Chang Jian, Cai Jiejin. Modeling and analysis situation of fuel rod cladding crevasse in same burnup area[J]. High Power Laser and Particle Beams, 2017, 29: 056002. doi: 10.11884/HPLPB201729.160283
Citation: Wang Li, Li Liejuan, Melike Mohamedsedik, et al. Enhancement of nonlinear chirped frequency on electron-positron pair production in the potential well[J]. High Power Laser and Particle Beams, 2023, 35: 012003. doi: 10.11884/HPLPB202335.220066

Enhancement of nonlinear chirped frequency on electron-positron pair production in the potential well

doi: 10.11884/HPLPB202335.220066
  • Received Date: 2021-03-10
  • Rev Recd Date: 2022-06-13
  • Available Online: 2022-06-21
  • Publish Date: 2023-01-15
  • Enhancement of nonlinear chirped frequency on electron-positron pair creation in the potential well is studied by the computational quantum field theory. The density, number and energy spectrum of electrons created under a single oscillating potential well and combined potential wells are investigated. The frequency spectrum and instantaneous bound states are also analyzed. It is found that nonlinear chirp effect is more sensitive to the low frequency region. When appropriate chirp parameters are selected, compared with the fixed frequency, the number of electrons created under combined potential wells can be increased by 2 to 3 times. For a single oscillating potential well, the number can be increased by several orders of magnitude. In the subcritical field at low frequencies, Schwinger mechanism dominates pair creation, and the production is very low. After modulation, the frequency spectrum widens. The high frequency component enhances the multiphoton processes and the dynamical assisted mechanism, while the ultrahigh frequency component inhibits pair creation.
  • [1]
    Dirac P A M. The quantum theory of the electron. Part II[J]. Proc R Soc Lond A Math Phys Sci, 1928, 118(779): 351-361.
    [2]
    Anderson C D. The positive electron[J]. Phys Rev, 1933, 43(6): 491-494. doi: 10.1103/PhysRev.43.491
    [3]
    Sauter F. Über das verhalten eines elektrons im homogenen elektrischen feld nach der relativistischen theorie Diracs[J]. Z Phys, 1931, 69(11/12): 742-764.
    [4]
    Heisenberg W, Euler H. Folgerungen aus der Diracschen theorie des positrons[J]. Z Phys, 1936, 98(11): 714-732.
    [5]
    Schwinger J. On gauge invariance and vacuum polarization[J]. Phys Rev, 1951, 82(5): 664-679. doi: 10.1103/PhysRev.82.664
    [6]
    Gies H, Klingmüller K. Pair production in inhomogeneous fields[J]. Phys Rev D, 2005, 72: 065001. doi: 10.1103/PhysRevD.72.065001
    [7]
    Dunne G, Wang Qinghai, Gies H, et al. Worldline instantons and the fluctuation prefactor[J]. Phys Rev D, 2006, 73: 065028. doi: 10.1103/PhysRevD.73.065028
    [8]
    Xie Baisong, Mohamedsedik M, Dulat S. Electron-positron pair production in an elliptic polarized time varying field[J]. Chin Phys Lett, 2012, 29: 021102. doi: 10.1088/0256-307X/29/2/021102
    [9]
    Schneider C, Schützhold R. Dynamically assisted Sauter-Schwinger effect in inhomogeneous electric fields[J]. J High Energy Phys, 2016, 2016: 164.
