Volume 34 Issue 11
Sep.  2022
Turn off MathJax
Article Contents
Wu Yuji, Zhang Qing, Wang Feng, et al. Virtual image properties of wide-angle velocity interferometer system for any reflector[J]. High Power Laser and Particle Beams, 2022, 34: 112003. doi: 10.11884/HPLPB202234.220226
Citation: Wu Yuji, Zhang Qing, Wang Feng, et al. Virtual image properties of wide-angle velocity interferometer system for any reflector[J]. High Power Laser and Particle Beams, 2022, 34: 112003. doi: 10.11884/HPLPB202234.220226

Virtual image properties of wide-angle velocity interferometer system for any reflector

doi: 10.11884/HPLPB202234.220226
  • Received Date: 2022-07-15
  • Rev Recd Date: 2022-08-23
  • Available Online: 2022-08-24
  • Publish Date: 2022-09-20
  • By comparing the continuity and resolution of virtual image at “point convergence criterion” and “phase difference criterion”, it is proposed that the former is more suitable for virtual image model of wide-angle velocity interferometer system for any reflector (VISAR). Based on “point convergence criterion”, the effects of ellipsoidal mirror parameters, image recording method and shock wave tilt on the virtual image of the wide-angle VISAR target are analyzed. It is discovered that the ratio of outer and inner diameter of the virtual image is about 8 and the ellipsoidal mirror processing error has little influence on image surface when $ {10^{ - 5}}\left( {k - 400} \right) \lt m \lt {10^{ - 5}}k $ (k and m are the shape parameters of wide-angle VISAR target), it is difficult to obtain dynamic interference fringes in plane detection and wide-angle VISAR diagnosis allows the average inclination angle of shock wave not to exceed 2°. Issues such as virtual image interference of wide-angle VISAR, processing of special-shaped fiber optic panels, selection of ellipsoidal mirror parameters and image reconstruction are discussed, and some suggestions for diagnostic experiments are given. The research on properties of virtual image lays a foundation for the improvement of wide-angle VISAR diagnostic capability, and is of great significance for the symmetry diagnosis in inertial confinement fusion.
  • loading
  • [1]
    Nuckolls J, Wood L, Thiessen A, et al. Laser compression of matter to super-high densities: thermonuclear (CTR) applications[J]. Nature, 1972, 239(5368): 139-142. doi: 10.1038/239139a0
    [2]
    Betti R, Hurricane O A. Inertial-confinement fusion with lasers[J]. Nature Physics, 2016, 12(5): 435-448. doi: 10.1038/nphys3736
    [3]
    Zylstra A B, Hurricane O A, Callahan D A, et al. Burning plasma achieved in inertial fusion[J]. Nature, 2022, 601(7894): 542-548. doi: 10.1038/s41586-021-04281-w
    [4]
    Nakai M, Yamanaka M, Azechi H, et al. X-ray and particle diagnostics of a high-density plasma by laser implosion (invited)[J]. Review of Scientific Instruments, 1990, 61(10): 3235-3240. doi: 10.1063/1.1141654
    [5]
    Moody J D, Robey H F, Celliers P M, et al. Early time implosion symmetry from two-axis shock-timing measurements on indirect drive NIF experiments[J]. Physics of Plasmas, 2014, 21: 092702. doi: 10.1063/1.4893136
    [6]
    Séguin F H, Li C K, DeCiantis J L, et al. Effects of fuel-capsule shimming and drive asymmetry on inertial-confinement-fusion symmetry and yield[J]. Physics of Plasmas, 2016, 23: 032705. doi: 10.1063/1.4943883
    [7]
    Bose A, Betti R, Mangino D, et al. Analysis of trends in experimental observables: reconstruction of the implosion dynamics and implications for fusion yield extrapolation for direct-drive cryogenic targets on OMEGA[J]. Physics of Plasmas, 2018, 25: 062701. doi: 10.1063/1.5026780
    [8]
    Barker L M, Hollenbach R E. Laser interferometer for measuring high velocities of any reflecting surface[J]. Journal of Applied Physics, 1972, 43(11): 4669-4675. doi: 10.1063/1.1660986
    [9]
    Celliers P M, Collins G W, Da Silva L B, et al. Accurate measurement of laser-driven shock trajectories with velocity interferometry[J]. Applied Physics Letters, 1998, 73(10): 1320-1322. doi: 10.1063/1.121882
    [10]
    Town R P J, Bradley D K, Kritcher A, et al. Dynamic symmetry of indirectly driven inertial confinement fusion capsules on the National Ignition Facility[J]. Physics of Plasmas, 2014, 21: 056313. doi: 10.1063/1.4876609
    [11]
    薛全喜, 江少恩, 王哲斌, 等. 基于神光Ⅲ原型装置开展的激光直接驱动准等熵压缩研究进展[J]. 物理学报, 2018, 67:045202 doi: 10.7498/aps.67.20172159

