Citation: | Wu Yuji, Zhang Qing, Wang Feng, et al. Analyzing implosion symmetry based on fringe shifts of wide-angle velocity interferometer system for any reflector[J]. High Power Laser and Particle Beams, 2022, 34: 122002. doi: 10.11884/HPLPB202234.220238 |
[1] |
Hurricane O A, Callahan D A, Casey D T, et al. Fuel gain exceeding unity in an inertially confined fusion implosion[J]. Nature, 2014, 506(7488): 343-348. doi: 10.1038/nature13008
|
[2] |
Jacquemot S. Inertial confinement fusion for energy: overview of the ongoing experimental, theoretical and numerical studies[J]. Nuclear Fusion, 2017, 57: 102024. doi: 10.1088/1741-4326/aa6d2d
|
[3] |
Betti R, Hurricane O A. Inertial-confinement fusion with lasers[J]. Nature Physics, 2016, 12: 435-448.
|
[4] |
Atzeni S, Ribeyre X, Schurtz G, et al. Shock ignition of thermonuclear fuel: principles and modelling[J]. Nuclear Fusion, 2014, 54: 054008. doi: 10.1088/0029-5515/54/5/054008
|
[5] |
Kyrala G A, Dixit S, Glenzer S, et al. Measuring symmetry of implosions in cryogenic Hohlraums at the NIF using gated X-ray detectors (invited)[J]. Review of Scientific Instruments, 2010, 81: 10E316. doi: 10.1063/1.3481028
|
[6] |
Craxton R S, Anderson K S, Boehly T R, et al. Direct-drive inertial confinement fusion: a review[J]. Physics of Plasmas, 2015, 22: 110501. doi: 10.1063/1.4934714
|
[7] |
Nuckolls J, Wood L, Thiessen A, et al. Laser compression of matter to super-high densities: thermonuclear (CTR) applications[J]. Nature, 1972, 239(5368): 139-142. doi: 10.1038/239139a0
|
[8] |
Lindl J. Development of the indirect-drive approach to inertial confinement fusion and the target physics basis for ignition and gain[J]. Physics of Plasmas, 1995, 2(11): 3933-4024. doi: 10.1063/1.871025
|
[9] |
Landen O L, Edwards J, Haan S W, et al. Capsule implosion optimization during the indirect-drive National Ignition Campaign[J]. Physics of Plasmas, 2011, 18: 051002. doi: 10.1063/1.3592170
|
[10] |
Meezan N B, Atherton L J, Callahan D A, et al. National Ignition Campaign hohlraum energetics[J]. Physics of Plasmas, 2010, 17: 056304. doi: 10.1063/1.3354110
|
[11] |
Wu Yuji, Wang Feng, Wang Qiuping, et al. A high temporal resolution numerical algorithm for shock wave velocity diagnosis[J]. Scientific Reports, 2019, 9: 8597. doi: 10.1038/s41598-019-45112-3
|
[12] |
Moody J D, Robey H F, Celliers P M, et al. Early time implosion symmetry from two-axis shock-timing measurements on indirect drive NIF experiments[J]. Physics of Plasmas, 2014, 21: 092702. doi: 10.1063/1.4893136
|
[13] |
Smith R F, Eggert J H, Saculla M D, et al. Ultrafast dynamic compression technique to study the kinetics of phase transformations in Bismuth[J]. Physical Review Letters, 2008, 101: 065701. doi: 10.1103/PhysRevLett.101.065701
|
[14] |
Barker L M, Hollenbach R E. Laser interferometer for measuring high velocities of any reflecting surface[J]. Journal of Applied Physics, 1972, 43(11): 4669-4675. doi: 10.1063/1.1660986
|
[15] |
Celliers P M, Collins G W, Da Silva L B, et al. Accurate measurement of laser-driven shock trajectories with velocity interferometry[J]. Applied Physics Letters, 1998, 73(10): 1320-1322. doi: 10.1063/1.121882
|
[16] |
Celliers P M, Bradley D K, Collins G W, et al. Line-imaging velocimeter for shock diagnostics at the OMEGA laser facility[J]. Review of Scientific Instruments, 2004, 75(11): 4916-4929. doi: 10.1063/1.1807008
|
[17] |
Town R P J, Bradley D K, Kritcher A, et al. Dynamic symmetry of indirectly driven inertial confinement fusion capsules on the National Ignition Facility[J]. Physics of Plasmas, 2014, 21: 056313. doi: 10.1063/1.4876609
|
[18] |
刘寿先, 彭其先, 雷江波, 等. 激光驱动飞片的线面成像VISAR测速技术[J]. 强激光与粒子束, 2014, 26:081008 doi: 10.11884/HPLPB201426.081008