    [10]
    Kluger Y, Eisenberg J M, Svetitsky B, et al. Pair production in a strong electric field[J]. Phys Rev Lett, 1991, 67(18): 2427-2430. doi: 10.1103/PhysRevLett.67.2427
    [11]
    Alkofer R, Hecht M B, Roberts C D, et al. Pair creation and an X-ray free electron laser[J]. Phys Rev Lett, 2001, 87: 193902. doi: 10.1103/PhysRevLett.87.193902
    [12]
    Abdukerim N, Li Z L, Xie B S. Enhanced electron–positron pair production by frequency chirping in one- and two-color laser pulse fields[J]. Chin Phys B, 2017, 26: 020301. doi: 10.1088/1674-1056/26/2/020301
    [13]
    Krekora P, Cooley K, Su Q, et al. Creation dynamics of bound states in supercritical fields[J]. Phys Rev Lett, 2005, 95: 070403. doi: 10.1103/PhysRevLett.95.070403
    [14]
    Lv Q Z, Liu Y, Li Y J, et al. Noncompeting channel approach to pair creation in supercritical fields[J]. Phys Rev Lett, 2013, 111: 183204. doi: 10.1103/PhysRevLett.111.183204
    [15]
    Wang Li, Wu Binbing, Xie Baisong. Electron-positron pair production in an oscillating Sauter potential[J]. Phys Rev A, 2019, 100: 022127. doi: 10.1103/PhysRevA.100.022127
    [16]
    Hebenstreit F, Alkofer R, Gies H. Particle self-bunching in the Schwinger effect in spacetime-dependent electric fields[J]. Phys Rev Lett, 2011, 107: 180403. doi: 10.1103/PhysRevLett.107.180403
    [17]
    Kohlfürst C. Electron-positron pair production in inhomogeneous electromagnetic fields[D]. Graz: Universität Graz, 2015.
    [18]
    Xie Baisong, Li Ziliang, Tang Suo. Electron-positron pair production in ultrastrong laser fields[J]. Matter Radiat Extremes, 2017, 2(5): 225-242. doi: 10.1016/j.mre.2017.07.002
    [19]
    Kohlfürst C, Alkofer R. Ponderomotive effects in multiphoton pair production[J]. Phys Rev D, 2018, 97: 036026. doi: 10.1103/PhysRevD.97.036026
    [20]
    Ababekri M, Dulat S, Xie B S, et al. Chirp effects on pair production in oscillating electric fields with spatial inhomogeneity[J]. Phys Lett B, 2020, 810: 135815. doi: 10.1016/j.physletb.2020.135815
    [21]
    Kohlfürst C. Effect of time-dependent inhomogeneous magnetic fields on the particle momentum spectrum in electron-positron pair production[J]. Phys Rev D, 2020, 101: 096003. doi: 10.1103/PhysRevD.101.096003
    [22]
    Bialynicki-Birula I, Bialynicka-Birula Z. Time crystals made of electron-positron pairs[J]. Phys Rev A, 2021, 104: 022203. doi: 10.1103/PhysRevA.104.022203
    [23]
    Aleksandrov I A, Kohlfürst C. Pair production in temporally and spatially oscillating fields[J]. Phys Rev D, 2020, 101: 096009. doi: 10.1103/PhysRevD.101.096009
    [24]
    任娜, 王加祥, 李安康, 等. 强激光场中真空极化效应[J]. 强激光与粒子束, 2011, 23(1):217-220 doi: 10.3788/HPLPB20112301.0217

    Ren Na, Wang Jiaxiang, Li Ankang, et al. Vacuum polarization effect in intense laser fields[J]. High Power Laser Part Beams, 2011, 23(1): 217-220 doi: 10.3788/HPLPB20112301.0217
    [25]
    Yanovsky V, Chvykov V, Kalinchenko G, et al. Ultra-high intensity- 300-TW laser at 0.1 Hz repetition rate[J]. Opt Express, 2008, 16(3): 2109-2114. doi: 10.1364/OE.16.002109
    [26]
    ELI BEAMLINES[DB/OL].https://www.eli-beams.eu/.
    [27]
    Exawatt Center for Extreme Light Studies[DB/OL].https://xcels.iapras.ru/news.html.
