Volume 34 Issue 12
Nov.  2022
Turn off MathJax
Article Contents
Yuan Zongqiang, Deng Zhigang, Teng Jian, et al. Geant4 simulations of measurement of energy spectra of reflected ions generated by nanosecond-laser-drive non-relativistic collisionless electrostatic shocks[J]. High Power Laser and Particle Beams, 2022, 34: 122005. doi: 10.11884/HPLPB202234.220288
Citation: Yuan Zongqiang, Deng Zhigang, Teng Jian, et al. Geant4 simulations of measurement of energy spectra of reflected ions generated by nanosecond-laser-drive non-relativistic collisionless electrostatic shocks[J]. High Power Laser and Particle Beams, 2022, 34: 122005. doi: 10.11884/HPLPB202234.220288

Geant4 simulations of measurement of energy spectra of reflected ions generated by nanosecond-laser-drive non-relativistic collisionless electrostatic shocks

doi: 10.11884/HPLPB202234.220288
  • Received Date: 2022-09-13
  • Rev Recd Date: 2022-10-28
  • Available Online: 2022-10-29
  • Publish Date: 2022-11-02
  • In indirect-drive inertial confinement fusion experiments with vacuum or low-gas-fill hohlraums, collisionless electrostatic shocks can be launched in the hohlraum wall/alblator (or the low-density fill-gas) interpenetration region, which reflect ions at twice the shock velocity. A low-energy Thomson ion spectrometer was designed to measure the energy spectra of the reflected ions on the order of 10 keV generated by nanosecond-laser-driven non-relativistic collisionless electrostatic shocks. Monte Carlo simulations of ion measurement were carried out with Geant4 modeling to evaluate the influence of residual gas in the vacuum chamber and gas jet on the measurement of the low-energy ions. Simulation results show that the residual gas in the vacuum chamber causes the signal of D ions on the order of 10 keV to broaden in both the electric and magnetic deflection of the spectrometer. The broadening of the electric deflection will increase the risk of overlapping of ion spectral lines of different charge-to-mass ratios, while the broadening of the magnetic deflection will lead to the broadening of the energy spectra of the ions. The gas jet causes the ion signal to move and tail into the lower energy region, causing the measured ion spectra to deviate from the actual energy spectra of the reflected ions.
  • loading
  • [1]
    Hurricane O A, Callahan D A, Casey D T, et al. Fuel gain exceeding unity in an inertially confined fusion implosion[J]. Nature, 2014, 506(7488): 343-348. doi: 10.1038/nature13008
    [2]
    Zylstra A B, Hurricane O A, Callahan D A, et al. Burning plasma achieved in inertial fusion[J]. Nature, 2022, 601(7894): 542-548. doi: 10.1038/s41586-021-04281-w
    [3]
    Kritcher A L, Young C V, Robey H F, et al. Design of inertial fusion implosions reaching the burning plasma regime[J]. Nature Physics, 2022, 18(3): 251-258. doi: 10.1038/s41567-021-01485-9
    [4]
    Abu-Shawareb H, Acree R, Adams P, et al. Lawson criterion for ignition exceeded in an inertial fusion experiment[J]. Physical Review Letters, 2022, 129: 075001. doi: 10.1103/PhysRevLett.129.075001
    [5]
    Zylstra A B, Kritcher A L, Hurricane O A, et al. Experimental achievement and signatures of ignition at the National Ignition Facility[J]. Physical Review E, 2022, 106: 025202. doi: 10.1103/PhysRevE.106.025202
    [6]
    Kritcher A L, Zylstra A B, Callahan D A, et al. Design of an inertial fusion experiment exceeding the Lawson criterion for ignition[J]. Physical Review E, 2022, 106: 025201. doi: 10.1103/PhysRevE.106.025201
    [7]
    Amendt P, Landen O L, Robey H F, et al. Plasma barodiffusion in inertial-confinement-fusion implosions: application to observed yield anomalies in thermonuclear fuel mixtures[J]. Physical Review Letters, 2010, 105: 115005. doi: 10.1103/PhysRevLett.105.115005
    [8]
    Rinderknecht H G, Sio H, Li C K, et al. First observations of nonhydrodynamic mix at the fuel-shell interface in shock-driven inertial confinement implosions[J]. Physical Review Letters, 2014, 112: 135001. doi: 10.1103/PhysRevLett.112.135001
    [9]
    Rosenberg M J, Rinderknecht H G, Hoffman N M, et al. Exploration of the transition from the hydrodynamiclike to the strongly kinetic regime in shock-driven implosions[J]. Physical Review Letters, 2014, 112: 185001. doi: 10.1103/PhysRevLett.112.185001
    [10]
    Le Pape S, Divol L, Huser G, et al. Plasma collision in a gas atmosphere[J]. Physical Review Letters, 2020, 124: 025003. doi: 10.1103/PhysRevLett.124.025003
    [11]
    Rygg J R, Séguin F H, Li C K, et al. Proton radiography of inertial fusion implosions[J]. Science, 2008, 319(5867): 1223-1225. doi: 10.1126/science.1152640
    [12]
    Li C K, Séguin F H, Frenje J A, et al. Charged-particle probing of X-ray-driven inertial-fusion implosions[J]. Science, 2010, 327(5970): 1231-1235. doi: 10.1126/science.1185747
    [13]
    Li C K, Séguin F H, Frenje J A, et al. Impeding hohlraum plasma stagnation in inertial-confinement fusion[J]. Physical Review Letters, 2012, 108: 025001. doi: 10.1103/PhysRevLett.108.025001
    [14]
    Hua R, Kim J, Sherlock M, et al. Self-generated magnetic and electric fields at a Mach-6 shock front in a low density helium gas by dual-angle proton radiography[J]. Physical Review Letters, 2019, 123: 215001. doi: 10.1103/PhysRevLett.123.215001
    [15]
    Jones O S, Cerjan C J, Marinak M M, et al. A high-resolution integrated model of the National Ignition Campaign cryogenic layered experiments[J]. Physics of Plasmas, 2012, 19: 056315. doi: 10.1063/1.4718595
    [16]
    Hopkins L F B, Meezan N B, Le Pape S, et al. First high-convergence cryogenic implosion in a near-vacuum hohlraum[J]. Physical Review Letters, 2015, 114: 175001. doi: 10.1103/PhysRevLett.114.175001
    [17]
    Hopkins L F B, Le Pape S, Divol L, et al. Near-vacuum hohlraums for driving fusion implosions with high density carbon ablators[J]. Physics of Plasmas, 2015, 22: 056318. doi: 10.1063/1.4921151
    [18]
    Rinderknecht H G, Amendt P A, Wilks S C, et al. Kinetic physics in ICF: present understanding and future directions[J]. Plasma Physics and Controlled Fusion, 2018, 60: 064001. doi: 10.1088/1361-6587/aab79f
    [19]
    Shan L Q, Cai H B, Zhang W S, et al. Experimental evidence of kinetic effects in indirect-drive inertial confinement fusion hohlraums[J]. Physical Review Letters, 2018, 120: 195001. doi: 10.1103/PhysRevLett.120.195001
    [20]
    Cai H B, Shan L Q, Yuan Z Q, et al. Study of the kinetic effects in indirect-drive inertial confinement fusion hohlraums[J]. High Energy Density Physics, 2020, 36: 100756. doi: 10.1016/j.hedp.2020.100756
    [21]
    单连强, 吴凤娟, 袁宗强, 等. 激光惯性约束聚变动理学效应研究进展[J]. 强激光与粒子束, 2021, 33:012004 doi: 10.11884/HPLPB202133.200235

