Volume 35 Issue 2
Jan.  2023
Turn off MathJax
Article Contents
Zhou Peng, Wan Chengliang, Yuan Hua, et al. Dynamic process of low energy electrons through insulating nanocapillaries[J]. High Power Laser and Particle Beams, 2023, 35: 026001. doi: 10.11884/HPLPB202335.220120
Citation: Zhou Peng, Wan Chengliang, Yuan Hua, et al. Dynamic process of low energy electrons through insulating nanocapillaries[J]. High Power Laser and Particle Beams, 2023, 35: 026001. doi: 10.11884/HPLPB202335.220120

Dynamic process of low energy electrons through insulating nanocapillaries

doi: 10.11884/HPLPB202335.220120
  • Received Date: 2022-04-24
  • Rev Recd Date: 2022-09-29
  • Available Online: 2022-09-30
  • Publish Date: 2023-01-14
  • In the study of the transportation of low energy electrons through insulating capillaries, the experimental results are very different and depending on many conditions. This leads to some controversies on whether the mechanisms of the electron guiding exists or not . This work studies the electron beam with an energy of 1500 eV transmitting through the insulating PET capillaries of 400 nm in diameter. The capillaries have never been irradiated by any beams before. The two-dimensional angular distributions of transmitted electrons and their evolution are measured by a Mirco-channel Plate (MCP) detector with the phosphor screen. The energy distribution of the transmitted electrons is also measured by a mesh system before the MCP detector where the stepping voltages are put on and the transmitted electrons are recorded by the MCP detector accordingly. The experimental results show that the intensity of transmitted electrons increases with the charging time when the capillaries starts to be exposed to the electron beam, and a typical charging-up is observed. During the charging process, the angular distribution width of transmitted electrons increases from small to large, but the center of the angular distribution remains the same. The energy spectrum of the transmitted electrons when they reach the stationary state shows that the most transmitted electrons keep their initial energy. This work provides new experimental evidence for understanding electron transport in insulator micropores, and gives the conditions for the formation of guiding electric field in micropores that may form guiding effect.
  • loading
  • [1]
    Lemell C, Burgdörfer J, Aumayr F. Interaction of charged particles with insulating capillary targets—The guiding effect[J]. Progress in Surface Science, 2013, 88(3): 237-278. doi: 10.1016/j.progsurf.2013.06.001
    [2]
    Stolterfoht N, Yamazaki Y. Guiding of charged particles through capillaries in insulating materials[J]. Physics Reports, 2016, 629: 1-107. doi: 10.1016/j.physrep.2016.02.008
    [3]
    Martin C R. Nanomaterials: a membrane-based synthetic approach[J]. Science, 1994, 266(5193): 1961-1966. doi: 10.1126/science.266.5193.1961
    [4]
    Stolterfoht N, Hellhammer R, Bundesmann J, et al. Scaling laws for guiding of highly charged ions through nanocapillaries in an insulating polymer[J]. Physical Review A, 2008, 77: 032905. doi: 10.1103/PhysRevA.77.032905
    [5]
    Stolterfoht N, Hellhammer R, Bundesmann J, et al. Density effects on the guided transmission of 3 keV Ne7+ ions through PET nanocapillaries[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2009, 267(2): 226-230. doi: 10.1016/j.nimb.2008.10.046
    [6]
    Vokhmyanina K A, Kubankin A S, Myshelovka L V, et al. Transport of accelerated electrons through dielectric nanochannels in PET films[J]. Journal of Instrumentation, 2020, 15: C04003. doi: 10.1088/1748-0221/15/04/C04003
    [7]
    Sahana M B, Skog P, Víkor G, et al. Guiding of highly charged ions by highly ordered SiO2 nanocapillaries[J]. Physical Review A, 2006, 73: 040901(R). doi: 10.1103/PhysRevA.73.040901
    [8]
    Zhang H Q, Skog P, Schuch R. Dynamics of guiding highly charged ions through SiO2 nanocapillaries[J]. Physical Review A, 2010, 82: 052901. doi: 10.1103/PhysRevA.82.052901
    [9]
    Stolterfoht N, Hellhammer R, Juhász Z, et al. Guided transmission of Ne7+ ions through nanocapillaries in insulating polymers: scaling laws for projectile energies up to 50 keV[J]. Physical Review A, 2009, 79: 042902. doi: 10.1103/PhysRevA.79.042902
    [10]
    哈帅, 张文铭, 谢一鸣, 等. 低能Cl在Al2O3绝缘微孔膜中的输运过程[J]. 物理学报, 2020, 69:094101 doi: 10.7498/aps.69.20190933

    Ha Shuai, Zhang Wenming, Xie Yiming, et al. Transmission of low-energy Cl ions through Al2O3 insulating nanocapillaries[J]. Acta Physica Sinica, 2020, 69: 094101 doi: 10.7498/aps.69.20190933
    [11]
    Skog P, Soroka I L, Johansson A, et al. Guiding of highly charged ions through Al2O3 nano-capillaries[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2007, 258(1): 145-149.
    [12]
    Zhang Qi, Liu Zhonglin, Li Pengfei, et al. Transmission of low-energy negative ions through insulating nanocapillaries[J]. Physical Review A, 2018, 97: 042704. doi: 10.1103/PhysRevA.97.042704
    [13]
    Das S, Dassanayake B S, Winkworth M, et al. Inelastic guiding of electrons in polymer nanocapillaries[J]. Physical Review A, 2007, 76: 042716. doi: 10.1103/PhysRevA.76.042716
    [14]
    李鹏飞, 袁华, 程紫东, 等. 低能电子在玻璃管中的稳定传输[J]. 物理学报, 2022, 71:074101 doi: 10.7498/aps.71.20212036

