Citation: | Wu Yuji, Zhang Qing, Wang Feng, et al. Virtual image properties of wide-angle velocity interferometer system for any reflector[J]. High Power Laser and Particle Beams, 2022, 34: 112003. doi: 10.11884/HPLPB202234.220226 |
[1] |
Nuckolls J, Wood L, Thiessen A, et al. Laser compression of matter to super-high densities: thermonuclear (CTR) applications[J]. Nature, 1972, 239(5368): 139-142. doi: 10.1038/239139a0
|
[2] |
Betti R, Hurricane O A. Inertial-confinement fusion with lasers[J]. Nature Physics, 2016, 12(5): 435-448. doi: 10.1038/nphys3736
|
[3] |
Zylstra A B, Hurricane O A, Callahan D A, et al. Burning plasma achieved in inertial fusion[J]. Nature, 2022, 601(7894): 542-548. doi: 10.1038/s41586-021-04281-w
|
[4] |
Nakai M, Yamanaka M, Azechi H, et al. X-ray and particle diagnostics of a high-density plasma by laser implosion (invited)[J]. Review of Scientific Instruments, 1990, 61(10): 3235-3240. doi: 10.1063/1.1141654
|
[5] |
Moody J D, Robey H F, Celliers P M, et al. Early time implosion symmetry from two-axis shock-timing measurements on indirect drive NIF experiments[J]. Physics of Plasmas, 2014, 21: 092702. doi: 10.1063/1.4893136
|
[6] |
Séguin F H, Li C K, DeCiantis J L, et al. Effects of fuel-capsule shimming and drive asymmetry on inertial-confinement-fusion symmetry and yield[J]. Physics of Plasmas, 2016, 23: 032705. doi: 10.1063/1.4943883
|
[7] |
Bose A, Betti R, Mangino D, et al. Analysis of trends in experimental observables: reconstruction of the implosion dynamics and implications for fusion yield extrapolation for direct-drive cryogenic targets on OMEGA[J]. Physics of Plasmas, 2018, 25: 062701. doi: 10.1063/1.5026780
|
[8] |
Barker L M, Hollenbach R E. Laser interferometer for measuring high velocities of any reflecting surface[J]. Journal of Applied Physics, 1972, 43(11): 4669-4675. doi: 10.1063/1.1660986
|
[9] |
Celliers P M, Collins G W, Da Silva L B, et al. Accurate measurement of laser-driven shock trajectories with velocity interferometry[J]. Applied Physics Letters, 1998, 73(10): 1320-1322. doi: 10.1063/1.121882
|
[10] |
Town R P J, Bradley D K, Kritcher A, et al. Dynamic symmetry of indirectly driven inertial confinement fusion capsules on the National Ignition Facility[J]. Physics of Plasmas, 2014, 21: 056313. doi: 10.1063/1.4876609
|
[11] |
薛全喜, 江少恩, 王哲斌, 等. 基于神光Ⅲ原型装置开展的激光直接驱动准等熵压缩研究进展[J]. 物理学报, 2018, 67:045202 doi: 10.7498/aps.67.20172159
Xue Quanxi, Jiang Shaoen, Wang Zhebin, et al. Progress of laser-driven quasi-isentropic compression study performed on SHENGUANG III prototype laser facility[J]. Acta Physica Sinica, 2018, 67: 045202 doi: 10.7498/aps.67.20172159
|
[12] |
Jiang Shaoen, Wang Feng, Ding Yongkun, et al. Experimental progress of inertial confinement fusion based at the ShenGuang-Ⅲ laser facility in China[J]. Nuclear Fusion, 2019, 59: 032006. doi: 10.1088/1741-4326/aabdb6
|
[13] |
舒桦, 傅思祖, 黄秀光, 等. 神光Ⅱ装置上速度干涉仪的研制及应用[J]. 物理学报, 2012, 61:114102 doi: 10.7498/aps.61.114102
Shu Hua, Fu Sizu, Huang Xiuguang, et al. Line-imaging optical recording velocity interferometer at Shenguang-II laser facility and its applications[J]. Acta Physica Sinica, 2012, 61: 114102 doi: 10.7498/aps.61.114102
|
[14] |
刘寿先, 李泽仁, 陈光华, 等. 高时空分辨线成像VISAR在爆轰波物理中的应用[J]. 高压物理学报, 2014, 28(3):307-312 doi: 10.11858/gywlxb.2014.03.007
Liu Shouxian, Li Zeren, Chen Guanghua, et al. Demonstration of high resolution line-imaging VISAR application in detonation physics[J]. Chinese Journal of High Pressure Physics, 2014, 28(3): 307-312 doi: 10.11858/gywlxb.2014.03.007
|
[15] |
张品亮, 王钊, 李宇, 等. 基于天光一号装置的激光直接驱动准等熵压缩研究[J]. 原子能科学技术, 2018, 52(11):2038-2044 doi: 10.7538/yzk.2018.youxian.0120
Zhang Pinliang, Wang Zhao, Li Yu, et al. Study on laser direct driven quasi-isentropic compression loading on HEAVEN-Ⅰ laser facility[J]. Atomic Energy Science and Technology, 2018, 52(11): 2038-2044 doi: 10.7538/yzk.2018.youxian.0120
|
[16] |
吴宇际. 激光聚变中广角冲击波速度诊断方法及相关VISAR技术研究[D]. 合肥: 中国科学技术大学, 2019: 71-81
Wu Yuji. Wide-angle shock wave velocity diagnostic method and related VISAR technology in laser fusion[D]. Hefei: University of Science and Technology of China, 2019: 71-81
|
[17] |
Wu Yuji, Wang Feng, Li Yulong, et al. Research on a wide-angle diagnostic method for shock wave velocity at SG-Ⅲ prototype facility[J]. Nuclear Fusion, 2018, 58: 076003. doi: 10.1088/1741-4326/aabeed
|
[18] |
Jacquemot S. Inertial confinement fusion for energy: overview of the ongoing experimental, theoretical and numerical studies[J]. Nuclear Fusion, 2017, 57: 102024. doi: 10.1088/1741-4326/aa6d2d
|
[19] |
Landen O L, Edwards J, Haan S W, et al. Capsule implosion optimization during the indirect-drive National Ignition Campaign[J]. Physics of Plasmas, 2011, 18: 051002. doi: 10.1063/1.3592170
|
[20] |
Atzeni S, Ribeyre X, Schurtz G, et al. Shock ignition of thermonuclear fuel: principles and modelling[J]. Nuclear Fusion, 2014, 54: 054008. doi: 10.1088/0029-5515/54/5/054008
|
[21] |
吴宇际, 王秋平, 王峰, 等. 广角任意反射面速度干涉仪的光学性质研究[J]. 强激光与粒子束, 2019, 31:032001 doi: 10.11884/HPLPB201931.190045
Wu Yuji, Wang Qiuping, Wang Feng, et al. Optical properties of wide-angle velocity interferometer system for any reflector[J]. High Power Laser and Particle Beams, 2019, 31: 032001 doi: 10.11884/HPLPB201931.190045
|