Citation: | Huang Xinyuan, Jiang Kun, Guo Qinggong. Design of highly isolated common aperture microstrip antenna for L/S/C/X band[J]. High Power Laser and Particle Beams, 2022, 34: 123004. doi: 10.11884/HPLPB202234.220241 |
[1] |
Kothapudi V K, Kumar V. A single layer S/X-band series-fed shared aperture antenna for SAR applications[J]. Progress in Electromagnetics Research C, 2017, 76: 207-219. doi: 10.2528/PIERC17070104
|
[2] |
Kati P, Kothapudi V K. 5-element series-feed shared aperture antenna array for X/Ku-band SAR applications[C]//2021 Photonics & Electromagnetics Research Symposium (PIERS). IEEE, 2021: 1689-1694.
|
[3] |
Ji Shuosheng, Dong Yuandan, Wen Sichao, et al. C/X dual-band circularly polarized shared-aperture antenna[J]. IEEE Antennas and Wireless Propagation Letters, 2021, 20(12): 2334-2338. doi: 10.1109/LAWP.2021.3110529
|
[4] |
Mao Chunxu, Gao S, Wang Yi, et al. Dual-band circularly polarized shared-aperture array for C-/X-band satellite communications[J]. IEEE Transactions on Antennas and Propagation, 2017, 65(10): 5171-5178. doi: 10.1109/TAP.2017.2740981
|
[5] |
Vaziri A, Kaboli M, Mirtaheri S A. Dual-polarized aperture-coupled wideband microstrip patch antenna with high isolation for C-band[C]//2013 21st Iranian Conference on Electrical Engineering (ICEE). IEEE, 2013: 1-4.
|
[6] |
Zheng Y Y, Liu C C, Ding Yanran. A shared-aperture broadband circularly polarized antenna for satellite communications and navigation[C]//2019 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting. IEEE, 2019: 1755-1756.
|
[7] |
Wang Zongxin, Huang Zeqin. A microwave/millimeter wave dual-band shared aperture patch antenna array[J]. IEEE Access, 2020, 8: 218585-218591. doi: 10.1109/ACCESS.2020.3040250
|
[8] |
Piao Dazhi, Wang Meng, Zhang Linkun, et al. A two-port compact and high-isolated microstrip MIMO antenna[C]//2020 IEEE Asia-Pacific Microwave Conference (APMC). IEEE, 2020: 398-399.
|
[9] |
Mei Peng, Zhang Shuai, Pedersen G F. A dual-polarized and high-gain X-/Ka-band shared-aperture antenna with high aperture reuse efficiency[J]. IEEE Transactions on Antennas and Propagation, 2021, 69(3): 1334-1344. doi: 10.1109/TAP.2020.3026429
|
[10] |
Chen Yikai, Zhao Jiacheng, Yang Shiwen. A novel stacked antenna configuration and its applications in dual-band shared-aperture base station antenna array designs[J]. IEEE Transactions on Antennas and Propagation, 2019, 67(12): 7234-7241. doi: 10.1109/TAP.2019.2930136
|
[11] |
Bai Chunxu, Cheng Yujian, Ding Yanran, et al. A metamaterial-based S/X-band shared-aperture phased-array antenna with wide beam scanning coverage[J]. IEEE Transactions on Antennas and Propagation, 2020, 68(6): 4283-4292. doi: 10.1109/TAP.2020.2970096
|
[12] |
Wang Chuang, Cao Wenquan, Hong Rentang, et al. Dual-band and dual-circularly polarized shared-aperture antenna based on UAV communication[C]//2021 IEEE 9th International Conference on Information, Communication and Networks (ICICN). IEEE, 2021: 406-410.
|
[13] |
Jang D, Wang S, Kim Y, et al. Design of a dual-band shared-aperture radar array using printed dual-loop antennas[C]//2020 International Symposium on Antennas and Propagation (ISAP). IEEE, 2021: 75-76.
