Citation: | Wu Yuji, Zhang Qing, Wang Feng, et al. Analyzing implosion symmetry based on fringe shifts of wide-angle velocity interferometer system for any reflector[J]. High Power Laser and Particle Beams, 2022, 34: 122002. doi: 10.11884/HPLPB202234.220238 |
[1] |
Hurricane O A, Callahan D A, Casey D T, et al. Fuel gain exceeding unity in an inertially confined fusion implosion[J]. Nature, 2014, 506(7488): 343-348. doi: 10.1038/nature13008
|
[2] |
Jacquemot S. Inertial confinement fusion for energy: overview of the ongoing experimental, theoretical and numerical studies[J]. Nuclear Fusion, 2017, 57: 102024. doi: 10.1088/1741-4326/aa6d2d
|
[3] |
Betti R, Hurricane O A. Inertial-confinement fusion with lasers[J]. Nature Physics, 2016, 12: 435-448.
|
[4] |
Atzeni S, Ribeyre X, Schurtz G, et al. Shock ignition of thermonuclear fuel: principles and modelling[J]. Nuclear Fusion, 2014, 54: 054008. doi: 10.1088/0029-5515/54/5/054008
|
[5] |
Kyrala G A, Dixit S, Glenzer S, et al. Measuring symmetry of implosions in cryogenic Hohlraums at the NIF using gated X-ray detectors (invited)[J]. Review of Scientific Instruments, 2010, 81: 10E316. doi: 10.1063/1.3481028
|
[6] |
Craxton R S, Anderson K S, Boehly T R, et al. Direct-drive inertial confinement fusion: a review[J]. Physics of Plasmas, 2015, 22: 110501. doi: 10.1063/1.4934714
|
[7] |
Nuckolls J, Wood L, Thiessen A, et al. Laser compression of matter to super-high densities: thermonuclear (CTR) applications[J]. Nature, 1972, 239(5368): 139-142. doi: 10.1038/239139a0
|
[8] |
Lindl J. Development of the indirect-drive approach to inertial confinement fusion and the target physics basis for ignition and gain[J]. Physics of Plasmas, 1995, 2(11): 3933-4024. doi: 10.1063/1.871025
|
[9] |
Landen O L, Edwards J, Haan S W, et al. Capsule implosion optimization during the indirect-drive National Ignition Campaign[J]. Physics of Plasmas, 2011, 18: 051002. doi: 10.1063/1.3592170
|
[10] |
Meezan N B, Atherton L J, Callahan D A, et al. National Ignition Campaign hohlraum energetics[J]. Physics of Plasmas, 2010, 17: 056304. doi: 10.1063/1.3354110
|
[11] |
Wu Yuji, Wang Feng, Wang Qiuping, et al. A high temporal resolution numerical algorithm for shock wave velocity diagnosis[J]. Scientific Reports, 2019, 9: 8597. doi: 10.1038/s41598-019-45112-3
|
[12] |
Moody J D, Robey H F, Celliers P M, et al. Early time implosion symmetry from two-axis shock-timing measurements on indirect drive NIF experiments[J]. Physics of Plasmas, 2014, 21: 092702. doi: 10.1063/1.4893136
|
[13] |
Smith R F, Eggert J H, Saculla M D, et al. Ultrafast dynamic compression technique to study the kinetics of phase transformations in Bismuth[J]. Physical Review Letters, 2008, 101: 065701. doi: 10.1103/PhysRevLett.101.065701
|
[14] |
Barker L M, Hollenbach R E. Laser interferometer for measuring high velocities of any reflecting surface[J]. Journal of Applied Physics, 1972, 43(11): 4669-4675. doi: 10.1063/1.1660986
|
[15] |
