Wang Kaijia, Shen Xianfeng, Wang Guowei, et al. Investigation on shape precision of surface exposure selective laser melting[J]. High Power Laser and Particle Beams, 2021, 33: 059001. doi: 10.11884/HPLPB202133.210039
Citation: Huang Xinyuan, Jiang Kun, Guo Qinggong. Design of highly isolated common aperture microstrip antenna for L/S/C/X band[J]. High Power Laser and Particle Beams, 2022, 34: 123004. doi: 10.11884/HPLPB202234.220241

Design of highly isolated common aperture microstrip antenna for L/S/C/X band

doi: 10.11884/HPLPB202234.220241
  • Received Date: 2022-08-08
  • Rev Recd Date: 2022-10-09
  • Available Online: 2022-11-02
  • Publish Date: 2022-11-02
  • For the first time, a highly isolated common aperture low-profile microstrip antenna is designed and realized to work in four frequency bands—L/S/C/X, simultaneously. The overall structure is made by stacking microstrip antennas of four bands from bottom to top according to the order of frequency from low to high, using coaxial probes through the low-frequency radiation patch to form an over-hole to feed the high-frequency antenna and using the lower-frequency antenna as the ground of the higher-frequency one in turn to improve the antenna index and performance. Among them, each radiation patch of L/S/C band adopts the way of adding branches around a rectangular radiation patch, which is conducive to impedance adjustment. The X band radiation patch is placed at the top layer, and by slotting the rectangular patch, the radiation blocking to other bands is avoided. By adopting the method of neutralizing line decoupling and orthogonally feeding, the gain in the four bands is finally realized as 6.85 dBi, 7.48 dBi, 6.13 dBi, and 6.62 dBi respectively. The isolation between each port is greater than 30 dB. The antenna size is 85 mm×85 mm×9.07 mm. By means of the physical processing , the test results and simulation ones match well, which verifies the validity and reliability of the design.
  • [1]
    Kothapudi V K, Kumar V. A single layer S/X-band series-fed shared aperture antenna for SAR applications[J]. Progress in Electromagnetics Research C, 2017, 76: 207-219. doi: 10.2528/PIERC17070104
    [2]
    Kati P, Kothapudi V K. 5-element series-feed shared aperture antenna array for X/Ku-band SAR applications[C]//2021 Photonics & Electromagnetics Research Symposium (PIERS). IEEE, 2021: 1689-1694.
    [3]
    Ji Shuosheng, Dong Yuandan, Wen Sichao, et al. C/X dual-band circularly polarized shared-aperture antenna[J]. IEEE Antennas and Wireless Propagation Letters, 2021, 20(12): 2334-2338. doi: 10.1109/LAWP.2021.3110529
    [4]
    Mao Chunxu, Gao S, Wang Yi, et al. Dual-band circularly polarized shared-aperture array for C-/X-band satellite communications[J]. IEEE Transactions on Antennas and Propagation, 2017, 65(10): 5171-5178. doi: 10.1109/TAP.2017.2740981
    [5]
    Vaziri A, Kaboli M, Mirtaheri S A. Dual-polarized aperture-coupled wideband microstrip patch antenna with high isolation for C-band[C]//2013 21st Iranian Conference on Electrical Engineering (ICEE). IEEE, 2013: 1-4.
    [6]
    Zheng Y Y, Liu C C, Ding Yanran. A shared-aperture broadband circularly polarized antenna for satellite communications and navigation[C]//2019 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting. IEEE, 2019: 1755-1756.
    [7]
    Wang Zongxin, Huang Zeqin. A microwave/millimeter wave dual-band shared aperture patch antenna array[J]. IEEE Access, 2020, 8: 218585-218591. doi: 10.1109/ACCESS.2020.3040250
    [8]
    Piao Dazhi, Wang Meng, Zhang Linkun, et al. A two-port compact and high-isolated microstrip MIMO antenna[C]//2020 IEEE Asia-Pacific Microwave Conference (APMC). IEEE, 2020: 398-399.
    [9]
    Mei Peng, Zhang Shuai, Pedersen G F. A dual-polarized and high-gain X-/Ka-band shared-aperture antenna with high aperture reuse efficiency[J]. IEEE Transactions on Antennas and Propagation, 2021, 69(3): 1334-1344. doi: 10.1109/TAP.2020.3026429
    [10]
    Chen Yikai, Zhao Jiacheng, Yang Shiwen. A novel stacked antenna configuration and its applications in dual-band shared-aperture base station antenna array designs[J]. IEEE Transactions on Antennas and Propagation, 2019, 67(12): 7234-7241. doi: 10.1109/TAP.2019.2930136
    [11]
    Bai Chunxu, Cheng Yujian, Ding Yanran, et al. A metamaterial-based S/X-band shared-aperture phased-array antenna with wide beam scanning coverage[J]. IEEE Transactions on Antennas and Propagation, 2020, 68(6): 4283-4292. doi: 10.1109/TAP.2020.2970096
    [12]
    Wang Chuang, Cao Wenquan, Hong Rentang, et al. Dual-band and dual-circularly polarized shared-aperture antenna based on UAV communication[C]//2021 IEEE 9th International Conference on Information, Communication and Networks (ICICN). IEEE, 2021: 406-410.
    [13]
    Jang D, Wang S, Kim Y, et al. Design of a dual-band shared-aperture radar array using printed dual-loop antennas[C]//2020 International Symposium on Antennas and Propagation (ISAP). IEEE, 2021: 75-76.
    [14]
    Li Ke, Dong Tao, Xia Zhenghuan. A broadband shared-aperture L/S/X-band dual-polarized antenna for SAR applications[J]. IEEE Access, 2019, 7: 51417-51425. doi: 10.1109/ACCESS.2019.2911965
    [15]
    钟顺时. 天线理论与技术[M]. 2版. 北京: 电子工业出版社, 2015: 264-319

