Citation: | Zhou Peng, Wan Chengliang, Yuan Hua, et al. Dynamic process of low energy electrons through insulating nanocapillaries[J]. High Power Laser and Particle Beams, 2023, 35: 026001. doi: 10.11884/HPLPB202335.220120 |
[1] |
Lemell C, Burgdörfer J, Aumayr F. Interaction of charged particles with insulating capillary targets—The guiding effect[J]. Progress in Surface Science, 2013, 88(3): 237-278. doi: 10.1016/j.progsurf.2013.06.001
|
[2] |
Stolterfoht N, Yamazaki Y. Guiding of charged particles through capillaries in insulating materials[J]. Physics Reports, 2016, 629: 1-107. doi: 10.1016/j.physrep.2016.02.008
|
[3] |
Martin C R. Nanomaterials: a membrane-based synthetic approach[J]. Science, 1994, 266(5193): 1961-1966. doi: 10.1126/science.266.5193.1961
|
[4] |
Stolterfoht N, Hellhammer R, Bundesmann J, et al. Scaling laws for guiding of highly charged ions through nanocapillaries in an insulating polymer[J]. Physical Review A, 2008, 77: 032905. doi: 10.1103/PhysRevA.77.032905
|
[5] |
Stolterfoht N, Hellhammer R, Bundesmann J, et al. Density effects on the guided transmission of 3 keV Ne7+ ions through PET nanocapillaries[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2009, 267(2): 226-230. doi: 10.1016/j.nimb.2008.10.046
|
[6] |
Vokhmyanina K A, Kubankin A S, Myshelovka L V, et al. Transport of accelerated electrons through dielectric nanochannels in PET films[J]. Journal of Instrumentation, 2020, 15: C04003. doi: 10.1088/1748-0221/15/04/C04003
|
[7] |
Sahana M B, Skog P, Víkor G, et al. Guiding of highly charged ions by highly ordered SiO2 nanocapillaries[J]. Physical Review A, 2006, 73: 040901(R). doi: 10.1103/PhysRevA.73.040901
|
[8] |
Zhang H Q, Skog P, Schuch R. Dynamics of guiding highly charged ions through SiO2 nanocapillaries[J]. Physical Review A, 2010, 82: 052901. doi: 10.1103/PhysRevA.82.052901
|
[9] |
Stolterfoht N, Hellhammer R, Juhász Z, et al. Guided transmission of Ne7+ ions through nanocapillaries in insulating polymers: scaling laws for projectile energies up to 50 keV[J]. Physical Review A, 2009, 79: 042902. doi: 10.1103/PhysRevA.79.042902
|
[10] |
哈帅, 张文铭, 谢一鸣, 等. 低能Cl–在Al2O3绝缘微孔膜中的输运过程[J]. 物理学报, 2020, 69:094101 doi: 10.7498/aps.69.20190933
Ha Shuai, Zhang Wenming, Xie Yiming, et al. Transmission of low-energy Cl– ions through Al2O3 insulating nanocapillaries[J]. Acta Physica Sinica, 2020, 69: 094101 doi: 10.7498/aps.69.20190933
|
[11] |
Skog P, Soroka I L, Johansson A, et al. Guiding of highly charged ions through Al2O3 nano-capillaries[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2007, 258(1): 145-149.
