Volume 35 Issue 1
Jan.  2023
Turn off MathJax
Article Contents
Wang Li, Li Liejuan, Melike Mohamedsedik, et al. Enhancement of nonlinear chirped frequency on electron-positron pair production in the potential well[J]. High Power Laser and Particle Beams, 2023, 35: 012003. doi: 10.11884/HPLPB202335.220066
Citation: Wang Li, Li Liejuan, Melike Mohamedsedik, et al. Enhancement of nonlinear chirped frequency on electron-positron pair production in the potential well[J]. High Power Laser and Particle Beams, 2023, 35: 012003. doi: 10.11884/HPLPB202335.220066

Enhancement of nonlinear chirped frequency on electron-positron pair production in the potential well

doi: 10.11884/HPLPB202335.220066
  • Received Date: 2021-03-10
  • Rev Recd Date: 2022-06-13
  • Available Online: 2022-06-21
  • Publish Date: 2023-01-15
  • Enhancement of nonlinear chirped frequency on electron-positron pair creation in the potential well is studied by the computational quantum field theory. The density, number and energy spectrum of electrons created under a single oscillating potential well and combined potential wells are investigated. The frequency spectrum and instantaneous bound states are also analyzed. It is found that nonlinear chirp effect is more sensitive to the low frequency region. When appropriate chirp parameters are selected, compared with the fixed frequency, the number of electrons created under combined potential wells can be increased by 2 to 3 times. For a single oscillating potential well, the number can be increased by several orders of magnitude. In the subcritical field at low frequencies, Schwinger mechanism dominates pair creation, and the production is very low. After modulation, the frequency spectrum widens. The high frequency component enhances the multiphoton processes and the dynamical assisted mechanism, while the ultrahigh frequency component inhibits pair creation.
  • loading
  • [1]
    Dirac P A M. The quantum theory of the electron. Part II[J]. Proc R Soc Lond A Math Phys Sci, 1928, 118(779): 351-361.
    [2]
    Anderson C D. The positive electron[J]. Phys Rev, 1933, 43(6): 491-494. doi: 10.1103/PhysRev.43.491
    [3]
    Sauter F. Über das verhalten eines elektrons im homogenen elektrischen feld nach der relativistischen theorie Diracs[J]. Z Phys, 1931, 69(11/12): 742-764.
    [4]
    Heisenberg W, Euler H. Folgerungen aus der Diracschen theorie des positrons[J]. Z Phys, 1936, 98(11): 714-732.
    [5]
    Schwinger J. On gauge invariance and vacuum polarization[J]. Phys Rev, 1951, 82(5): 664-679. doi: 10.1103/PhysRev.82.664
    [6]
    Gies H, Klingmüller K. Pair production in inhomogeneous fields[J]. Phys Rev D, 2005, 72: 065001. doi: 10.1103/PhysRevD.72.065001
    [7]
    Dunne G, Wang Qinghai, Gies H, et al. Worldline instantons and the fluctuation prefactor[J]. Phys Rev D, 2006, 73: 065028. doi: 10.1103/PhysRevD.73.065028
    [8]
    Xie Baisong, Mohamedsedik M, Dulat S. Electron-positron pair production in an elliptic polarized time varying field[J]. Chin Phys Lett, 2012, 29: 021102. doi: 10.1088/0256-307X/29/2/021102
    [9]
    Schneider C, Schützhold R. Dynamically assisted Sauter-Schwinger effect in inhomogeneous electric fields[J]. J High Energy Phys, 2016, 2016: 164.
    [10]
    Kluger Y, Eisenberg J M, Svetitsky B, et al. Pair production in a strong electric field[J]. Phys Rev Lett, 1991, 67(18): 2427-2430. doi: 10.1103/PhysRevLett.67.2427
    [11]
    Alkofer R, Hecht M B, Roberts C D, et al. Pair creation and an X-ray free electron laser[J]. Phys Rev Lett, 2001, 87: 193902. doi: 10.1103/PhysRevLett.87.193902
    [12]
    Abdukerim N, Li Z L, Xie B S. Enhanced electron–positron pair production by frequency chirping in one- and two-color laser pulse fields[J]. Chin Phys B, 2017, 26: 020301. doi: 10.1088/1674-1056/26/2/020301
    [13]
    Krekora P, Cooley K, Su Q, et al. Creation dynamics of bound states in supercritical fields[J]. Phys Rev Lett, 2005, 95: 070403. doi: 10.1103/PhysRevLett.95.070403
    [14]
    Lv Q Z, Liu Y, Li Y J, et al. Noncompeting channel approach to pair creation in supercritical fields[J]. Phys Rev Lett, 2013, 111: 183204. doi: 10.1103/PhysRevLett.111.183204
    [15]
    Wang Li, Wu Binbing, Xie Baisong. Electron-positron pair production in an oscillating Sauter potential[J]. Phys Rev A, 2019, 100: 022127. doi: 10.1103/PhysRevA.100.022127
    [16]
    Hebenstreit F, Alkofer R, Gies H. Particle self-bunching in the Schwinger effect in spacetime-dependent electric fields[J]. Phys Rev Lett, 2011, 107: 180403. doi: 10.1103/PhysRevLett.107.180403
    [17]
    Kohlfürst C. Electron-positron pair production in inhomogeneous electromagnetic fields[D]. Graz: Universität Graz, 2015.
    [18]
    Xie Baisong, Li Ziliang, Tang Suo. Electron-positron pair production in ultrastrong laser fields[J]. Matter Radiat Extremes, 2017, 2(5): 225-242. doi: 10.1016/j.mre.2017.07.002
    [19]
    Kohlfürst C, Alkofer R. Ponderomotive effects in multiphoton pair production[J]. Phys Rev D, 2018, 97: 036026. doi: 10.1103/PhysRevD.97.036026
    [20]
    Ababekri M, Dulat S, Xie B S, et al. Chirp effects on pair production in oscillating electric fields with spatial inhomogeneity[J]. Phys Lett B, 2020, 810: 135815. doi: 10.1016/j.physletb.2020.135815
    [21]
    Kohlfürst C. Effect of time-dependent inhomogeneous magnetic fields on the particle momentum spectrum in electron-positron pair production[J]. Phys Rev D, 2020, 101: 096003. doi: 10.1103/PhysRevD.101.096003
    [22]
    Bialynicki-Birula I, Bialynicka-Birula Z. Time crystals made of electron-positron pairs[J]. Phys Rev A, 2021, 104: 022203. doi: 10.1103/PhysRevA.104.022203
    [23]
    Aleksandrov I A, Kohlfürst C. Pair production in temporally and spatially oscillating fields[J]. Phys Rev D, 2020, 101: 096009. doi: 10.1103/PhysRevD.101.096009
    [24]
    任娜, 王加祥, 李安康, 等. 强激光场中真空极化效应[J]. 强激光与粒子束, 2011, 23(1):217-220 doi: 10.3788/HPLPB20112301.0217