    Shan Lianqiang, Wu Fengjuan, Yuan Zongqiang, et al. Research progress of kinetic effects in laser inertial confinement fusion[J]. High Power Laser and Particle Beams, 2021, 33: 012004 doi: 10.11884/HPLPB202133.200235
    [22]
    蔡洪波, 张文帅, 杜报, 等. 惯性约束聚变黑腔内等离子体界面处的动理学效应及其影响[J]. 强激光与粒子束, 2020, 32:092007

    Cai Hongbo, Zhang Wenshuai, Du Bao, et al. Characteristic and impact of kinetic effects at interfaces of inertial confinement fusion hohlraums[J]. High Power Laser and Particle Beams, 2020, 32: 092007
    [23]
    Wei M S, Mangles S P D, Najmudin Z, et al. Ion acceleration by collisionless shocks in high-intensity-laser-underdense-plasma interaction[J]. Physical Review Letters, 2004, 93: 155003. doi: 10.1103/PhysRevLett.93.155003
    [24]
    Zhang H, Shen B F, Wang W P, et al. Collisionless shock acceleration of high-flux quasimonoenergetic proton beams driven by circularly polarized laser pulses[J]. Physical Review Letters, 2017, 119: 164801. doi: 10.1103/PhysRevLett.119.164801
    [25]
    He S K, Jiao J L, Deng Z G, et al. Generation of ultrahigh-velocity collisionless electrostatic shocks using an ultra-intense laser pulse interacting with foil-gas target[J]. Chinese Physics Letters, 2019, 36: 105201. doi: 10.1088/0256-307X/36/10/105201
    [26]
    Schmid K, Veisz L. Supersonic gas jets for laser-plasma experiments[J]. Review of Scientific Instruments, 2012, 83: 053304. doi: 10.1063/1.4719915
    [27]
    Fryxell B, Olson K, Ricker P, et al. FLASH: an adaptive mesh hydrodynamics code for modeling astrophysical thermonuclear flashes[J]. The Astrophysical Journal Supplement Series, 2000, 131(1): 273-334. doi: 10.1086/317361
    [28]
    Balogh A, Treumann R A. Physics of collisionless shocks[M]. New York: Springer, 2013: 1-500.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)

    Article views (573) PDF downloads(85) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return