Citation: | Wang Peng, Xi Xiaoming, Zhang Hanwei, et al. Laser-diode-pumped fiber laser amplifier for 13 kW high-beam-quality output[J]. High Power Laser and Particle Beams, 2022, 34: 121001. doi: 10.11884/HPLPB202234.220247 |
Fiber-coupled semiconductor laser (LD)-pumped fiber laser amplifiers have the advantages of small size, high power-to-mass ratio, and good stability. However, limited by the level of device fabrication and the stimulated Raman scattering effect and mode instability (MI) effect inside the fiber, it is difficult for LD-pumped fiber laser amplifiers to achieve high-power and high-brightness laser output at the same time. To achieve higher power and higher brightness fiber laser output, it is necessary to combine the existing device technology and simultaneously realize effective suppression of the SRS and MI effect in the amplifier. Based on this, this paper reports the successful realization of 13 kW power and high beam quality laser output based on a homemade large-mode-area (LMA) gain fiber. The laser adopts the main oscillation power amplifier structure, and the LMA gain fiber is counter-pumped by 981 nm LDs in the amplification stage. When the total pump power is 15 kW, the output power reaches 12.94 kW, and the beam quality M2 factor is about 2.85. By further optimizing the device performance and fiber mode control, it is expected to achieve higher power and higher brightness fiber laser output.
[1] |
Jauregui C, Limpert J, Tünnermann A. High-power fibre lasers[J]. Nature Photonics., 2013, 7(11): 861-867. doi: 10.1038/nphoton.2013.273
|
[2] |
Nilsson J, Payne D N. Physics. High-power fiber lasers[J]. Science, 2011, 332(6032): 921-922. doi: 10.1126/science.1194863
|
[3] |
Richardson D J, Nilsson J, Clarkson W A. High-power fiber lasers: current status and future perspectives[J]. Journal of the Optical Society of America B, 2010, 27(11): B63-B92. doi: 10.1364/JOSAB.27.000B63
|
[4] |
马毅, 颜宏, 彭万敬, 等. 基于多路窄线宽光纤激光的9.6 kW共孔径光谱合成光源[J]. 中国激光, 2016, 43:0901009 doi: 10.3788/CJL201643.0901009
Ma Yi, Yan Hong, Peng Wanjing, et al. 9.6 kW common aperture spectral beam combination system based on multi-channel narrow-linewidth fiber lasers[J]. Chinese Journal of Lasers, 2016, 43: 0901009 doi: 10.3788/CJL201643.0901009
|
[5] |
Zheng Y, Yang Y, Wang J, et al. 10.8 kW spectral beam combination of eight all-fiber superfluorescent sources and their dispersion compensation[J]. Opt. Express, 2016, 24(11): 12063. doi: 10.1364/OE.24.012063
|
[6] |
陈晓龙, 楼风光, 何宇, 等. 高效率全国产化10 kW光纤激光器[J]. 光学学报, 2019, 39:0336001 doi: 10.3788/AOS201939.0336001
Chen Xiaolong, Lou Fengguang, He Yu, et al. Home-made 10 kW fiber laser with high efficiency[J]. Acta Optica Sinica, 2019, 39: 0336001 doi: 10.3788/AOS201939.0336001
|
[1] | Liu Jiaqi, Zeng Lingfa, Shi Chen, Wu Hanshuo, Wang Peng, Xi Xiaoming, Zhang Hanwei, Wang Xiaolin, Xi Fengjie. A bidirectional output all-fiber laser oscillator with record output power of 8 kW[J]. High Power Laser and Particle Beams, 2023, 35(8): 081003. doi: 10.11884/HPLPB202335.230201 |
