Volume 34 Issue 12
Nov.  2022
Turn off MathJax
Article Contents
Wu Yuji, Zhang Qing, Wang Feng, et al. Analyzing implosion symmetry based on fringe shifts of wide-angle velocity interferometer system for any reflector[J]. High Power Laser and Particle Beams, 2022, 34: 122002. doi: 10.11884/HPLPB202234.220238
Citation: Wu Yuji, Zhang Qing, Wang Feng, et al. Analyzing implosion symmetry based on fringe shifts of wide-angle velocity interferometer system for any reflector[J]. High Power Laser and Particle Beams, 2022, 34: 122002. doi: 10.11884/HPLPB202234.220238

Analyzing implosion symmetry based on fringe shifts of wide-angle velocity interferometer system for any reflector

doi: 10.11884/HPLPB202234.220238
  • Received Date: 2022-08-03
  • Rev Recd Date: 2022-08-23
  • Available Online: 2022-11-02
  • Publish Date: 2022-11-02
  • A recording design of wide-angle velocity interferometer system for any reflector (VISAR) fringe that loading shaped optical fiber panel or ring-to-line fiber bundle in front of the streak camera is presented, and the coordinates of recording position are located at a certain circle on pellet. To realize implosion symmetry analysis, the phase of wide-angle VISAR fringes is obtained by using coordinate transformation, Fourier transformation and Legendre expansion, and its feasibility is verified by examples. The diagnostic characteristics, optical design, equipment development and data processing of the method are discussed, and the development direction of implosion symmetry diagnosis based on wide-angle VISAR is introduced. Using this method to record and analyze the wide-angle VISAR fringe data can make implosion symmetry diagnosis accurate, intuitive and vivid, and can provide support for studying laser plasma instability and fluid instability in inertial confinement fusion research.
  • loading
  • [1]
    Hurricane O A, Callahan D A, Casey D T, et al. Fuel gain exceeding unity in an inertially confined fusion implosion[J]. Nature, 2014, 506(7488): 343-348. doi: 10.1038/nature13008
    [2]
    Jacquemot S. Inertial confinement fusion for energy: overview of the ongoing experimental, theoretical and numerical studies[J]. Nuclear Fusion, 2017, 57: 102024. doi: 10.1088/1741-4326/aa6d2d
    [3]
    Betti R, Hurricane O A. Inertial-confinement fusion with lasers[J]. Nature Physics, 2016, 12: 435-448.
    [4]
    Atzeni S, Ribeyre X, Schurtz G, et al. Shock ignition of thermonuclear fuel: principles and modelling[J]. Nuclear Fusion, 2014, 54: 054008. doi: 10.1088/0029-5515/54/5/054008
    [5]
    Kyrala G A, Dixit S, Glenzer S, et al. Measuring symmetry of implosions in cryogenic Hohlraums at the NIF using gated X-ray detectors (invited)[J]. Review of Scientific Instruments, 2010, 81: 10E316. doi: 10.1063/1.3481028
    [6]
    Craxton R S, Anderson K S, Boehly T R, et al. Direct-drive inertial confinement fusion: a review[J]. Physics of Plasmas, 2015, 22: 110501. doi: 10.1063/1.4934714
    [7]
    Nuckolls J, Wood L, Thiessen A, et al. Laser compression of matter to super-high densities: thermonuclear (CTR) applications[J]. Nature, 1972, 239(5368): 139-142. doi: 10.1038/239139a0
    [8]
    Lindl J. Development of the indirect-drive approach to inertial confinement fusion and the target physics basis for ignition and gain[J]. Physics of Plasmas, 1995, 2(11): 3933-4024. doi: 10.1063/1.871025
    [9]
    Landen O L, Edwards J, Haan S W, et al. Capsule implosion optimization during the indirect-drive National Ignition Campaign[J]. Physics of Plasmas, 2011, 18: 051002. doi: 10.1063/1.3592170
    [10]
    Meezan N B, Atherton L J, Callahan D A, et al. National Ignition Campaign hohlraum energetics[J]. Physics of Plasmas, 2010, 17: 056304. doi: 10.1063/1.3354110
    [11]
    Wu Yuji, Wang Feng, Wang Qiuping, et al. A high temporal resolution numerical algorithm for shock wave velocity diagnosis[J]. Scientific Reports, 2019, 9: 8597. doi: 10.1038/s41598-019-45112-3
    [12]
    Moody J D, Robey H F, Celliers P M, et al. Early time implosion symmetry from two-axis shock-timing measurements on indirect drive NIF experiments[J]. Physics of Plasmas, 2014, 21: 092702. doi: 10.1063/1.4893136
    [13]
    Smith R F, Eggert J H, Saculla M D, et al. Ultrafast dynamic compression technique to study the kinetics of phase transformations in Bismuth[J]. Physical Review Letters, 2008, 101: 065701. doi: 10.1103/PhysRevLett.101.065701
    [14]
    Barker L M, Hollenbach R E. Laser interferometer for measuring high velocities of any reflecting surface[J]. Journal of Applied Physics, 1972, 43(11): 4669-4675. doi: 10.1063/1.1660986
    [15]
    Celliers P M, Collins G W, Da Silva L B, et al. Accurate measurement of laser-driven shock trajectories with velocity interferometry[J]. Applied Physics Letters, 1998, 73(10): 1320-1322. doi: 10.1063/1.121882
    [16]
    Celliers P M, Bradley D K, Collins G W, et al. Line-imaging velocimeter for shock diagnostics at the OMEGA laser facility[J]. Review of Scientific Instruments, 2004, 75(11): 4916-4929. doi: 10.1063/1.1807008
    [17]
    Town R P J, Bradley D K, Kritcher A, et al. Dynamic symmetry of indirectly driven inertial confinement fusion capsules on the National Ignition Facility[J]. Physics of Plasmas, 2014, 21: 056313. doi: 10.1063/1.4876609
    [18]
    刘寿先, 彭其先, 雷江波, 等. 激光驱动飞片的线面成像VISAR测速技术[J]. 强激光与粒子束, 2014, 26:081008 doi: 10.11884/HPLPB201426.081008