    Li Pengfei, Yuan Hua, Cheng Zidong, et al. Stable transmission of low energy electrons in glass tube with outer surface grounded conductively shielding[J]. Acta Physica Sinica, 2022, 71: 074101 doi: 10.7498/aps.71.20212036
    [15]
    李鹏飞, 袁华, 程紫东, 等. 低能电子穿越玻璃直管时倾角依赖的输运动力学[J]. 物理学报, 2022, 71:084104 doi: 10.7498/aps.71.20212335

    Li Pengfei, Yuan Hua, Cheng Zidong, et al. Dynamics of low energy electrons transmitting through straight glass capillary: tilt angle dependence[J]. Acta Physica Sinica, 2022, 71: 084104 doi: 10.7498/aps.71.20212335
    [16]
    Milosavljević A R, Víkor G, Pešić Z D, et al. Guiding of low-energy electrons by highly ordered Al2O3 nanocapillaries[J]. Physical Review A, 2007, 75: 030901(R). doi: 10.1103/PhysRevA.75.030901
    [17]
    Dassanayake B S, Das S, Bereczky R J, et al. Energy dependence of electron transmission through a single glass macrocapillary[J]. Physical Review A, 2010, 81: 020701(R). doi: 10.1103/PhysRevA.81.020701
    [18]
    Wickramarachchi S J, Dassanayake B S, Keerthisinghe D, et al. Electron transmission through a microsize tapered glass capillary[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2011, 269(11): 1248-1252. doi: 10.1016/j.nimb.2010.11.089
    [19]
    Zhang Hongqiang, Akram N, Soroka I L, et al. Transmission of highly charged ions through mica nanocapillaries of rhombic cross section[J]. Physical Review A, 2012, 86: 022901(R). doi: 10.1103/PhysRevA.86.022901
    [20]
    Zhang H Q, Akram N, Skog P, et al. Tailoring of keV-ion beams by image charge when transmitting through rhombic and rectangular shaped nanocapillaries[J]. Physical Review Letters, 2012, 108: 193202. doi: 10.1103/PhysRevLett.108.193202
    [21]
    Zhang Hongqiang, Akram N, Schuch R. Guiding and scattering of ions in transmission through mica nanocapillaries[J]. Physical Review A, 2016, 94: 032704. doi: 10.1103/PhysRevA.94.032704
    [22]
    Schiessl K, Tőkési K, Solleder B, et al. Electron guiding through insulating nanocapillaries[J]. Physical Review Letters, 2009, 102: 163201. doi: 10.1103/PhysRevLett.102.163201
    [23]
    Dassanayake B S, Keerthisinghe D, Wickramarachchi S, et al. Temporal evolution of electron transmission through insulating PET nanocapillaries[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2013, 298: 1-4.
    [24]
    Keerthisinghe D, Dassanayake B S, Wickramarachchi S J, et al. Charge deposition dependence and energy loss of electrons transmitted through insulating PET nanocapillaries[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2013, 317: 105-108.
    [25]
    Keerthisinghe D, Dassanayake B S, Wickramarachchi S J, et al. Elastic and inelastic transmission of electrons through insulating polyethylene terephthalate nanocapillaries[J]. Physical Review A, 2015, 92: 012703. doi: 10.1103/PhysRevA.92.012703
    [26]
    Dassanayake B S, Bereczky R J, Das S, et al. Time evolution of electron transmission through a single glass macrocapillary: charge build-up, sudden discharge, and recovery[J]. Physical Review A, 2011, 83: 012707. doi: 10.1103/PhysRevA.83.012707
    [27]
    Wickramarachchi S J, Ikeda T, Dassanayake B S, et al. Electron-beam transmission through a micrometer-sized tapered-glass capillary: dependence on incident energy and angular tilt angle[J]. Physical Review A, 2016, 94: 022701. doi: 10.1103/PhysRevA.94.022701
    [28]
    Wickramarachchi S J, Ikeda T, Dassanayake B S, et al. Incident energy and charge deposition dependences of electron transmission through a microsized tapered glass capillary[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2016, 382: 60-66.
    [29]
    Hovington P, Drouin D, Gauvin R, et al. CASINO: a new Monte Carlo code in C language for electron beam interactions—part III: stopping power at low energies[J]. Scanning, 1997, 19(1): 29-35. doi: 10.1002/sca.4950190104
    [30]
    Drouin D, Couture A R, Joly D, et al. CASINO V2.42—A fast and easy-to-use modeling tool for scanning electron microscopy and microanalysis users[J]. Scanning, 2007, 29(3): 92-101. doi: 10.1002/sca.20000
    [31]
    Demers H, Poirrier-Demers N, Couture A R, et al. Three-dimensional electron microscopy simulation with the CASINO Monte Carlo software[J]. Scanning, 2011, 33(3): 135-146. doi: 10.1002/sca.20262
    [32]
    Joy D C, Luo S. An empirical stopping power relationship for low-energy electrons[J]. Scanning, 1989, 11(4): 176-180. doi: 10.1002/sca.4950110404
    [33]
    Lowney J R. Monte Carlo simulation of scanning electron microscope signals for lithographic metrology[J]. Scanning, 1996, 18(4): 301-306.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)

    Article views (901) PDF downloads(46) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return