Citation: | Ma Xun, Guan Jian, Li Songjie, et al. Pulsed power supply for three-dimensional magnetic reconnection experiment of earth’s magnetotail[J]. High Power Laser and Particle Beams, 2022, 34: 125003. doi: 10.11884/HPLPB202234.220284 |
[1] |
Stenzel R L, Gekelman W. Laboratory experiments on current sheet disruptions, double layers turbulence and reconnection[M]//Kundu M R, Holman G D. Unstable Current Systems and Plasma Instabilities in Astrophysics. Dordrecht: Springer, 1985.
|
[2] |
Gekelman W, de Haas T, Daughton W, et al. Pulsating magnetic reconnection driven by three-dimensional flux-rope interactions[J]. Physical Review Letters, 2016, 116: 235101. doi: 10.1103/PhysRevLett.116.235101
|
[3] |
Gekelman W, Lawrence E, Collette A, et al. Magnetic field line reconnection in the current systems of flux ropes and Alfvén waves[J]. Physica Scripta, 2010, 142: 014032.
|
[4] |
Stenzel R L, Gekelman W. Magnetic field line reconnection experiments 1. Field topologies[J]. Journal of Geophysical Research, 1981, 86(A2): 649-658. doi: 10.1029/JA086iA02p00649
|
[5] |
Mao Aohua, Ma Xun, E Peng, et al. An 18.3 MJ charging and discharging pulsed power supply system for the Space Plasma Environment Research Facility (SPERF). Ⅰ. The overall design[J]. Review of Scientific Instruments, 2020, 91: 084702. doi: 10.1063/5.0011711
|
[6] |
Mao Aohua, Ren Yang, Ji Hantao, et al. Conceptual design of the three-dimensional magnetic field configuration relevant to the magnetopause reconnection in the SPERF[J]. Plasma Science and Technology, 2017, 19: 034002. doi: 10.1088/2058-6272/19/3/034002
|
[7] |
E Peng, Ling Wenbin, Mao Aohua, et al. Study on the magnetic forces of the dipole in the SPERF[J]. IEEE Transactions on Plasma Science, 2020, 48(1): 266-274. doi: 10.1109/TPS.2019.2957523
|
[8] |
Saxena A K, Rawool A M, Kaushik T C. Crowbar scheme based on plasma motion for pulsed power applications[J]. IEEE Transactions on Plasma Science, 2013, 41(10): 3058-3062. doi: 10.1109/TPS.2013.2279850
|
[9] |
E Peng, Guan Jian, Ling Wenbin, et al. An 18.3 MJ charging and discharging pulsed power supply system for the Space Plasma Environment Research Facility (SPERF): modular design method and component selection[J]. Review of Scientific Instruments, 2021, 92: 034709. doi: 10.1063/5.0036923
|
[10] |
蒋成玺. 脉冲强磁场电源系统设计及实现[D]. 武汉: 华中科技大学, 2013
Jiang Chengxi. Design and realization of pulse power supply system for pulsed high magnetic field[D]. Wuhan: Huazhong University of Science and Technology, 2013
|
[11] |
E Peng, Guan Jian, Ma Xun, et al. An 18.3 MJ charging and discharging pulsed power supply system for the Space Plasma Environment Research Facility (SPERF): the subsystem for the dipole coil[J]. Review of Scientific Instruments, 2021, 92: 044706. doi: 10.1063/5.0043730
|
[12] |
Leone D, Carrubba V, Mazzaro S, et al. EPICS application for ITER RH supervisory control system[J]. Fusion Engineering and Design, 2021, 169: 11429.
|
[13] |
Kim K H, Ju C J, Kim M K, et al. The KSTAR integrated control system based on EPICS[J]. Fusion Engineering and Design, 2006, 81(15/17): 1829-1833.
|
[14] |
E Peng, Guan Jian, Jin Chenggang, et al. An 18.3 MJ charging and discharging pulsed power supply system for the Space Plasma Environment Research Facility (SPERF): the subsystem for the magnetopause shape control coils[J]. Review of Scientific Instruments, 2021, 92: 064709. doi: 10.1063/5.0052725
|
[15] |
李松杰, 赵娟, 康传会, 等. 240 kJ模块化能库型脉冲放电电源研制[J]. 强激光与粒子束, 2022, 34:095015 doi: 10.11884/HPLPB202234.210564
Li Songjie, Zhao Juan, Kang Chuanhui, et al. Development of a 240 kJ modularized pulsed power supply[J]. High Power Laser and Particle Beams, 2022, 34: 095015 doi: 10.11884/HPLPB202234.210564
|