[2] | Yang Tianli, Yang Jing, Zhou Wangzhe, Li Xuepeng, Wang Xiaojun, Peng Qinjun. 100 kHz high power high beam quality nanosecond laser oscillator[J]. High Power Laser and Particle Beams, 2023, 35(7): 071006. doi: 10.11884/HPLPB202335.230023 |
[3] | Yang Baolai, Zhang Hanwei, Wang Peng, Xi Xiaoming, Wang Xiaolin, Xu Xiaojun, Chen Jinbao. 4 kW single mode narrow linewidth fiber laser achieved in single-end pumped fiber amplifier[J]. High Power Laser and Particle Beams, 2022, 34(4): 041002. doi: 10.11884/HPLPB202234.210504 |
[4] | Lin Aoxiang, Peng Kun, Yu Juan, Ni Li, Dai Xiaojun, Xiang Heng. Thermal effect and its suppression in high-power continuous-wave fiber laser system[J]. High Power Laser and Particle Beams, 2022, 34(1): 011005. doi: 10.11884/HPLPB202234.210336 |
[5] | Zhang Chun, Xie Lianghua, Chu Qiuhui, Liu Yu, Huang Shan, Song Huaqing, Wu Wenjie, Feng Xi, Li Min, Shen Benjian, Li Haokun, Tao Rumao, Xu Lixin, Wang Jianjun. Research progress of stimulated Raman scattering effect in high power fiber lasers[J]. High Power Laser and Particle Beams, 2022, 34(2): 021002. doi: 10.11884/HPLPB202234.210251 |
[6] | Huang Liangjin, Wu Hanshuo, Li Ruixian, Xiao Hu, Yang Huan, Yan Zhiping, Leng Jinyong, Pan Zhiyong, Zhou Pu. Homemade confined-doped fiber for 10 kW level fiber laser output with good beam quality[J]. High Power Laser and Particle Beams, 2022, 34(11): 111002. doi: 10.11884/HPLPB202234.220232 |
[7] | Xi Xiaoming, Yang Huan, Zeng Lingfa, Huang Liangjin, Ye Yun, Zhang Hanwei, Pan Zhiyong, Wang Xiaolin, Wang Zefeng, Zhou Pu, Xu Xiaojun, Chen Jinbao. 5 kW all-fiber amplifier based on homemade spindle-shaped Yb-doped fiber[J]. High Power Laser and Particle Beams, 2021, 33(2): 021001. doi: 10.11884/HPLPB202133.200309 |
[8] | Chu Qiuhui, Guo Chao, Yan Donglin, Shu Qiang, Shi Yi, Wen Jing, Lin Honghuan, Wang Jianjun. Recent progress of high power narrow linewidth fiber laser[J]. High Power Laser and Particle Beams, 2020, 32(12): 121004. doi: 10.11884/HPLPB202032.200144 |
[9] | Wang Jianjun, Liu Yu, Li Min, Feng Xi, Chu Qiuhui, Zhang Chun, Gao Cong, Tao Rumao, Lin Honghuan, Jing Feng. Ten-year review and prospect on mode instability research of fiber lasers[J]. High Power Laser and Particle Beams, 2020, 32(12): 121003. doi: 10.11884/HPLPB202032.200180 |
[10] | Lai Wenchang, Ma Pengfei, Xiao Hu, Liu Wei, Li Can, Jiang Man, Xu Jiangming, Su Rongtao, Leng Jinyong, Ma Yanxing, Zhou Pu. High-power narrow-linewidth fiber laser technology[J]. High Power Laser and Particle Beams, 2020, 32(12): 121001. doi: 10.11884/HPLPB202032.200186 |
[11] | Jin Quanwei, Pang Yu, Jiang Jianfeng, Tan Liang, Cui Lingling, Wei Bin, Sun Yinhong, Tang Chun. High beam quality and high power short-pulse laser with 400 Hz[J]. High Power Laser and Particle Beams, 2018, 30(4): 041001. doi: 10.11884/HPLPB201830.170124 |
