Citation: | Sun Guanghui, Zhang Dewei, Deng Hailin, et al. Design method of reflective broadband predistorter for solid-state power amplifier[J]. High Power Laser and Particle Beams, 2022, 34: 123002. doi: 10.11884/HPLPB202234.220219 |
[1] |
郝鹏. 面向5G的功放线性化技术研究[D]. 成都: 电子科技大学, 2021: 1-10
Hao Peng. Research on linearization technology of power amplifier for 5G applications[D]. Chengdu: University of Electronic Science and Technology of China, 2021: 1-10
|
[2] |
Hao Peng, He Songbai, You Fei, et al. Broadband linearizer based on equivalent power-dependent impedance function of diode and load match network[J]. Microwave and Optical Technology Letters, 2021, 63(2): 499-503. doi: 10.1002/mop.32644
|
[3] |
Deng Hailin, Zhang Dewei, Lv Dalong, et al. A tunable reflective analog predistorter based on variable impedance matching network[J]. AEU-International Journal of Electronics and Communications, 2019, 98: 139-143.
|
[4] |
Katz A. Linearization: reducing distortion in power amplifiers[J]. IEEE Microwave Magazine, 2001, 2(4): 37-49. doi: 10.1109/6668.969934
|
[5] |
Li Jinbo, Shu Ran, Xu Zhiwei, et al. A 21-dm-OP1 dB 20.3%-efficiency−131.8-dBm/Hz-noise X-band Cartesian error feedback transmitter with fully integrated power amplifier in 65-nm CMOS[J]. IEEE Journal of Solid-State Circuits, 2020, 55(6): 1491-1501.
|
[6] |
Borel A, Barzdėnas V, Vasjanov A. Linearization as a solution for power amplifier imperfections: a review of methods[J]. Electronics, 2021, 10: 1073. doi: 10.3390/electronics10091073
|
[7] |
Brihuega A, Anttila L, Valkama M. Frequency-domain digital predistortion for OFDM[J]. IEEE Microwave and Wireless Components Letters, 2021, 31(6): 816-818. doi: 10.1109/LMWC.2021.3062982
|
[8] |
Ginzberg N, Gidoni T, Schwartz Y, et al. Wideband linearization of a carrier aggregation transmitter using analog signal injection and 2-D digital predistortion[J]. IEEE Transactions on Microwave Theory and Techniques, 2020, 68(6): 2030-2040. doi: 10.1109/TMTT.2020.2988864
|
[9] |
Katz A, Gray R, Dorval R. Linearizers for Q - and V -band TWTAs[J]. IEEE Transactions on Electron Devices, 2018, 65(6): 2371-2377. doi: 10.1109/TED.2018.2806199
|
[10] |
Bian Chenge, Zhang Dewei, Deng Hailin, et al. A reconfigurable analog predistorter using tunable impendence matching network[J]. AEU-International Journal of Electronics and Communications, 2020, 125: 153384.
|
[11] |
Liu Zheng, Yan Cheng, Liu Gang, et al. A novel analog linearizer for solid-state power amplifier in satellite communication system[C]//2018 International Conference on Microwave and Millimeter Wave Technology (ICMMT). Chengdu: IEEE, 2018: 1-3.
|
[12] |
王崇, 杨志国. Ka频段氮化镓功放的预失真线性化器设计[J]. 计算机测量与控制, 2018, 26(1):252-255 doi: 10.16526/j.cnki.11-4762/tp.2018.01.062
Wang Chong, Yang Zhiguo. Design of Pre-distortion linearizer for GaN power amplifier at Ka-band[J]. Computer Measurement & Control, 2018, 26(1): 252-255 doi: 10.16526/j.cnki.11-4762/tp.2018.01.062
|
[13] |
Karimzadeh Baee R, Rahati Belabad A, Moazzen H, et al. A novel analog predistortion linearizer based on a Schottky diode for communication applications[J]. Journal of Electrical and Computer Engineering Innovations, 2022, 10(1): 101-106.
|
[14] |
邓海林, 陈会超, 周东方, 等. 一种补偿量可调的反射式预失真线性化器[J]. 真空科学与技术学报, 2018, 38(8):657-662 doi: 10.13922/j.cnki.cjovst.2018.08.03
Deng Hailin, Chen Huichao, Zhou Dongfang, et al. Design and evaluation of modified reflective predistortion linearizer with tunable compensation[J]. Chinese Journal of Vacuum Science and Technology, 2018, 38(8): 657-662 doi: 10.13922/j.cnki.cjovst.2018.08.03
|
[15] |
Pozar D M. Microwave engineering[M]. Hoboken: Wiley, 2005.