Celliers P M, Collins G W, Da Silva L B, et al. Accurate measurement of laser-driven shock trajectories with velocity interferometry[J]. Applied Physics Letters, 1998, 73(10): 1320-1322. doi: 10.1063/1.121882
|
[16] |
Celliers P M, Bradley D K, Collins G W, et al. Line-imaging velocimeter for shock diagnostics at the OMEGA laser facility[J]. Review of Scientific Instruments, 2004, 75(11): 4916-4929. doi: 10.1063/1.1807008
|
[17] |
Town R P J, Bradley D K, Kritcher A, et al. Dynamic symmetry of indirectly driven inertial confinement fusion capsules on the National Ignition Facility[J]. Physics of Plasmas, 2014, 21: 056313. doi: 10.1063/1.4876609
|
[18] |
刘寿先, 彭其先, 雷江波, 等. 激光驱动飞片的线面成像VISAR测速技术[J]. 强激光与粒子束, 2014, 26:081008 doi: 10.11884/HPLPB201426.081008
Liu Shouxian, Peng Qixian, Lei Jiangbo, et al. Line-imaging and framing plane-imaging velocity interferometer for laser driven flyer diagnostics[J]. High Power Laser and Particle Beams, 2014, 26: 081008 doi: 10.11884/HPLPB201426.081008
|
[19] |
Wu Yuji, Wang Feng, Li Yulong, et al. Research on a wide-angle diagnostic method for shock wave velocity at SG-Ⅲ prototype facility[J]. Nuclear Fusion, 2018, 58: 076003. doi: 10.1088/1741-4326/aabeed
|
[20] |
吴宇际, 王秋平, 王峰, 等. 广角任意反射面速度干涉仪的光学性质研究[J]. 强激光与粒子束, 2019, 31:032001 doi: 10.11884/HPLPB201931.190045
Wu Yuji, Wang Qiuping, Wang Feng, et al. Optical properties of wide-angle velocity interferometer system for any reflector[J]. High Power Laser and Particle Beams, 2019, 31: 032001 doi: 10.11884/HPLPB201931.190045
|
[21] |
Zylstra A B, Frenje J A, Séguin F H, et al. In-flight observations of low-mode ρR asymmetries in NIF implosions[J]. Physics of Plasmas, 2015, 22: 056301. doi: 10.1063/1.4918355
|
[22] |
吴宇际. 激光聚变中广角冲击波速度诊断方法及相关VISAR技术研究[D]. 合肥: 中国科学技术大学, 2019: 71-81
Wu Yuji. Wide-angle shock wave velocity diagnostic method and related VISAR technology in laser fusion[D]. Hefei: University of Science and Technology of China, 2019: 71-81
|
[23] |
Erskine D J. Forward modeling of Doppler velocity interferometer system for improved shockwave measurements[J]. Review of Scientific Instruments, 2020, 91: 043103. doi: 10.1063/1.5143246
|
[24] |
Nakai M, Yamanaka M, Azechi H, et al. X-ray and particle diagnostics of a high-density plasma by laser implosion (invited)[J]. Review of Scientific Instruments, 1990, 61(10): 3235-3240. doi: 10.1063/1.1141654
|
[25] |
Séguin F H, Li C K, DeCiantis J L, et al. Effects of fuel-capsule shimming and drive asymmetry on inertial-confinement-fusion symmetry and yield[J]. Physics of Plasmas, 2016, 23: 032705. doi: 10.1063/1.4943883
|
[26] |
Bose A, Betti R, Mangino D, et al. Analysis of trends in experimental observables: reconstruction of the implosion dynamics and implications for fusion yield extrapolation for direct-drive cryogenic targets on OMEGA[J]. Physics of Plasmas, 2018, 25: 062701. doi: 10.1063/1.5026780
|
[27] |
Glenzer S H, MacGowan B J, Meezan N B, et al. Demonstration of ignition radiation temperatures in indirect-drive inertial confinement fusion hohlraums[J]. Physical Review Letters, 2011, 106: 085004. doi: 10.1103/PhysRevLett.106.085004
|