Liu Shouxian, Peng Qixian, Lei Jiangbo, et al. Line-imaging and framing plane-imaging velocity interferometer for laser driven flyer diagnostics[J]. High Power Laser and Particle Beams, 2014, 26: 081008 doi: 10.11884/HPLPB201426.081008
|
[19] |
Wu Yuji, Wang Feng, Li Yulong, et al. Research on a wide-angle diagnostic method for shock wave velocity at SG-Ⅲ prototype facility[J]. Nuclear Fusion, 2018, 58: 076003. doi: 10.1088/1741-4326/aabeed
|
[20] |
吴宇际, 王秋平, 王峰, 等. 广角任意反射面速度干涉仪的光学性质研究[J]. 强激光与粒子束, 2019, 31:032001 doi: 10.11884/HPLPB201931.190045
Wu Yuji, Wang Qiuping, Wang Feng, et al. Optical properties of wide-angle velocity interferometer system for any reflector[J]. High Power Laser and Particle Beams, 2019, 31: 032001 doi: 10.11884/HPLPB201931.190045
|
[21] |
Zylstra A B, Frenje J A, Séguin F H, et al. In-flight observations of low-mode ρR asymmetries in NIF implosions[J]. Physics of Plasmas, 2015, 22: 056301. doi: 10.1063/1.4918355
|
[22] |
吴宇际. 激光聚变中广角冲击波速度诊断方法及相关VISAR技术研究[D]. 合肥: 中国科学技术大学, 2019: 71-81
Wu Yuji. Wide-angle shock wave velocity diagnostic method and related VISAR technology in laser fusion[D]. Hefei: University of Science and Technology of China, 2019: 71-81
|
[23] |
Erskine D J. Forward modeling of Doppler velocity interferometer system for improved shockwave measurements[J]. Review of Scientific Instruments, 2020, 91: 043103. doi: 10.1063/1.5143246
|
[24] |
Nakai M, Yamanaka M, Azechi H, et al. X-ray and particle diagnostics of a high-density plasma by laser implosion (invited)[J]. Review of Scientific Instruments, 1990, 61(10): 3235-3240. doi: 10.1063/1.1141654
|
[25] |
Séguin F H, Li C K, DeCiantis J L, et al. Effects of fuel-capsule shimming and drive asymmetry on inertial-confinement-fusion symmetry and yield[J]. Physics of Plasmas, 2016, 23: 032705. doi: 10.1063/1.4943883
|
[26] |
Bose A, Betti R, Mangino D, et al. Analysis of trends in experimental observables: reconstruction of the implosion dynamics and implications for fusion yield extrapolation for direct-drive cryogenic targets on OMEGA[J]. Physics of Plasmas, 2018, 25: 062701. doi: 10.1063/1.5026780
|
[27] |
Glenzer S H, MacGowan B J, Meezan N B, et al. Demonstration of ignition radiation temperatures in indirect-drive inertial confinement fusion hohlraums[J]. Physical Review Letters, 2011, 106: 085004. doi: 10.1103/PhysRevLett.106.085004
|
[1] | Zhang Jintao, Wang Yingqiao, Xia Yuyang, Li Qing, Li Chunlin, Fan Zhenyuan, Cai Yiming. Design of 5 MW neutral beam high voltage power supply system for HL-3 device[J]. High Power Laser and Particle Beams, 2025, 37(3): 035013. doi: 10.11884/HPLPB202537.240431 |
[2] | Zhang Hongqi, Li Zhiheng, Ma Shaoxiang, Zhang Ming. Design of high-voltage components for acceleration grid power supply of neutral beam injection system[J]. High Power Laser and Particle Beams, 2024, 36(2): 025011. doi: 10.11884/HPLPB202436.230159 |
[3] | Cui Qinglong, Wei Jianglong, Xie Yahong, Liang Lizhen, Xie Yuanlai, Hu Chundong. Beamlet optics analysis of 400 keV accelerator for CRAFT negative ion based neutral beam injection system[J]. High Power Laser and Particle Beams, 2023, 35(11): 114001. doi: 10.11884/HPLPB202335.230179 |
[4] | Shu Xianlai, Liu Zhimin, Xie Yahong, Wang Na, Liu Wei, Wei Jianglong, Cui Qinglong, Pan Junjun, Chen Shiyong, Hu Chundong. Research on beam feedback control of negative ion source based on RF power regulation[J]. High Power Laser and Particle Beams, 2022, 34(11): 116002. doi: 10.11884/HPLPB202234.220098 |
[5] | Zhang Jintao, Yang Puqiong, Wei Huiling, Yu Peixuan, Luo Huaiyu, Geng Shaofei, Zhou Bowen, Wan Yinxiang, Cao Jianyong. Research on optimization of MW level neutral beam injection arc power supply system[J]. High Power Laser and Particle Beams, 2021, 33(8): 085002. doi: 10.11884/HPLPB202133.210026 |