|
[1] | Xie Chunjie, Tang Leilei, Liang Yu, Feng Guangyao, Wang Lin, Zhou Zeran. Predistortion model of klystron based on Field Programmable Gate Array (FPGA)[J]. High Power Laser and Particle Beams, 2022, 34(3): 031022. doi: 10.11884/HPLPB202234.210214 |
[2] | Xi Xiaoming, Yang Huan, Zeng Lingfa, Huang Liangjin, Ye Yun, Zhang Hanwei, Pan Zhiyong, Wang Xiaolin, Wang Zefeng, Zhou Pu, Xu Xiaojun, Chen Jinbao. 5 kW all-fiber amplifier based on homemade spindle-shaped Yb-doped fiber[J]. High Power Laser and Particle Beams, 2021, 33(2): 021001. doi: 10.11884/HPLPB202133.200309 |
[3] | Li Baojian, Qu Bo, Xia Lei, Han Fei. Design of Q-band wideband linearizer[J]. High Power Laser and Particle Beams, 2021, 33(2): 023004. doi: 10.11884/HPLPB202133.200206 |
[4] | Han Fei, Xia Lei, Li Baojian. Study on linearization of Ka-band wideband traveling-wave tube amplifer[J]. High Power Laser and Particle Beams, 2021, 33(4): 043003. doi: 10.11884/HPLPB202133.200353 |
[5] | Li Jianbing, Lin Pengfei, Hao Baoliang, Sun Jianbang. Overview of development of microwave power amplifiers[J]. High Power Laser and Particle Beams, 2020, 32(7): 073001. doi: 10.11884/HPLPB202032.200095 |
[6] | Wang Yongfei, Han Peisheng, Hu Qing, Chen Xinpeng, Zhou Dongfang. Wideband matching technology used for predistortion linearization[J]. High Power Laser and Particle Beams, 2019, 31(12): 123003. doi: 10.11884/HPLPB201931.190128 |
[7] | Liu Jie, Zhang Jian, Jiang Jun, Tian Yaoling, Deng Xianjin. Design of D-band power amplifier[J]. High Power Laser and Particle Beams, 2016, 28(02): 023102. doi: 10.11884/HPLPB201628.023102 |
[8] | He Xiang, Hou Mi, Zhao Fengli, Pei Shilun. Design of a beam phase cavity and a waveguide coupled eccentric circle structure prebuncher in S-band[J]. High Power Laser and Particle Beams, 2015, 27(07): 075102. doi: 10.11884/HPLPB201527.075102 |
[9] | Huang Yujia, Han Yongqian, Huang Li, Chen Hong. An optimal selection of classic twobox behavioral models for RF power amplifiers[J]. High Power Laser and Particle Beams, 2015, 27(10): 103249. doi: 10.11884/HPLPB201527.103249 |
[10] | Deng Hailin, Zhang Dewei, Zhou Dongfang, Li Wenchao, Lv Dalong, Zhan Li. A dual-branch vector synthesis millimeter-wave predistortion linearizer[J]. High Power Laser and Particle Beams, 2015, 27(12): 123005. doi: 10.11884/HPLPB201527.123005 |
[11] | Deng Hailin, Zhang Dewei, Zhou Dongfang, Li Wenchao, Lv Dalong, Zhan Li. A dual-branch vector synthesis millimeter-wave predistortion linearizer[J]. High Power Laser and Particle Beams, 2015, 27(12): 123006. doi: 10.11884/HPLPB201527.123006 |
[12] | Wang Xiong, Zhou Pu, Wang Xiaolin, Xiao Hu, Si Lei. 100-W-level monolithic single frequency Tm-doped fiber MOPA[J]. High Power Laser and Particle Beams, 2014, 26(02): 020101. doi: 10.3788/HPLPB201426.020101 |
[13] | Qi Yunxuan, Liu Chong, Zhang Xiang, Ye Zhibin, Xiang Zhen, Chen Jun. Beam quality enhancement in side-pumped master oscillator power amplifier system[J]. High Power Laser and Particle Beams, 2014, 26(09): 091023. doi: 10.11884/HPLPB201426.091023 |
[14] | Li Wenchao, Zhou Dongfang, Zhang Dewei, Lin Jingyu, Wang Yongfei, Zheng Xiaoyu. Novel diode-based Ka band adjustable predistortion linearizer[J]. High Power Laser and Particle Beams, 2014, 26(11): 113004. doi: 10.11884/HPLPB201426.113004 |
[15] | Wang Yongfei, Zhou Dongfang, Zhang Dewei, Xu Jingyuan, Zhao Ying, Zhang Yi, Chen Xinpeng. Reflective predistortion linearizer for Ka-band travelling wave tube amplifiers[J]. High Power Laser and Particle Beams, 2013, 25(06): 1391-1395. doi: 10.3788/HPLPB20132506.1391 |
[16] | xiao hu, dong xiaolin, wang xiaolin, ma yanxing, zhou pu, xu xiaojun, zhao guomin. China-made high power fiber amplifier in all-fiber configuration[J]. High Power Laser and Particle Beams, 2011, 23(08): 0- . |
[17] | liu rong, zhao fengli, huang yongqing, zhang donghui, wang xiangjian, ma xinpeng, wang guangwei. Phase characteristics of solid-state amplifiers in sub-harmonic bunchers[J]. High Power Laser and Particle Beams, 2009, 21(07): 0- . |
[18] | ma yanxing, si lei, zhou pu, wang xiaolin, ma haotong, li xiao, xu xiaojun, liu zejin. Coherent beam combining of MOPA with multi-dithering technique[J]. High Power Laser and Particle Beams, 2009, 21(11): 0- . |
[19] | zhang chunbin, long tao. Effect of amplified spontaneous emission in Heaven I preamplifier[J]. High Power Laser and Particle Beams, 2002, 14(05): 0- . |
[20] | wang wei-min, luo bin, gao qing-song, pang yu, lu bai-da. Study on LD side-pumped Nd:YAG slab double-pass amplifier[J]. High Power Laser and Particle Beams, 2001, 13(03): 0- . |
1. | 陈丽琴. 一种应用于5G功率放大器的自适应探测技术研究. 通信与信息技术. 2024(02): 46-49+63 . ![]() |