Citation: | Yuan Zongqiang, Deng Zhigang, Teng Jian, et al. Geant4 simulations of measurement of energy spectra of reflected ions generated by nanosecond-laser-drive non-relativistic collisionless electrostatic shocks[J]. High Power Laser and Particle Beams, 2022, 34: 122005. doi: 10.11884/HPLPB202234.220288 |
[1] |
Hurricane O A, Callahan D A, Casey D T, et al. Fuel gain exceeding unity in an inertially confined fusion implosion[J]. Nature, 2014, 506(7488): 343-348. doi: 10.1038/nature13008
|
[2] |
Zylstra A B, Hurricane O A, Callahan D A, et al. Burning plasma achieved in inertial fusion[J]. Nature, 2022, 601(7894): 542-548. doi: 10.1038/s41586-021-04281-w
|
[3] |
Kritcher A L, Young C V, Robey H F, et al. Design of inertial fusion implosions reaching the burning plasma regime[J]. Nature Physics, 2022, 18(3): 251-258. doi: 10.1038/s41567-021-01485-9
|
[4] |
Abu-Shawareb H, Acree R, Adams P, et al. Lawson criterion for ignition exceeded in an inertial fusion experiment[J]. Physical Review Letters, 2022, 129: 075001. doi: 10.1103/PhysRevLett.129.075001
|
[5] |
Zylstra A B, Kritcher A L, Hurricane O A, et al. Experimental achievement and signatures of ignition at the National Ignition Facility[J]. Physical Review E, 2022, 106: 025202. doi: 10.1103/PhysRevE.106.025202
|
[6] |
Kritcher A L, Zylstra A B, Callahan D A, et al. Design of an inertial fusion experiment exceeding the Lawson criterion for ignition[J]. Physical Review E, 2022, 106: 025201. doi: 10.1103/PhysRevE.106.025201
|
[7] |
Amendt P, Landen O L, Robey H F, et al. Plasma barodiffusion in inertial-confinement-fusion implosions: application to observed yield anomalies in thermonuclear fuel mixtures[J]. Physical Review Letters, 2010, 105: 115005. doi: 10.1103/PhysRevLett.105.115005
|
[8] |
Rinderknecht H G, Sio H, Li C K, et al. First observations of nonhydrodynamic mix at the fuel-shell interface in shock-driven inertial confinement implosions[J]. Physical Review Letters, 2014, 112: 135001. doi: 10.1103/PhysRevLett.112.135001
|
[9] |
Rosenberg M J, Rinderknecht H G, Hoffman N M, et al. Exploration of the transition from the hydrodynamiclike to the strongly kinetic regime in shock-driven implosions[J]. Physical Review Letters, 2014, 112: 185001. doi: 10.1103/PhysRevLett.112.185001
|
[10] |
Le Pape S, Divol L, Huser G, et al. Plasma collision in a gas atmosphere[J]. Physical Review Letters, 2020, 124: 025003. doi: 10.1103/PhysRevLett.124.025003
|
[11] |
Rygg J R, Séguin F H, Li C K, et al. Proton radiography of inertial fusion implosions[J]. Science, 2008, 319(5867): 1223-1225. doi: 10.1126/science.1152640
|
[12] |
Li C K, Séguin F H, Frenje J A, et al. Charged-particle probing of X-ray-driven inertial-fusion implosions[J]. Science, 2010, 327(5970): 1231-1235. doi: 10.1126/science.1185747
|
[13] |
Li C K, Séguin F H, Frenje J A, et al. Impeding hohlraum plasma stagnation in inertial-confinement fusion[J]. Physical Review Letters, 2012, 108: 025001. doi: 10.1103/PhysRevLett.108.025001
|
[14] |
Hua R, Kim J, Sherlock M, et al. Self-generated magnetic and electric fields at a Mach-6 shock front in a low density helium gas by dual-angle proton radiography[J]. Physical Review Letters, 2019, 123: 215001. doi: 10.1103/PhysRevLett.123.215001
