10.11884/HPLPB202234.220199
  • Received Date: 2022-06-17
  • Accepted Date: 2022-10-11
  • Rev Recd Date: 2022-10-07
  • Available Online: 2022-10-17
  • Publish Date: 2022-11-02
  • To establish a monochromatic high-energy proton photography platform on high power laser device with hundreds of kilojoules, D3He gas-filled spherical SiO2 glass pellets, irradiated by an absorbed laser intensity of 1015 W/cm2 have been considered and the exploding pusher target simulation has been conducted with Helios-CR to design an optimum target, which couples to the incident laser light more effectively to produce the optimum number of protons. By varying the inner radius of the target, the laser intensity and the thickness of the spherical shell, the optimal laser conditions and target parameters for photography under the condition of our laser device are obtained. The simulation results give a suitable experimental parameter of 300 μm target ball radius, 1.8 MPa filled D3He gas and 3.5 μm SiO2 spherical shell thickness. In addition, we also considered the influence of laser driving symmetry and kinetic effect on the simulation results. Taking the optimal parameters obtained by simulation as the input, it is expected that 109–1010 proton yield can be obtained experimentally. The law of proton yield variation obtained through simulation provides a reference for the formal establishment of the proton photography platform and the selection of experimental parameters.
  • loading
  • [1]
    Li C K, Séguin F H, Rygg J R, et al. Monoenergetic-proton-radiography measurements of implosion dynamics in direct-drive inertial-confinement fusion[J]. Physical Review Letters, 2008, 100: 225001. doi: 10.1103/PhysRevLett.100.225001
    [2]
    Snavely R A, Key M H, Hatchett S P, et al. Intense high-energy proton beams from petawatt-laser irradiation of solids[J]. Physical Review Letters, 2000, 85(14): 2945-2948. doi: 10.1103/PhysRevLett.85.2945
    [3]
    Zylstra A B, Li C K, Rinderknecht H G, et al. Using high-intensity laser-generated energetic protons to radiograph directly driven implosions[J]. Review of Scientific Instruments, 2012, 83: 013511. doi: 10.1063/1.3680110
    [4]
    Li C K, Séguin F H, Frenje J A, et al. Charged-particle probing of X-ray–driven inertial-fusion implosions[J]. Science, 2010, 327(5970): 1231-1235. doi: 10.1126/science.1185747
    [5]
    Craxton R S, Anderson K S, Boehly T R, et al. Direct-drive inertial confinement fusion: a review[J]. Physics of Plasmas, 2015, 22: 110501. doi: 10.1063/1.4934714
    [6]
    Manuel M J E, Zylstra A B, Rinderknecht H G, et al. Source characterization and modeling development for monoenergetic-proton radiography experiments on OMEGA[J]. Review of Scientific Instruments, 2012, 83: 063506. doi: 10.1063/1.4730336
    [7]
    Rygg J R, Zylstra A B, Séguin F H, et al. Note: a monoenergetic proton backlighter for the National Ignition Facility[J]. Review of Scientific Instruments, 2015, 86: 116104. doi: 10.1063/1.4935581
    [8]
    Manuel M J E, Li C K, Séguin F H, et al. First measurements of Rayleigh-Taylor-induced magnetic fields in laser-produced plasmas[J]. Physical Review Letters, 2012, 108: 255006. doi: 10.1103/PhysRevLett.108.255006
    [9]
    Rigg P A, Schwartz C L, Hixson R S, et al. Proton radiography and accurate density measurements: a window into shock wave processes[J]. Physical Review B, 2008, 77: 220101(R). doi: 10.1103/PhysRevB.77.220101
    [10]
    Li C K, Séguin F H, Frenje J A, et al. Observation of megagauss-field topology changes due to magnetic reconnection in laser-produced plasmas[J]. Physical Review Letters, 2007, 99: 055001. doi: 10.1103/PhysRevLett.99.055001
    [11]
    Frenje J A, Grabowski P E, Li C K, et al. Measurements of ion stopping around the Bragg peak in high-energy-density plasmas[J]. Physical Review Letters, 2015, 115: 205001. doi: 10.1103/PhysRevLett.115.205001
    [12]
    Zylstra A B, Frenje J A, Grabowski P E, et al. Measurement of charged-particle stopping in warm dense plasma[J]. Physical Review Letters, 2015, 114: 215002. doi: 10.1103/PhysRevLett.114.215002
    [13]
    Zheng Wanguo, Wei Xiaofeng, Zhu Qihua, et al. Laser performance upgrade for precise ICF experiment in SG-Ⅲ laser facility[J]. Matter and Radiation at Extremes, 2017, 2(5): 243-255. doi: 10.1016/j.mre.2017.07.004
    [14]
    Séguin F H, Frenje J A, Li C K, et al. Spectrometry of charged particles from inertial-confinement-fusion plasmas[J]. Review of Scientific Instruments, 2003, 74(2): 975-995. doi: 10.1063/1.1518141
    [15]
    滕建, 赵宗清, 丁永坤, 等. 基于D3He反应产生的单能质子对ICF内爆过程的照相模拟研究[J]. 强激光与粒子束, 2011, 23(1):137-140 doi: 10.3788/HPLPB20112301.0137