|
[12] |
Zhang Qi, Liu Zhonglin, Li Pengfei, et al. Transmission of low-energy negative ions through insulating nanocapillaries[J]. Physical Review A, 2018, 97: 042704. doi: 10.1103/PhysRevA.97.042704
|
[13] |
Das S, Dassanayake B S, Winkworth M, et al. Inelastic guiding of electrons in polymer nanocapillaries[J]. Physical Review A, 2007, 76: 042716. doi: 10.1103/PhysRevA.76.042716
|
[14] |
李鹏飞, 袁华, 程紫东, 等. 低能电子在玻璃管中的稳定传输[J]. 物理学报, 2022, 71:074101 doi: 10.7498/aps.71.20212036
Li Pengfei, Yuan Hua, Cheng Zidong, et al. Stable transmission of low energy electrons in glass tube with outer surface grounded conductively shielding[J]. Acta Physica Sinica, 2022, 71: 074101 doi: 10.7498/aps.71.20212036
|
[15] |
李鹏飞, 袁华, 程紫东, 等. 低能电子穿越玻璃直管时倾角依赖的输运动力学[J]. 物理学报, 2022, 71:084104 doi: 10.7498/aps.71.20212335
Li Pengfei, Yuan Hua, Cheng Zidong, et al. Dynamics of low energy electrons transmitting through straight glass capillary: tilt angle dependence[J]. Acta Physica Sinica, 2022, 71: 084104 doi: 10.7498/aps.71.20212335
|
[16] |
Milosavljević A R, Víkor G, Pešić Z D, et al. Guiding of low-energy electrons by highly ordered Al2O3 nanocapillaries[J]. Physical Review A, 2007, 75: 030901(R). doi: 10.1103/PhysRevA.75.030901
|
[17] |
Dassanayake B S, Das S, Bereczky R J, et al. Energy dependence of electron transmission through a single glass macrocapillary[J]. Physical Review A, 2010, 81: 020701(R). doi: 10.1103/PhysRevA.81.020701
|
[18] |
Wickramarachchi S J, Dassanayake B S, Keerthisinghe D, et al. Electron transmission through a microsize tapered glass capillary[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2011, 269(11): 1248-1252. doi: 10.1016/j.nimb.2010.11.089
|
[19] |
Zhang Hongqiang, Akram N, Soroka I L, et al. Transmission of highly charged ions through mica nanocapillaries of rhombic cross section[J]. Physical Review A, 2012, 86: 022901(R). doi: 10.1103/PhysRevA.86.022901
|
[20] |
Zhang H Q, Akram N, Skog P, et al. Tailoring of keV-ion beams by image charge when transmitting through rhombic and rectangular shaped nanocapillaries[J]. Physical Review Letters, 2012, 108: 193202. doi: 10.1103/PhysRevLett.108.193202
|
[21] |
Zhang Hongqiang, Akram N, Schuch R. Guiding and scattering of ions in transmission through mica nanocapillaries[J]. Physical Review A, 2016, 94: 032704. doi: 10.1103/PhysRevA.94.032704
|
[22] |
Schiessl K, Tőkési K, Solleder B, et al. Electron guiding through insulating nanocapillaries[J]. Physical Review Letters, 2009, 102: 163201. doi: 10.1103/PhysRevLett.102.163201
|
[23] |
Dassanayake B S, Keerthisinghe D, Wickramarachchi S, et al. Temporal evolution of electron transmission through insulating PET nanocapillaries[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2013, 298: 1-4.
|
[24] |
Keerthisinghe D, Dassanayake B S, Wickramarachchi S J, et al. Charge deposition dependence and energy loss of electrons transmitted through insulating PET nanocapillaries[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2013, 317: 105-108.
|
[25] |
Keerthisinghe D, Dassanayake B S, Wickramarachchi S J, et al. Elastic and inelastic transmission of electrons through insulating polyethylene terephthalate nanocapillaries[J]. Physical Review A, 2015, 92: 012703. doi: 10.1103/PhysRevA.92.012703
|
[26] |
Dassanayake B S, Bereczky R J, Das S, et al. Time evolution of electron transmission through a single glass macrocapillary: charge build-up, sudden discharge, and recovery[J]. Physical Review A, 2011, 83: 012707. doi: 10.1103/PhysRevA.83.012707
|
[27] |
Wickramarachchi S J, Ikeda T, Dassanayake B S, et al. Electron-beam transmission through a micrometer-sized tapered-glass capillary: dependence on incident energy and angular tilt angle[J]. Physical Review A, 2016, 94: 022701. doi: 10.1103/PhysRevA.94.022701
|
[28] |
Wickramarachchi S J, Ikeda T, Dassanayake B S, et al. Incident energy and charge deposition dependences of electron transmission through a microsized tapered glass capillary[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2016, 382: 60-66.
|
[29] |
Hovington P, Drouin D, Gauvin R, et al. CASINO: a new Monte Carlo code in C language for electron beam interactions—part III: stopping power at low energies[J]. Scanning, 1997, 19(1): 29-35. doi: 10.1002/sca.4950190104
|
[30] |
Drouin D, Couture A R, Joly D, et al. CASINO V2.42—A fast and easy-to-use modeling tool for scanning electron microscopy and microanalysis users[J]. Scanning, 2007, 29(3): 92-101. doi: 10.1002/sca.20000
|
[31] |
Demers H, Poirrier-Demers N, Couture A R, et al. Three-dimensional electron microscopy simulation with the CASINO Monte Carlo software[J]. Scanning, 2011, 33(3): 135-146. doi: 10.1002/sca.20262
|
[32] |
Joy D C, Luo S. An empirical stopping power relationship for low-energy electrons[J]. Scanning, 1989, 11(4): 176-180. doi: 10.1002/sca.4950110404
|
[33] |
Lowney J R. Monte Carlo simulation of scanning electron microscope signals for lithographic metrology[J]. Scanning, 1996, 18(4): 301-306.
|