    Zhong Shunshi. Antenna theory and techniques[M]. 2nd ed. Beijing: Publishing House of Electronics Industry, 2015: 264-319
  • Relative Articles

    [1]Peng Yuanyuan, Chen Wenguang, Lu Yang, Liu Zhijian, Ou Linxiang, Zuo Qian. Development of constant peak bipolar pulse generator based on Boost closed-loop control[J]. High Power Laser and Particle Beams, 2022, 34(11): 115003. doi: 10.11884/HPLPB202234.220179
    [2]He Lin’an, Zhou Kun, Zhang Liang, Li Yi, Du Weichuan, Hu Yao, Gao Songxin, Tang Chun. Fabrication of high-power semiconductor laser with wavelength-locked at 780 nm[J]. High Power Laser and Particle Beams, 2021, 33(9): 091001. doi: 10.11884/HPLPB202133.210099
    [3]Ma Xiaoyu, Zhang Naling, Zhong Li, Liu Suping, Jing Hongqi. Research progress of high power semiconductor laser pump source[J]. High Power Laser and Particle Beams, 2020, 32(12): 121010. doi: 10.11884/HPLPB202032.200236
    [4]Liu Ximing, Wei Xu, Dou Ligang. Research and design of semiconductor laser temperature stabilization system in laser system[J]. High Power Laser and Particle Beams, 2019, 31(2): 021002. doi: 10.11884/HPLPB201931.180335
    [5]Hu Liemao, Li Zhiyong, Liu Songyang, Ning Fangjin, Tan Rongqing. Second harmonic generation of ultraviolet laser based on high power laser diode array[J]. High Power Laser and Particle Beams, 2019, 31(2): 020101. doi: 10.11884/HPLPB201931.190025
    [6]Shi Haozheng, Qiu Jian, Liu Kefu. Design of pulsed current generator based on solid-state Marx adder[J]. High Power Laser and Particle Beams, 2016, 28(02): 025009. doi: 10.11884/HPLPB201628.025009
    [7]Yu Junhong, Guo Linhui, Tan Hao, Meng Huicheng, Gao Songxin, Wu Deyong. Feedback efficiency for diode laser wavelength stabilization system[J]. High Power Laser and Particle Beams, 2015, 27(04): 041014. doi: 10.11884/HPLPB201527.041014
    [8]Yu Junhong, Guo Linhui, Wang Zhao, Tan Hao, Gao Songxin, Wu Deyong, Zhang Kai. High brightness fiber coupled diode laser module with 200 W class output power[J]. High Power Laser and Particle Beams, 2014, 26(11): 111001. doi: 10.11884/HPLPB201426.111001
    [9]Yu Junhong, Guo Linhui, Gao Songxin, Tan Hao, Yin Xinqi. Research on high-power single emitter fiber-coupled diode laser[J]. High Power Laser and Particle Beams, 2014, 26(05): 051005. doi: 10.11884/HPLPB201426.051005
    [10]Wang Wen, Chu Jinlei, Gao Xin, Zhang Jing, Qiao Zhongliang, Bo Baoxue. Thermal characteristics of semiconductor laser based on muti-chip packaging[J]. High Power Laser and Particle Beams, 2014, 26(01): 011015. doi: 10.3788/HPLPB201426.011015
    [11]Li Hui, Qu Yi, Zhang Jianjia, Xin Desheng, Liu Guojun. High power 905 nm InGaAs tunnel junction series stacked semiconductor lasers[J]. High Power Laser and Particle Beams, 2013, 25(10): 2517-2520. doi: 10.3788/HPLPB20132510.2517
    [12]Yin Zhiyong, Wang Yuefeng, Yin Shaoyun, Du Chunlei, Jia Wenwu, Wang Junzhen, Bai Huijun. Impact of microlens changes on the homogenization effect of semiconductor laser beam[J]. High Power Laser and Particle Beams, 2013, 25(10): 2556-2560. doi: 10.3788/HPLPB20132510.2556
    [13]Li Zhiyong, Tan Rongqing, Xu Cheng, Li Lin. Laser doide array with narrow linewidth for rubidium vapor laser pumping[J]. High Power Laser and Particle Beams, 2013, 25(04): 875-878.
    [14]liu gang, tang xiaojun, wang chao, liu lei, liang xingbo, xu liujing, du tao, chen sanbin, liu yang. Design of micro-channel heat sink for high power laser diode[J]. High Power Laser and Particle Beams, 2011, 23(08): 0- .
    [15]wang zhiqun, yao shun, cui bifeng, wang zhiyong, shen guangdi. Steady state thermal analysis of multi-active zone tunnel regeneration semiconductor laser[J]. High Power Laser and Particle Beams, 2011, 23(03): 0- .
    [16]li zaijin, hu liming, wang ye, zhang xing, wang xiangpeng, qin li, liu yun, wang lijun. High power high duty-cycle 808 nm wavelength laser diode[J]. High Power Laser and Particle Beams, 2009, 21(11): 0- .
    [17]qiu ying-wei, sun hong, tang jing-yu, li xiao. Voltage control loop for rapid cycling synchrotron digital low-level RF control[J]. High Power Laser and Particle Beams, 2008, 20(11): 0- .
    [18]wang hai-yang, he xiao-ping, xu yan. A rep-frequency pulsed-current source based on reversely switching dynistor[J]. High Power Laser and Particle Beams, 2007, 19(06): 0- .
    [19]xiao rui, hou jing, jiang zong-fu, lu qi-sheng. Coherent combining and closed loop controlling of two fiber lasers[J]. High Power Laser and Particle Beams, 2007, 19(01): 0- .
    [20]feng zhen-zhong, chen jian-guo, yan di-yong, zhang jing. Theory analysis of cross-injection locking of two diode lasers[J]. High Power Laser and Particle Beams, 2006, 18(04): 0- .
  • Cited by