|
[15] |
Jones O S, Cerjan C J, Marinak M M, et al. A high-resolution integrated model of the National Ignition Campaign cryogenic layered experiments[J]. Physics of Plasmas, 2012, 19: 056315. doi: 10.1063/1.4718595
|
[16] |
Hopkins L F B, Meezan N B, Le Pape S, et al. First high-convergence cryogenic implosion in a near-vacuum hohlraum[J]. Physical Review Letters, 2015, 114: 175001. doi: 10.1103/PhysRevLett.114.175001
|
[17] |
Hopkins L F B, Le Pape S, Divol L, et al. Near-vacuum hohlraums for driving fusion implosions with high density carbon ablators[J]. Physics of Plasmas, 2015, 22: 056318. doi: 10.1063/1.4921151
|
[18] |
Rinderknecht H G, Amendt P A, Wilks S C, et al. Kinetic physics in ICF: present understanding and future directions[J]. Plasma Physics and Controlled Fusion, 2018, 60: 064001. doi: 10.1088/1361-6587/aab79f
|
[19] |
Shan L Q, Cai H B, Zhang W S, et al. Experimental evidence of kinetic effects in indirect-drive inertial confinement fusion hohlraums[J]. Physical Review Letters, 2018, 120: 195001. doi: 10.1103/PhysRevLett.120.195001
|
[20] |
Cai H B, Shan L Q, Yuan Z Q, et al. Study of the kinetic effects in indirect-drive inertial confinement fusion hohlraums[J]. High Energy Density Physics, 2020, 36: 100756. doi: 10.1016/j.hedp.2020.100756
|
[21] |
单连强, 吴凤娟, 袁宗强, 等. 激光惯性约束聚变动理学效应研究进展[J]. 强激光与粒子束, 2021, 33:012004 doi: 10.11884/HPLPB202133.200235
Shan Lianqiang, Wu Fengjuan, Yuan Zongqiang, et al. Research progress of kinetic effects in laser inertial confinement fusion[J]. High Power Laser and Particle Beams, 2021, 33: 012004 doi: 10.11884/HPLPB202133.200235
|
[22] |
蔡洪波, 张文帅, 杜报, 等. 惯性约束聚变黑腔内等离子体界面处的动理学效应及其影响[J]. 强激光与粒子束, 2020, 32:092007
Cai Hongbo, Zhang Wenshuai, Du Bao, et al. Characteristic and impact of kinetic effects at interfaces of inertial confinement fusion hohlraums[J]. High Power Laser and Particle Beams, 2020, 32: 092007
|
[23] |
Wei M S, Mangles S P D, Najmudin Z, et al. Ion acceleration by collisionless shocks in high-intensity-laser-underdense-plasma interaction[J]. Physical Review Letters, 2004, 93: 155003. doi: 10.1103/PhysRevLett.93.155003
|
[24] |
Zhang H, Shen B F, Wang W P, et al. Collisionless shock acceleration of high-flux quasimonoenergetic proton beams driven by circularly polarized laser pulses[J]. Physical Review Letters, 2017, 119: 164801. doi: 10.1103/PhysRevLett.119.164801
|
[25] |
He S K, Jiao J L, Deng Z G, et al. Generation of ultrahigh-velocity collisionless electrostatic shocks using an ultra-intense laser pulse interacting with foil-gas target[J]. Chinese Physics Letters, 2019, 36: 105201. doi: 10.1088/0256-307X/36/10/105201
|
[26] |
Schmid K, Veisz L. Supersonic gas jets for laser-plasma experiments[J]. Review of Scientific Instruments, 2012, 83: 053304. doi: 10.1063/1.4719915
|
[27] |
Fryxell B, Olson K, Ricker P, et al. FLASH: an adaptive mesh hydrodynamics code for modeling astrophysical thermonuclear flashes[J]. The Astrophysical Journal Supplement Series, 2000, 131(1): 273-334. doi: 10.1086/317361
|
[28] |
Balogh A, Treumann R A. Physics of collisionless shocks[M]. New York: Springer, 2013: 1-500.
|