    Xue Quanxi, Jiang Shaoen, Wang Zhebin, et al. Progress of laser-driven quasi-isentropic compression study performed on SHENGUANG III prototype laser facility[J]. Acta Physica Sinica, 2018, 67: 045202 doi: 10.7498/aps.67.20172159
    [12]
    Jiang Shaoen, Wang Feng, Ding Yongkun, et al. Experimental progress of inertial confinement fusion based at the ShenGuang-Ⅲ laser facility in China[J]. Nuclear Fusion, 2019, 59: 032006. doi: 10.1088/1741-4326/aabdb6
    [13]
    舒桦, 傅思祖, 黄秀光, 等. 神光Ⅱ装置上速度干涉仪的研制及应用[J]. 物理学报, 2012, 61:114102 doi: 10.7498/aps.61.114102

    Shu Hua, Fu Sizu, Huang Xiuguang, et al. Line-imaging optical recording velocity interferometer at Shenguang-II laser facility and its applications[J]. Acta Physica Sinica, 2012, 61: 114102 doi: 10.7498/aps.61.114102
    [14]
    刘寿先, 李泽仁, 陈光华, 等. 高时空分辨线成像VISAR在爆轰波物理中的应用[J]. 高压物理学报, 2014, 28(3):307-312 doi: 10.11858/gywlxb.2014.03.007

    Liu Shouxian, Li Zeren, Chen Guanghua, et al. Demonstration of high resolution line-imaging VISAR application in detonation physics[J]. Chinese Journal of High Pressure Physics, 2014, 28(3): 307-312 doi: 10.11858/gywlxb.2014.03.007
    [15]
    张品亮, 王钊, 李宇, 等. 基于天光一号装置的激光直接驱动准等熵压缩研究[J]. 原子能科学技术, 2018, 52(11):2038-2044 doi: 10.7538/yzk.2018.youxian.0120

    Zhang Pinliang, Wang Zhao, Li Yu, et al. Study on laser direct driven quasi-isentropic compression loading on HEAVEN-Ⅰ laser facility[J]. Atomic Energy Science and Technology, 2018, 52(11): 2038-2044 doi: 10.7538/yzk.2018.youxian.0120
    [16]
    吴宇际. 激光聚变中广角冲击波速度诊断方法及相关VISAR技术研究[D]. 合肥: 中国科学技术大学, 2019: 71-81

    Wu Yuji. Wide-angle shock wave velocity diagnostic method and related VISAR technology in laser fusion[D]. Hefei: University of Science and Technology of China, 2019: 71-81
    [17]
    Wu Yuji, Wang Feng, Li Yulong, et al. Research on a wide-angle diagnostic method for shock wave velocity at SG-Ⅲ prototype facility[J]. Nuclear Fusion, 2018, 58: 076003. doi: 10.1088/1741-4326/aabeed
    [18]
    Jacquemot S. Inertial confinement fusion for energy: overview of the ongoing experimental, theoretical and numerical studies[J]. Nuclear Fusion, 2017, 57: 102024. doi: 10.1088/1741-4326/aa6d2d
    [19]
    Landen O L, Edwards J, Haan S W, et al. Capsule implosion optimization during the indirect-drive National Ignition Campaign[J]. Physics of Plasmas, 2011, 18: 051002. doi: 10.1063/1.3592170
    [20]
    Atzeni S, Ribeyre X, Schurtz G, et al. Shock ignition of thermonuclear fuel: principles and modelling[J]. Nuclear Fusion, 2014, 54: 054008. doi: 10.1088/0029-5515/54/5/054008
    [21]
    吴宇际, 王秋平, 王峰, 等. 广角任意反射面速度干涉仪的光学性质研究[J]. 强激光与粒子束, 2019, 31:032001 doi: 10.11884/HPLPB201931.190045

    Wu Yuji, Wang Qiuping, Wang Feng, et al. Optical properties of wide-angle velocity interferometer system for any reflector[J]. High Power Laser and Particle Beams, 2019, 31: 032001 doi: 10.11884/HPLPB201931.190045
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(1)

    Article views (645) PDF downloads(43) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return