    Teng Jian, Zhao Zongqing, Ding Yongkun, et al. Simulation of D3He fusion monoenergetic proton radiography of ICF implosions[J]. High Power Laser and Particle Beams, 2011, 23(1): 137-140 doi: 10.3788/HPLPB20112301.0137
    [16]
    MacFarlane J J, Golovkin I E, Woodruff P R. HELIOS-CR – A 1-D radiation-magnetohydrodynamics code with inline atomic kinetics modeling[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2006, 99(1/3): 381-397.
    [17]
    Miles A R, Chung H K, Heeter R, et al. Numerical simulation of thin-shell direct drive DHe3-filled capsules fielded at OMEGA[J]. Physics of Plasmas, 2012, 19: 072702. doi: 10.1063/1.4737052
    [18]
    Rosenberg M J, Zylstra A B, Séguin F H, et al. A direct-drive exploding-pusher implosion as the first step in development of a monoenergetic charged-particle backlighting platform at the National Ignition Facility[J]. High Energy Density Physics, 2016, 18: 38-44. doi: 10.1016/j.hedp.2016.01.001
    [19]
    张钧, 姜荣洪, 曾先才. 爆炸推进层靶的理论模型[J]. 核聚变与等离子体物理, 1988, 8(4):207-211 doi: 10.16568/j.0254-6086.1988.04.003

    Zhang Jun, Jiang Ronghong, Zeng Xiancai. A theoretical model of exploding pusher targets[J]. Nuclear Fusion and Plasma Physics, 1988, 8(4): 207-211 doi: 10.16568/j.0254-6086.1988.04.003
    [20]
    Dodd E S, Benage J F, Kyrala G A, et al. The effects of laser absorption on direct-drive capsule experiments at OMEGA[J]. Physics of Plasmas, 2012, 19: 042703. doi: 10.1063/1.3700187
    [21]
    Laffite S, Bourgade J L, Caillaud T, et al. Time history prediction of direct-drive implosions on the Omega facility[J]. Physics of Plasmas, 2016, 23: 012706. doi: 10.1063/1.4939833
    [22]
    Richardson M C, Craxton R S, Delettrez J, et al. Absorption physics at 351 nm in spherical geometry[J]. Physical Review Letters, 1985, 54(15): 1656-1659. doi: 10.1103/PhysRevLett.54.1656
    [23]
    Storm E K, Larsen J T, Nuckolls J H, et al. Simple scaling model for exploding pusher targets[R]. UCRL-79788, 1977.
    [24]
    Garban-Labaune C, Fabre E, Max C E, et al. Effect of laser wavelength and pulse duration on laser-light absorption and back reflection[J]. Physical Review Letters, 1982, 48(15): 1018-1021. doi: 10.1103/PhysRevLett.48.1018
    [25]
    Kitagawa Y, Miyanaga N, Kato Y, et al. Optimum design of exploding pusher target to produce maximum neutrons[J]. Japanese Journal of Applied Physics, 1986, 25(4R): 586-589.
    [26]
    单连强, 吴凤娟, 袁宗强, 等. 激光惯性约束聚变动理学效应研究进展[J]. 强激光与粒子束, 2021, 33:012004 doi: 10.11884/HPLPB202133.200235