    [28]
    Hubbell J H. Electron-positron pair production by photons: a historical overview[J]. Radiat Phys Chem, 2006, 75(6): 614-623. doi: 10.1016/j.radphyschem.2005.10.008
    [29]
    Brezin E, Itzykson C. Pair production in vacuum by an alternating field[J]. Phys Rev D, 1970, 2(7): 1191-1199. doi: 10.1103/PhysRevD.2.1191
    [30]
    Schützhold R, Gies H, Dunne G. Dynamically assisted Schwinger mechanism[J]. Phys Rev Lett, 2008, 101: 130404. doi: 10.1103/PhysRevLett.101.130404
    [31]
    Li Z L, Lu D, Xie B S, et al. Enhanced pair production in strong fields by multiple-slit interference effect with dynamically assisted Schwinger mechanism[J]. Phys Rev D, 2014, 89: 093011. doi: 10.1103/PhysRevD.89.093011
    [32]
    Nuriman A, Xie Baisong, Li Ziliang, et al. Enhanced electron-positron pair creation by dynamically assisted combinational fields[J]. Phys Lett B, 2012, 717(4/5): 465-469.
    [33]
    Burke D L, Field R C, Horton-Smith G, et al. Positron production in multiphoton light-by-light scattering[J]. Phys Rev Lett, 1997, 79(9): 1626-1629. doi: 10.1103/PhysRevLett.79.1626
    [34]
    李昂, 余金清, 陈玉清, 等. 光子对撞机产生正负电子对的数值方法[J]. 物理学报, 2020, 69:019501 doi: 10.7498/aps.69.20190729

    Li Ang, Yu Jinqing, Chen Yuqing, et al. Numerical method of electron-positron pairs generation in photon-photon collider[J]. Acta Phys Sin, 2020, 69: 019501 doi: 10.7498/aps.69.20190729
    [35]
    Abdukerim N, Li Ziliang, Xie Baisong. Effects of laser pulse shape and carrier envelope phase on pair production[J]. Phys Lett B, 2013, 726(4/5): 820-826.
    [36]
    吴广智, 王强, 周沧涛, 等. 双势阱产生正负电子对过程中的正电子波干涉与克莱因隧穿现象[J]. 物理学报, 2017, 66:070301 doi: 10.7498/aps.66.070301

    Wu Guangzhi, Wang Qiang, Zhou Cangtao, et al. Positron wave interference and Klein tunnel during the production of pairs in the double-well potential[J]. Acta Phys Sin, 2017, 66: 070301 doi: 10.7498/aps.66.070301
    [37]
    Gong C, Li Z L Li Y J. Enhanced pair creation by an oscillating potential with multiple well-barrier structures in space[J]. Phys Rev A, 2018, 98: 043424. doi: 10.1103/PhysRevA.98.043424
    [38]
    Sawut A, Dulat S, Xie B S. Pair production in asymmetric Sauter potential well[J]. Phys Scr, 2021, 96: 055305. doi: 10.1088/1402-4896/abe9f1
    [39]
    Su D D, Li Y T, Lv Q Z, et al. Enhancement of pair creation due to locality in bound-continuum interactions[J]. Phys Rev D, 2020, 101: 054501.