|
[14] |
Li Ke, Dong Tao, Xia Zhenghuan. A broadband shared-aperture L/S/X-band dual-polarized antenna for SAR applications[J]. IEEE Access, 2019, 7: 51417-51425. doi: 10.1109/ACCESS.2019.2911965
|
[15] |
钟顺时. 天线理论与技术[M]. 2版. 北京: 电子工业出版社, 2015: 264-319
Zhong Shunshi. Antenna theory and techniques[M]. 2nd ed. Beijing: Publishing House of Electronics Industry, 2015: 264-319
|
[1] | Zhao Yizhe, Huang Cheng, Qing Anyong. Voltage tunable metamaterial for phase shifting at U-band based on liquid crystal[J]. High Power Laser and Particle Beams, 2019, 31(6): 063001. doi: 10.11884/HPLPB201931.190068 |
[2] | Sun Huifang, Dong Zhiwei. Design of magnetically insulated transmission line oscillatorwith high efficiency operating at high input voltage[J]. High Power Laser and Particle Beams, 2016, 28(03): 033021. doi: 10.11884/HPLPB201628.033021 |
[3] | Liu Qiang, Yang Yang, Zhou Haijing, Xu Fukai, Huang Kama. Electromagnetic characteristics of MNZ material[J]. High Power Laser and Particle Beams, 2015, 27(10): 103207. doi: 10.11884/HPLPB201527.103207 |
[4] | Ye Jian, Wang Qiang, Tang Xianfa, Li Bo, Li Xiangsen, Zhao Peng. Design of high power TE01 overmoded miter bend[J]. High Power Laser and Particle Beams, 2014, 26(06): 063019. doi: 10.11884/HPLPB201426.063019 |
[5] | Cao Xiaolong, Yao Jianquan, Yuan Cai, Zhao Xiaolei, Zhong Kai. Tunable resonant mode switch of split-ring resonators in terahertz regime[J]. High Power Laser and Particle Beams, 2013, 25(09): 2324-2328. doi: 10.3788/HPLPB20132509.2324 |
[6] | sun huifang, dong zhiwei, yang yulin. Numerical simulation of mode competition in magnetically insulated transmission line oscillator[J]. High Power Laser and Particle Beams, 2010, 22(02): 0- . |
[7] | chen daibing, wang dong, fan zhikai, meng fanbao. Numerical study on microwave generation characteristics of bifrequency MILO[J]. High Power Laser and Particle Beams, 2009, 21(04): 0- . |
[8] | li zhi-qiang, zhong hui-huang, fan yu-wei, shu ting, yang jian-hua, xu liu-rong, zhao yan-song. Particle simulation and experimental research of S-band tapered magnetically insulated transmission line oscillator[J]. High Power Laser and Particle Beams, 2008, 20(01): 0- . |
[9] | sun hui-fang, dong zhi-wei. 3-D simulation of higher order modes in MILO[J]. High Power Laser and Particle Beams, 2008, 20(04): 0- . |
[10] | du ren-bo, luo yong, niu xin-jian. Design of high-power millimeter wave corrugated circular waveguide mode converter[J]. High Power Laser and Particle Beams, 2008, 20(01): 0- . |
[11] | chen dai-bing, fan zhi-kai, zhou hai-jing, gao feng-qin, he hu, guo yan-hua, wang dong, wang xiao-dong, gong hai-tao, an hai-shi. L-band hard-tube magnetically insulated line oscillator[J]. High Power Laser and Particle Beams, 2007, 19(08): 0- . |
[12] | guo yan-hua, he hu, fan zhi-kai, chen dai-bing, wang dong. Numerical simulation of an improved type C-band MILO[J]. High Power Laser and Particle Beams, 2007, 19(02): 0- . |
[13] | fan yu-wei, zhong hui-huang, zheng shi-yong, shu ting. Simulation investigation of X-band MILO[J]. High Power Laser and Particle Beams, 2006, 18(03): 0- . |
[14] | guo yan-hua, fan zhi-kai, he hu, chen dai-bing. Numerical analysis on high frequency characteristics of MILO[J]. High Power Laser and Particle Beams, 2005, 17(03): 0- . |
[15] | fan yu-wei, shu ting, wang yong, li zhi-qiang, zhou jin-juan, zhao yan-song. Experimental design of a compact L-band magnetically insulated transmission line oscillator[J]. High Power Laser and Particle Beams, 2004, 16(06): 0- . |
[16] | fan yu wei, shu ting, li zhi qiang. Particle simulation of a compact Lband magnetically insulated transmission line oscillator[J]. High Power Laser and Particle Beams, 2003, 15(12): 0- . |
[17] | sun hui-fang, dong zhi-wei, jiang you-ming. Design and numerical simulation of a improved type MILO[J]. High Power Laser and Particle Beams, 2003, 15(12): 0- . |
[18] | niu xin-jian, li hong-f u, xie zhong-lian. Analysis of high-power millimeter wave circular waveguide TM01—TE11 mode converter[J]. High Power Laser and Particle Beams, 2002, 14(01): 0- . |
[19] | niu xin jian, li hong fu, yu sheng, xie zhong lian. Analysis of high power bent circular waveguide TE01—TM11 mode converter of critical angle[J]. High Power Laser and Particle Beams, 2002, 14(05): 0- . |
1. | 袁雅婷,曾冰倩,胡桐宁,李小飞,樊宽军. 可调电子束注入器调配调谐结构的设计及分析(英文). 强激光与粒子束. 2022(04): 129-135 . ![]() | |
2. | 邱宇帆,李胜波,郑新建,符升平,白凤民. 多参数耦合下电子枪静电聚焦特性分析. 真空科学与技术学报. 2021(11): 1094-1100 . ![]() |