    Ren Na, Wang Jiaxiang, Li Ankang, et al. Vacuum polarization effect in intense laser fields[J]. High Power Laser Part Beams, 2011, 23(1): 217-220 doi: 10.3788/HPLPB20112301.0217
    [25]
    Yanovsky V, Chvykov V, Kalinchenko G, et al. Ultra-high intensity- 300-TW laser at 0.1 Hz repetition rate[J]. Opt Express, 2008, 16(3): 2109-2114. doi: 10.1364/OE.16.002109
    [26]
    ELI BEAMLINES[DB/OL].https://www.eli-beams.eu/.
    [27]
    Exawatt Center for Extreme Light Studies[DB/OL].https://xcels.iapras.ru/news.html.
    [28]
    Hubbell J H. Electron-positron pair production by photons: a historical overview[J]. Radiat Phys Chem, 2006, 75(6): 614-623. doi: 10.1016/j.radphyschem.2005.10.008
    [29]
    Brezin E, Itzykson C. Pair production in vacuum by an alternating field[J]. Phys Rev D, 1970, 2(7): 1191-1199. doi: 10.1103/PhysRevD.2.1191
    [30]
    Schützhold R, Gies H, Dunne G. Dynamically assisted Schwinger mechanism[J]. Phys Rev Lett, 2008, 101: 130404. doi: 10.1103/PhysRevLett.101.130404
    [31]
    Li Z L, Lu D, Xie B S, et al. Enhanced pair production in strong fields by multiple-slit interference effect with dynamically assisted Schwinger mechanism[J]. Phys Rev D, 2014, 89: 093011. doi: 10.1103/PhysRevD.89.093011
    [32]
    Nuriman A, Xie Baisong, Li Ziliang, et al. Enhanced electron-positron pair creation by dynamically assisted combinational fields[J]. Phys Lett B, 2012, 717(4/5): 465-469.
    [33]
    Burke D L, Field R C, Horton-Smith G, et al. Positron production in multiphoton light-by-light scattering[J]. Phys Rev Lett, 1997, 79(9): 1626-1629. doi: 10.1103/PhysRevLett.79.1626
    [34]
    李昂, 余金清, 陈玉清, 等. 光子对撞机产生正负电子对的数值方法[J]. 物理学报, 2020, 69:019501 doi: 10.7498/aps.69.20190729

    Li Ang, Yu Jinqing, Chen Yuqing, et al. Numerical method of electron-positron pairs generation in photon-photon collider[J]. Acta Phys Sin, 2020, 69: 019501 doi: 10.7498/aps.69.20190729
    [35]
    Abdukerim N, Li Ziliang, Xie Baisong. Effects of laser pulse shape and carrier envelope phase on pair production[J]. Phys Lett B, 2013, 726(4/5): 820-826.
    [36]
    吴广智, 王强, 周沧涛, 等. 双势阱产生正负电子对过程中的正电子波干涉与克莱因隧穿现象[J]. 物理学报, 2017, 66:070301 doi: 10.7498/aps.66.070301