[6] | Zhao Lu, Pan Shengmin, Huang Yiyun, Yang Zhigang. Integrated protection system of EAST-NBI high voltage power supply[J]. High Power Laser and Particle Beams, 2017, 29(06): 065010. doi: 10.11884/HPLPB201729.160452 |
[7] | Han Feng, Liu Yu, Wang Bin. Method for evaluating radiation harden performance of electronic system based on system status[J]. High Power Laser and Particle Beams, 2016, 28(08): 084001. doi: 10.11884/HPLPB201628.150695 |
[8] | Zhang Jie, Zhang Ying, Chen Xiulian, Pang Beibei, Bai Lixin. Geometric factor calculation program based on Monte Carlo method[J]. High Power Laser and Particle Beams, 2015, 27(01): 014002. doi: 10.11884/HPLPB201527.014002 |
[9] | Sheng Peng, Hu Chundong, Song Shihua, Liu Sheng, NBI Team. Design of control system of neutral beam injection on EAST[J]. High Power Laser and Particle Beams, 2014, 26(10): 104003. doi: 10.11884/HPLPB201426.104003 |
[10] | Tao Ling, Hu Chundong, Xie Yuanlai, Xu Yongjian. Engineering design of ion dump for EAST neutral beam injection system[J]. High Power Laser and Particle Beams, 2013, 25(10): 2687-2692. doi: 10.3788/HPLPB20132510.2687 |
[11] | Zuo Yinghong, Wang Jianguo, . Application of Monte Carlo method to solving boundary value problem of differential equations[J]. High Power Laser and Particle Beams, 2012, 24(12): 3023-3027. doi: 10.3788/HPLPB20122412.3023 |
[12] | Su Jian, Zeng Zhi, Liu Yue, Yue Qian, Ma Hao, Cheng Jianping. Monte Carlo simulation of muon radiation environment in China Jinping Underground Laboratory[J]. High Power Laser and Particle Beams, 2012, 24(12): 3015-3018. doi: 10.3788/HPLPB20122412.3015 |
[13] | Zhang Xuan, Huang Jiaofeng, Liu Jun, Guan Yonghong, Liu Jin. Application of Monte Carlo method to boundary location of flash radiographs[J]. High Power Laser and Particle Beams, 2012, 24(12): 2983-2986. doi: 10.3788/HPLPB20122412.2983 |
[14] | Chen Feida, Tang Xiaobin, Wang Peng, Chen Da. Neutron shielding material design based on Monte Carlo simulation[J]. High Power Laser and Particle Beams, 2012, 24(12): 3006-3010. doi: 10.3788/HPLPB20122412.3006 |
[15] | Xie Qin, Geng Changran, Chen Feida, Tang Xiaobin, Yao Ze'en. Calculation of cellular S values for α particle based on Monte Carlo simulation[J]. High Power Laser and Particle Beams, 2012, 24(12): 2970-2974. doi: 10.3788/HPLPB20122412.2970 |
[16] | Yi Hengguan, Zeng Zhi, Wang Xuewu, Cheng Jianping, Li Junli. Simulation of parallel muons transmission imaging using Monte Carlo method[J]. High Power Laser and Particle Beams, 2012, 24(12): 2987-2990. doi: 10.3788/HPLPB20122412.2987 |
[17] | zhang huabin, zhao xiang, zhou haijing, huang kama. Probabilistic and statistical analysis of mode stirred reverberation chamber and its Monte Carlo simulation[J]. High Power Laser and Particle Beams, 2011, 23(09): 0- . |
[18] | fan ruyu, han feng, guo hongxia. Assessment method of gamma-dose radiation hardness of power supply system[J]. High Power Laser and Particle Beams, 2011, 23(02): 0- . |
[19] | wang haitian, li ge, cao liang. Snubber for EAST neutral beam injector[J]. High Power Laser and Particle Beams, 2010, 22(06): 0- . |
[20] | chen nan, li cheng-gang, dai wen-hua, li hong, zhou zhi. Application of Monte Carlo method to spot size measurement of X-ray sources[J]. High Power Laser and Particle Beams, 2008, 20(06): 0- . |
1. | 周纭加,赵民,付继伟,龙中权. 基于粒子群算法的火箭抗雷电加固设计. 兵器装备工程学报. 2023(03): 281-287 . ![]() | |
2. | 石广军,夏睿. 直升机复杂机体结构屏蔽性能测试方法研究. 安全与电磁兼容. 2021(03): 31-33+40 . ![]() | |
3. | 李兴福,郭琦. 基于隶属度函数的飞机结构防护有效性分析. 现代制造技术与装备. 2020(11): 117-120 . ![]() | |
4. | 刘强,徐勇,孟雪松,郑宇腾,闫丽萍,周海京. 基于CP-FDTD的复杂细缝屏蔽效能分析方法. 强激光与粒子束. 2019(10): 55-60 . ![]() | |
5. | 龙中权,赵民,付继伟,陈曦,齐欢. 固体运载火箭抗强电磁脉冲优化设计方法. 宇航学报. 2018(10): 1141-1147 . ![]() |