    [40]
    Jiang M, Lv Q Z, Sheng Z M, et al. Enhancement of electron-positron pair creation due to transient excitation of field-induced bound states[J]. Phys Rev A, 2013, 87: 042503. doi: 10.1103/PhysRevA.87.042503
    [41]
    Tang Suo, Xie Baisong, Lu Ding, et al. Electron-positron pair creation and correlation between momentum and energy level in a symmetric potential well[J]. Phys Rev A, 2013, 88: 012106. doi: 10.1103/PhysRevA.88.012106
    [42]
    Strickland D, Mourou G. Compression of amplified chirped optical pulses[J]. Opt Commun, 1985, 56(3): 219-221. doi: 10.1016/0030-4018(85)90120-8
    [43]
    林宏奂, 隋展, 王建军, 等. 啁啾脉冲堆积用于光脉冲整形[J]. 光学学报, 2007, 27(3):466-470 doi: 10.3321/j.issn:0253-2239.2007.03.017

    Lin Honghuan, Sui Zhan, Wang Jianjun, et al. Optical pulse shaping by chirped pulse stacking[J]. Acta Opt Sin, 2007, 27(3): 466-470 doi: 10.3321/j.issn:0253-2239.2007.03.017
    [44]
    王友文, 陈列尊, 章礼富, 等. 啁啾脉冲堆积宽带激光非线性传输时域调制特性[J]. 强激光与粒子束, 2010, 22(8):1823-1828 doi: 10.3788/HPLPB20102208.1823

    Wang Youwen, Chen Liezun, Zhang Lifu, et al. Characteristics of temporal modulation in nonlinear propagation of broad-band lasers stacked by chirped pulses[J]. High Power Laser Part Beams, 2010, 22(8): 1823-1828 doi: 10.3788/HPLPB20102208.1823
    [45]
    黄小东, 张小民, 李桂秋, 等. 啁啾脉冲堆积及其放大特性[J]. 强激光与粒子束, 2009, 21(1):71-75

    Huang Xiaodong, Zhang Xiaomin, Li Guiqiu, et al. Characteristic and amplification of stacked chirped pulse[J]. High Power Laser Part Beams, 2009, 21(1): 71-75
    [46]
    胡素兴, 徐志展, 韩申生, 等. 一维势场中电子对强激光场的非线性散射[J]. 强激光与粒子束, 1996, 8(4):535-540

    Hu Suxing, Xu Zhizhan, Han Shenshen, et al. Nonlinear scatter of intense laser pulse by the electron bound in one-dimensional potential[J]. High Power Laser Part Beams, 1996, 8(4): 535-540
    [47]
    Olugh O, Li Z L, Xie B S, et al. Pair production in differently polarized electric fields with frequency chirps[J]. Phys Rev D, 2019, 99: 036003. doi: 10.1103/PhysRevD.99.036003
    [48]
    Gong C, Li Z L, Xie B S, et al. Electron-positron pair production in frequency modulated laser fields[J]. Phys Rev D, 2020, 101: 016008. doi: 10.1103/PhysRevD.101.016008
    [49]
    Li L J, Mohamedsedik M, Xie B S. Enhanced dynamically assisted pair production in spatial inhomogeneous electric fields with the frequency chirping[J]. Phys Rev D, 2021, 104: 036015. doi: 10.1103/PhysRevD.104.036015
    [50]
    Mohamedsedik M, Li L J, Xie B S. Schwinger pair production in inhomogeneous electric fields with symmetrical frequency chirp[J]. Phys Rev D, 2021, 104: 016009. doi: 10.1103/PhysRevD.104.016009
    [51]
    Dumlu C K. Schwinger vacuum pair production in chirped laser pulses[J]. Phys Rev D, 2010, 82: 045007. doi: 10.1103/PhysRevD.82.045007
  • Relative Articles

    [1]Huang Hairong, Zhang Liangqi, Liu Weiyuan, Yu Tongpu, Luo Wen. Research progress of quantum electrodynamics cascade and dense positron production driven by interaction between extremely intense lasers and solid targets[J]. High Power Laser and Particle Beams, 2023, 35(1): 012004. doi: 10.11884/HPLPB202335.220208
    [2]Wu Guanjian, Wang Lei, Wang Guanwen, Shi Xiaolei, Zhai Xinzhe, Chen Jinhui. Design of injection and extraction delay-line kicker magnet for circular electron-positron collider[J]. High Power Laser and Particle Beams, 2023, 35(5): 054002. doi: 10.11884/HPLPB202335.220364