    Wu Guangzhi, Wang Qiang, Zhou Cangtao, et al. Positron wave interference and Klein tunnel during the production of pairs in the double-well potential[J]. Acta Phys Sin, 2017, 66: 070301 doi: 10.7498/aps.66.070301
    [37]
    Gong C, Li Z L Li Y J. Enhanced pair creation by an oscillating potential with multiple well-barrier structures in space[J]. Phys Rev A, 2018, 98: 043424. doi: 10.1103/PhysRevA.98.043424
    [38]
    Sawut A, Dulat S, Xie B S. Pair production in asymmetric Sauter potential well[J]. Phys Scr, 2021, 96: 055305. doi: 10.1088/1402-4896/abe9f1
    [39]
    Su D D, Li Y T, Lv Q Z, et al. Enhancement of pair creation due to locality in bound-continuum interactions[J]. Phys Rev D, 2020, 101: 054501.
    [40]
    Jiang M, Lv Q Z, Sheng Z M, et al. Enhancement of electron-positron pair creation due to transient excitation of field-induced bound states[J]. Phys Rev A, 2013, 87: 042503. doi: 10.1103/PhysRevA.87.042503
    [41]
    Tang Suo, Xie Baisong, Lu Ding, et al. Electron-positron pair creation and correlation between momentum and energy level in a symmetric potential well[J]. Phys Rev A, 2013, 88: 012106. doi: 10.1103/PhysRevA.88.012106
    [42]
    Strickland D, Mourou G. Compression of amplified chirped optical pulses[J]. Opt Commun, 1985, 56(3): 219-221. doi: 10.1016/0030-4018(85)90120-8
    [43]
    林宏奂, 隋展, 王建军, 等. 啁啾脉冲堆积用于光脉冲整形[J]. 光学学报, 2007, 27(3):466-470 doi: 10.3321/j.issn:0253-2239.2007.03.017

    Lin Honghuan, Sui Zhan, Wang Jianjun, et al. Optical pulse shaping by chirped pulse stacking[J]. Acta Opt Sin, 2007, 27(3): 466-470 doi: 10.3321/j.issn:0253-2239.2007.03.017
    [44]
    王友文, 陈列尊, 章礼富, 等. 啁啾脉冲堆积宽带激光非线性传输时域调制特性[J]. 强激光与粒子束, 2010, 22(8):1823-1828 doi: 10.3788/HPLPB20102208.1823

    Wang Youwen, Chen Liezun, Zhang Lifu, et al. Characteristics of temporal modulation in nonlinear propagation of broad-band lasers stacked by chirped pulses[J]. High Power Laser Part Beams, 2010, 22(8): 1823-1828 doi: 10.3788/HPLPB20102208.1823
    [45]
    黄小东, 张小民, 李桂秋, 等. 啁啾脉冲堆积及其放大特性[J]. 强激光与粒子束, 2009, 21(1):71-75

    Huang Xiaodong, Zhang Xiaomin, Li Guiqiu, et al. Characteristic and amplification of stacked chirped pulse[J]. High Power Laser Part Beams, 2009, 21(1): 71-75
    [46]
    胡素兴, 徐志展, 韩申生, 等. 一维势场中电子对强激光场的非线性散射[J]. 强激光与粒子束, 1996, 8(4):535-540

    Hu Suxing, Xu Zhizhan, Han Shenshen, et al. Nonlinear scatter of intense laser pulse by the electron bound in one-dimensional potential[J]. High Power Laser Part Beams, 1996, 8(4): 535-540
    [47]
    Olugh O, Li Z L, Xie B S, et al. Pair production in differently polarized electric fields with frequency chirps[J]. Phys Rev D, 2019, 99: 036003. doi: 10.1103/PhysRevD.99.036003
    [48]
    Gong C, Li Z L, Xie B S, et al. Electron-positron pair production in frequency modulated laser fields[J]. Phys Rev D, 2020, 101: 016008. doi: 10.1103/PhysRevD.101.016008
    [49]
    Li L J, Mohamedsedik M, Xie B S. Enhanced dynamically assisted pair production in spatial inhomogeneous electric fields with the frequency chirping[J]. Phys Rev D, 2021, 104: 036015. doi: 10.1103/PhysRevD.104.036015
    [50]
    Mohamedsedik M, Li L J, Xie B S. Schwinger pair production in inhomogeneous electric fields with symmetrical frequency chirp[J]. Phys Rev D, 2021, 104: 016009. doi: 10.1103/PhysRevD.104.016009
    [51]
    Dumlu C K. Schwinger vacuum pair production in chirped laser pulses[J]. Phys Rev D, 2010, 82: 045007. doi: 10.1103/PhysRevD.82.045007
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)  / Tables(2)

    Article views (710) PDF downloads(85) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return