    Periodical cited type(3)

    1. 高国威,沈显峰,王国伟,孙明艳,王开甲,朱涛. 区域激光曝光粉末床熔融成形温度场-流场仿真研究. 激光与光电子学进展. 2024(17): 242-253 .
    2. 杜世浩,韩志杰,高雪强,眭君娜,刘钊,张永弟. SLM成形多层多道金属薄壁件温度场有限元模拟. 河北科技大学学报. 2023(04): 335-345 .
    3. 袁美霞,寇莛彧,刘琪,华明. 脉冲激光SLM工艺参数对钛合金成形质量的影响. 表面技术. 2023(11): 430-438 .

    Other cited types(2)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-0405101520
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 23.0 %FULLTEXT: 23.0 %META: 74.4 %META: 74.4 %PDF: 2.6 %PDF: 2.6 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 3.3 %其他: 3.3 %其他: 0.1 %其他: 0.1 %China: 0.5 %China: 0.5 %India: 0.2 %India: 0.2 %Japan: 0.1 %Japan: 0.1 %Ukraine: 0.5 %Ukraine: 0.5 %United States: 0.7 %United States: 0.7 %[]: 0.3 %[]: 0.3 %上海: 1.0 %上海: 1.0 %中卫: 0.1 %中卫: 0.1 %中山: 0.1 %中山: 0.1 %北京: 20.6 %北京: 20.6 %南京: 0.6 %南京: 0.6 %台州: 0.5 %台州: 0.5 %台湾: 0.1 %台湾: 0.1 %哈尔科夫: 0.1 %哈尔科夫: 0.1 %天津: 0.1 %天津: 0.1 %太原: 0.3 %太原: 0.3 %广州: 0.6 %广州: 0.6 %张家口: 0.6 %张家口: 0.6 %成都: 0.1 %成都: 0.1 %新乡: 0.1 %新乡: 0.1 %昆明: 0.2 %昆明: 0.2 %普洱: 0.1 %普洱: 0.1 %杭州: 1.1 %杭州: 1.1 %桃园: 0.1 %桃园: 0.1 %武汉: 0.1 %武汉: 0.1 %淄博: 0.1 %淄博: 0.1 %深圳: 0.1 %深圳: 0.1 %温州: 0.3 %温州: 0.3 %湖州: 0.1 %湖州: 0.1 %漯河: 0.1 %漯河: 0.1 %秦皇岛: 0.1 %秦皇岛: 0.1 %绵阳: 0.2 %绵阳: 0.2 %芒廷维尤: 13.2 %芒廷维尤: 13.2 %衢州: 0.3 %衢州: 0.3 %西宁: 51.7 %西宁: 51.7 %西安: 0.1 %西安: 0.1 %诺沃克: 0.1 %诺沃克: 0.1 %运城: 0.1 %运城: 0.1 %郑州: 0.8 %郑州: 0.8 %阳泉: 0.1 %阳泉: 0.1 %其他其他ChinaIndiaJapanUkraineUnited States[]上海中卫中山北京南京台州台湾哈尔科夫天津太原广州张家口成都新乡昆明普洱杭州桃园武汉淄博深圳温州湖州漯河秦皇岛绵阳芒廷维尤衢州西宁西安诺沃克运城郑州阳泉

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(3)

    Article views (834) PDF downloads(110) Cited by(5)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return