    [3]Zhou Peng, Wan Chengliang, Yuan Hua, Cheng Zidong, Li Pengfei, Zhang Haowen, Cui Ying, Zhang Hongqiang, Chen Ximeng. Dynamic process of low energy electrons through insulating nanocapillaries[J]. High Power Laser and Particle Beams, 2023, 35(2): 026001. doi: 10.11884/HPLPB202335.220120
    [4]Gong Chi, Li Ziliang, Li Yingjun. Progress of pair production from vacuum in strong laser fields[J]. High Power Laser and Particle Beams, 2023, 35(1): 012002. doi: 10.11884/HPLPB202335.220145
    [5]Kang Dongdong, Zeng Qiyu, Zhang Shen, Wang Xiaowei, Dai Jiayu. Dynamics and micro-structures in generation of warm dense matter using intense laser[J]. High Power Laser and Particle Beams, 2020, 32(9): 092006. doi: 10.11884/HPLPB202032.200121
    [6]He Shoujie, Zhang Baoming, Wang Peng, Zhang Zhao, Han Yuhong. Simulation on the dynamics of hollow cathode discharge in helium[J]. High Power Laser and Particle Beams, 2018, 30(2): 024001. doi: 10.11884/HPLPB201830.170211
    [7]Dong Ye, Liu Qingxiang, Li Xiangqiang, Zhou Haijing, Dong Zhiwei. Configuration design and dynamic process study of novel multipacting cathode[J]. High Power Laser and Particle Beams, 2018, 30(3): 033001. doi: 10.11884/HPLPB201830.170328
    [8]He Jun, Zhang Cong, Deng Qingyong, Wang Lin, Sui Yanfeng, Yue Junhui, Cao Jianshe. Laser wire scanner system for Beijing Electron-Positron Collider Ⅱ[J]. High Power Laser and Particle Beams, 2015, 27(06): 065103. doi: 10.11884/HPLPB201527.065103
    [9]Qiu Rong, Wang Junbo, Ren Huan, Zhou Qiang, Tian Runni, Li Xiaohong, Liu Hao, Ma Ping. Dynamic process of nanosecond laser damage of fused silica[J]. High Power Laser and Particle Beams, 2013, 25(11): 2882-2886. doi: 10.3788/HPLPB20132511.2882
    [10]Li Jun. Transverse oscillation in relativistic electronpositron plasma with q distribution[J]. High Power Laser and Particle Beams, 2013, 25(04): 1009-1012.
    [11]ding zhijie, tang yongjian, yi yong, luo jiangshan, li kai. Molecular dynamics simulation of Ni-Co alloy melt-spinning process[J]. High Power Laser and Particle Beams, 2011, 23(01): 0- .
    [12]zhang peiqing, guan yefeng, xie xiangsheng, qiu zhiren, zhou jianying. Adaptive optimization for nonlinear optical frequency conversion of femtosecond laser[J]. High Power Laser and Particle Beams, 2010, 22(11): 0- .
    [13]liao yan-li, liu san-qiu, wang hao. Transverse dispersion law of electron-positron plasma in ultra-relativistic regime[J]. High Power Laser and Particle Beams, 2008, 20(05): 0- .
    [14]yu cheng-hui, wang lin, wei yuan-yuan. Beam-beam deflection effect in Beijing electron positron collider[J]. High Power Laser and Particle Beams, 2005, 17(11): 0- .
    [15]liu shi-xing, zhang yong-ming, zhang jian, wei xiao-le, yin ze-jie, liu zheng-quan, cui xiang-zong, li jia-cai. Application of particle track system BEPC test beam[J]. High Power Laser and Particle Beams, 2004, 16(07): 0- .
    [16]tang chuan xiang, tian kai, chen huai bi, li quan feng, jiang zhan feng, wang ying, xu yi yong. Beam dynamics researches on micropulse electron gun[J]. High Power Laser and Particle Beams, 2003, 15(08): 0- .
    [17]hao dong shan. Influences of uncaptured electron on energy conversion efficiency of multiphoton nonlinear Compton scattering[J]. High Power Laser and Particle Beams, 2003, 15(09): 0- .