    Shan Lianqiang, Wu Fengjuan, Yuan Zongqiang, et al. Research progress of kinetic effects in laser inertial confinement fusion[J]. High Power Laser and Particle Beams, 2021, 33: 012004 doi: 10.11884/HPLPB202133.200235
    [27]
    Rinderknecht H G, Amendt P A, Wilks S C, et al. Kinetic physics in ICF: present understanding and future directions[J]. Plasma Physics and Controlled Fusion, 2018, 60: 064001. doi: 10.1088/1361-6587/aab79f
    [28]
    Hoffman N M, Zimmerman G B, Molvig K, et al. Approximate models for the ion-kinetic regime in inertial-confinement-fusion capsule implosions[J]. Physics of Plasmas, 2015, 22: 052707. doi: 10.1063/1.4921130
    [29]
    Rosenberg M J, Rinderknecht H G, Hoffman N M, et al. Exploration of the transition from the hydrodynamiclike to the strongly kinetic regime in shock-driven implosions[J]. Physical Review Letters, 2014, 112: 185001. doi: 10.1103/PhysRevLett.112.185001
    [30]
    Rosenberg M J, Zylstra A B, Séguin F H, et al. Investigation of ion kinetic effects in direct-drive exploding-pusher implosions at the NIF[J]. Physics of Plasmas, 2014, 21: 122712. doi: 10.1063/1.4905064
    [31]
    Rygg J R, Frenje J A, Li C K, et al. Observations of the collapse of asymmetrically driven convergent shocks[J]. Physics of Plasmas, 2008, 15: 034505. doi: 10.1063/1.2892025
    [32]
    Johnson T M, Birkel A, Ramirez H E, et al. Yield degradation due to laser drive asymmetry in D3He backlit proton radiography experiments at OMEGA[J]. Review of Scientific Instruments, 2021, 92: 043551. doi: 10.1063/5.0043004
    [33]
    Skupsky S, Marozas J A, Craxton R S, et al. Polar direct drive on the National Ignition Facility[J]. Physics of Plasmas, 2004, 11(5): 2763-2770. doi: 10.1063/1.1689665
    [34]
    Tian Chao, Chen Jia, Zhang Bo, et al. High direct drive illumination uniformity achieved by multi-parameter optimization approach: a case study of Shenguang III laser facility[J]. Optics Express, 2015, 23(9): 12362-12372. doi: 10.1364/OE.23.012362
    [35]
    田超, 单连强, 周维民, 等. 神光Ⅲ原型装置直接驱动均匀辐照设计及在快点火中的潜在应用[J]. 强激光与粒子束, 2015, 27:092010 doi: 10.11884/HPLPB201527.092010

    Tian Chao, Shan Lianqiang, Zhou Weimin, et al. Optimization of illumination uniformity of Shenguang Ⅲ prototype facility and its potential application in fast ignition[J]. High Power Laser and Particle Beams, 2015, 27: 092010 doi: 10.11884/HPLPB201527.092010
    [36]
    Ramis R, Temporal M, Canaud B, et al. Three-dimensional symmetry analysis of a direct-drive irradiation scheme for the laser megajoule facility[J]. Physics of Plasmas, 2014, 21: 082710. doi: 10.1063/1.4893311
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)

    Article views (622) PDF downloads(95) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return