[12] | Zhou Pu. Fundamentals of high-average-power fiber laser technology: Mode[J]. High Power Laser and Particle Beams, 2018, 30(6): 060201. doi: 10.11884/HPLPB201830.180087 |
[13] | Li Tianqi, Mao Xiaojie, Lei Jian, Bi Guojiang, Jiang Dongsheng. 100W high beam quality rod-type photonic crystal fiber amplifier for picosecond pulses[J]. High Power Laser and Particle Beams, 2018, 30(9): 091001. doi: 10.11884/HPLPB201830.170515 |
[14] | Mao Xiaojie, Bi Guojiang, Pang Qingsheng, Zou Yue, Lü Huachang. High power high beam quality in-band pumping picosecond amplification laser system[J]. High Power Laser and Particle Beams, 2015, 27(06): 061001. doi: 10.11884/HPLPB201527.061001 |
[15] | Xiao Hu, Leng Jinyong, Zhang Hanwei, Huang Liangjin, Guo Shaofeng, Zhou Pu, Chen Jinbao. A 2.14 kW tandem pumped fiber amplifier[J]. High Power Laser and Particle Beams, 2015, 27(01): 010103. doi: 10.11884/HPLPB201527.010103 |
[16] | Du Wenbo, Wang Xiaolin, Zhu Jiajian, Zhou Pu, Xu Xiaojun, Shu Bohong. Suppression of stimulated Brillouin scattering effect in fiber amplifiers[J]. High Power Laser and Particle Beams, 2013, 25(03): 598-602. doi: 10.3788/HPLPB20132503.0598 |
[17] | feng jie, zhou xiaojun, zhang zhiyao, qin zujun, liu yong. Inelastic scatterings in high-power back-pumped ytterbium-doped double-clad fiber amplifiers[J]. High Power Laser and Particle Beams, 2009, 21(08): 0- . |
[18] | li jing-qin, pan wei, luo bin, zou xi-hua, zhang wei-li, zhou zhi. Stimulated Raman scattering and thermal stress in double clad fiber laser[J]. High Power Laser and Particle Beams, 2007, 19(12): 0- . |
[19] | ding guang-lei, shen hua, yang ling-zhen, wang yi-shan, zhao wei, chen guo-fu. High repetition rate femtosecond Yb-doped fiber amplifier[J]. High Power Laser and Particle Beams, 2006, 18(06): 0- . |
[20] | chen ji-xin, sui zhan, chen fu-shen, liu zhi-qiang, li ming-zhong, wang jian-jun, luo yi-ming. Stimulated Raman scattering and thermal effect in high power double clad fiber laser[J]. High Power Laser and Particle Beams, 2006, 18(09): 0- . |
1. | 赵艳新. 高功率掺镱光纤激光器的非线性效应和研究进展. 光学技术. 2024(01): 40-47 . ![]() | |
2. | 周军,何兵,漆云凤,杨依枫,沈辉,孟俊清. 高功率光纤激光技术. 中国激光. 2024(11): 363-386 . ![]() | |
3. | 王小林,曾令筏,叶云,刘佳琪,吴函烁,王鹏,杨保来,奚小明,张汉伟,史尘,习锋杰,王泽锋,周朴,许晓军,陈金宝. LD泵浦新型高功率掺镱光纤激光器研究(特邀). 中国激光. 2024(19): 223-237 . ![]() | |
4. | 陈玲,张丽. 相关因素对激光器光束质量影响的数学模型设计. 激光杂志. 2024(12): 236-240 . ![]() | |
5. | 奚小明,杨保来,张汉伟,潘志勇,黄良金,王鹏,杨欢,史尘,闫志平,陈子伦,王小林,韩凯,王泽锋,周朴,许晓军. LD直接泵浦全光纤激光器输出功率突破20 kW. 强激光与粒子束. 2023(02): 5-6 . ![]() | |
6. | 闫玥芳,陶汝茂,刘玙,李雨薇,张昊宇,楚秋慧,李敏,舒强,冯曦,黄文会,景峰. 基于光纤合束器件的高功率全光纤相干合成技术研究进展与展望. 强激光与粒子束. 2023(04): 63-76 . ![]() | |
7. | 王小林,王鹏,吴函烁,叶云,曾令筏,杨保来,奚小明,张汉伟,史尘,习锋杰,王泽锋,韩凯,周朴,许晓军,陈金宝. LD泵浦高亮度光纤激光器:设计、仿真与实现(特邀). 红外与激光工程. 2023(06): 111-139 . ![]() | |
8. | 吴金明,李凤昌,王鹏,张汉伟,奚小明,杨保来,王小林,韩凯,陈金宝. 光纤激光宽温度范围运行研究进展. 光学学报. 2023(17): 127-138 . ![]() | |
9. | 杨保来,王鹏,奚小明,马鹏飞,王小林,王泽锋. LD泵浦高平均功率、高光束质量掺镱光纤激光振荡器与放大器研究进展. 光学学报. 2023(17): 150-170 . ![]() |