    [18]ning cheng, yang zhen hua, ding ning. Process of radiation magnetohydrodynamics in Al wirearray Zpinch[J]. High Power Laser and Particle Beams, 2002, 14(06): 0- .
    [19]fang jin-qing, yao wei-guang. Chaotic dynamics and chaos control in nonlinear laser systems[J]. High Power Laser and Particle Beams, 2001, 13(02): 0- .
    [20]zhong zhi-cheng, li zhi-hua, zhang duan-ming, guan li. Modify the dynamic process of the bulk target’s plasma plume generated by pulsed laser[J]. High Power Laser and Particle Beams, 2001, 13(03): 0- .
  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-04010203040
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 30.0 %FULLTEXT: 30.0 %META: 63.7 %META: 63.7 %PDF: 6.2 %PDF: 6.2 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 7.4 %其他: 7.4 %其他: 0.2 %其他: 0.2 %Baden: 0.5 %Baden: 0.5 %Ballwin: 0.5 %Ballwin: 0.5 %China: 0.3 %China: 0.3 %Pompano Beach: 0.2 %Pompano Beach: 0.2 %Rochester: 0.1 %Rochester: 0.1 %Seattle: 0.1 %Seattle: 0.1 %[]: 0.2 %[]: 0.2 %上海: 1.0 %上海: 1.0 %东莞: 0.1 %东莞: 0.1 %中山: 0.1 %中山: 0.1 %临汾: 0.1 %临汾: 0.1 %丹东: 0.1 %丹东: 0.1 %乌鲁木齐: 1.1 %乌鲁木齐: 1.1 %乐山: 0.1 %乐山: 0.1 %伊瓦格: 0.2 %伊瓦格: 0.2 %休斯敦: 0.5 %休斯敦: 0.5 %保定: 0.6 %保定: 0.6 %兰州: 0.6 %兰州: 0.6 %兴安盟: 0.2 %兴安盟: 0.2 %内江: 0.1 %内江: 0.1 %冈萨雷斯: 0.2 %冈萨雷斯: 0.2 %北京: 3.2 %北京: 3.2 %十堰: 0.1 %十堰: 0.1 %华盛顿: 0.2 %华盛顿: 0.2 %南京: 0.2 %南京: 0.2 %南昌: 0.6 %南昌: 0.6 %台州: 0.4 %台州: 0.4 %合肥: 0.2 %合肥: 0.2 %吉林: 0.1 %吉林: 0.1 %呼和浩特: 0.2 %呼和浩特: 0.2 %哈尔滨: 0.1 %哈尔滨: 0.1 %喀什: 0.3 %喀什: 0.3 %嘉兴: 0.1 %嘉兴: 0.1 %圣保罗: 0.2 %圣保罗: 0.2 %埼玉县: 0.3 %埼玉县: 0.3 %大同: 0.2 %大同: 0.2 %大连: 0.1 %大连: 0.1 %天津: 0.8 %天津: 0.8 %安康: 0.1 %安康: 0.1 %宜春: 0.1 %宜春: 0.1 %宣城: 0.4 %宣城: 0.4 %宿迁: 0.2 %宿迁: 0.2 %巴音郭楞: 0.2 %巴音郭楞: 0.2 %常德: 0.2 %常德: 0.2 %广州: 0.5 %广州: 0.5 %弗吉: 0.1 %弗吉: 0.1 %张家口: 0.9 %张家口: 0.9 %成都: 0.4 %成都: 0.4 %扬州: 0.2 %扬州: 0.2 %新乡: 0.1 %新乡: 0.1 %昆明: 0.1 %昆明: 0.1 %昌吉: 0.1 %昌吉: 0.1 %晋城: 0.1 %晋城: 0.1 %普洱: 0.1 %普洱: 0.1 %朝阳: 0.2 %朝阳: 0.2 %杭州: 1.0 %杭州: 1.0 %杰克逊: 0.2 %杰克逊: 0.2 %杰克逊维尔: 0.1 %杰克逊维尔: 0.1 %森尼韦尔: 0.2 %森尼韦尔: 0.2 %榆林: 0.1 %榆林: 0.1 %武汉: 0.4 %武汉: 0.4 %毕节: 0.1 %毕节: 0.1 %沈阳: 0.1 %沈阳: 0.1 %泰安: 0.1 %泰安: 0.1 %泽西: 0.2 %泽西: 0.2 %洛阳: 0.6 %洛阳: 0.6 %济宁: 0.1 %济宁: 0.1 %深圳: 1.0 %深圳: 1.0 %温州: 0.2 %温州: 0.2 %湖州: 0.5 %湖州: 0.5 %漯河: 0.6 %漯河: 0.6 %瓦西拉: 0.2 %瓦西拉: 0.2 %益阳: 0.2 %益阳: 0.2 %眉山: 0.1 %眉山: 0.1 %石家庄: 0.2 %石家庄: 0.2 %科隆: 0.2 %科隆: 0.2 %秦皇岛: 0.2 %秦皇岛: 0.2 %约翰内斯堡: 0.2 %约翰内斯堡: 0.2 %绵阳: 0.7 %绵阳: 0.7 %芒廷维尤: 26.2 %芒廷维尤: 26.2 %芝加哥: 0.4 %芝加哥: 0.4 %莫斯科: 1.4 %莫斯科: 1.4 %蚌埠: 1.0 %蚌埠: 1.0 %衡阳: 0.2 %衡阳: 0.2 %衢州: 0.4 %衢州: 0.4 %西宁: 30.0 %西宁: 30.0 %西安: 0.1 %西安: 0.1 %诺沃克: 3.2 %诺沃克: 3.2 %贵阳: 0.6 %贵阳: 0.6 %资阳: 0.1 %资阳: 0.1 %达尔斯: 0.1 %达尔斯: 0.1 %达州: 0.1 %达州: 0.1 %运城: 1.1 %运城: 1.1 %遵义: 0.2 %遵义: 0.2 %邯郸: 0.2 %邯郸: 0.2 %郑州: 0.2 %郑州: 0.2 %鄂州: 0.2 %鄂州: 0.2 %重庆: 0.1 %重庆: 0.1 %铁岭: 0.2 %铁岭: 0.2 %长春: 0.1 %长春: 0.1 %长沙: 0.2 %长沙: 0.2 %阳泉: 0.1 %阳泉: 0.1 %马鞍山: 0.2 %马鞍山: 0.2 %麦迪逊维尔: 0.5 %麦迪逊维尔: 0.5 %黄冈: 0.1 %黄冈: 0.1 %其他其他BadenBallwinChinaPompano BeachRochesterSeattle[]上海东莞中山临汾丹东乌鲁木齐乐山伊瓦格休斯敦保定兰州兴安盟内江冈萨雷斯北京十堰华盛顿南京南昌台州合肥吉林呼和浩特哈尔滨喀什嘉兴圣保罗埼玉县大同大连天津安康宜春宣城宿迁巴音郭楞常德广州弗吉张家口成都扬州新乡昆明昌吉晋城普洱朝阳杭州杰克逊杰克逊维尔森尼韦尔榆林武汉毕节沈阳泰安泽西洛阳济宁深圳温州湖州漯河瓦西拉益阳眉山石家庄科隆秦皇岛约翰内斯堡绵阳芒廷维尤芝加哥莫斯科蚌埠衡阳衢州西宁西安诺沃克贵阳资阳达尔斯达州运城遵义邯郸郑州鄂州重庆铁岭长春长沙阳泉马鞍山麦迪逊维尔黄冈

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)  / Tables(2)

    Article views (796) PDF downloads(88) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return