    Liu Shouxian, Peng Qixian, Lei Jiangbo, et al. Line-imaging and framing plane-imaging velocity interferometer for laser driven flyer diagnostics[J]. High Power Laser and Particle Beams, 2014, 26: 081008 doi: 10.11884/HPLPB201426.081008
    [19]
    Wu Yuji, Wang Feng, Li Yulong, et al. Research on a wide-angle diagnostic method for shock wave velocity at SG-Ⅲ prototype facility[J]. Nuclear Fusion, 2018, 58: 076003. doi: 10.1088/1741-4326/aabeed
    [20]
    吴宇际, 王秋平, 王峰, 等. 广角任意反射面速度干涉仪的光学性质研究[J]. 强激光与粒子束, 2019, 31:032001 doi: 10.11884/HPLPB201931.190045

    Wu Yuji, Wang Qiuping, Wang Feng, et al. Optical properties of wide-angle velocity interferometer system for any reflector[J]. High Power Laser and Particle Beams, 2019, 31: 032001 doi: 10.11884/HPLPB201931.190045
    [21]
    Zylstra A B, Frenje J A, Séguin F H, et al. In-flight observations of low-mode ρR asymmetries in NIF implosions[J]. Physics of Plasmas, 2015, 22: 056301. doi: 10.1063/1.4918355
    [22]
    吴宇际. 激光聚变中广角冲击波速度诊断方法及相关VISAR技术研究[D]. 合肥: 中国科学技术大学, 2019: 71-81

    Wu Yuji. Wide-angle shock wave velocity diagnostic method and related VISAR technology in laser fusion[D]. Hefei: University of Science and Technology of China, 2019: 71-81
    [23]
    Erskine D J. Forward modeling of Doppler velocity interferometer system for improved shockwave measurements[J]. Review of Scientific Instruments, 2020, 91: 043103. doi: 10.1063/1.5143246
    [24]
    Nakai M, Yamanaka M, Azechi H, et al. X-ray and particle diagnostics of a high-density plasma by laser implosion (invited)[J]. Review of Scientific Instruments, 1990, 61(10): 3235-3240. doi: 10.1063/1.1141654
    [25]
    Séguin F H, Li C K, DeCiantis J L, et al. Effects of fuel-capsule shimming and drive asymmetry on inertial-confinement-fusion symmetry and yield[J]. Physics of Plasmas, 2016, 23: 032705. doi: 10.1063/1.4943883
    [26]
    Bose A, Betti R, Mangino D, et al. Analysis of trends in experimental observables: reconstruction of the implosion dynamics and implications for fusion yield extrapolation for direct-drive cryogenic targets on OMEGA[J]. Physics of Plasmas, 2018, 25: 062701. doi: 10.1063/1.5026780
    [27]
    Glenzer S H, MacGowan B J, Meezan N B, et al. Demonstration of ignition radiation temperatures in indirect-drive inertial confinement fusion hohlraums[J]. Physical Review Letters, 2011, 106: 085004. doi: 10.1103/PhysRevLett.106.085004
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)

    Article views (656) PDF downloads(92) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return