He An, Guo Fan, Kang Junjun, et al. Trigger system of the middle energy X-ray device[J]. High Power Laser and Particle Beams, 2022, 34: 115001. doi: 10.11884/HPLPB202234.220170
Citation: Zhou Peng, Wan Chengliang, Yuan Hua, et al. Dynamic process of low energy electrons through insulating nanocapillaries[J]. High Power Laser and Particle Beams, 2023, 35: 026001. doi: 10.11884/HPLPB202335.220120

Dynamic process of low energy electrons through insulating nanocapillaries

doi: 10.11884/HPLPB202335.220120
  • Received Date: 2022-04-24
  • Rev Recd Date: 2022-09-29
  • Available Online: 2022-09-30
  • Publish Date: 2023-01-14
  • In the study of the transportation of low energy electrons through insulating capillaries, the experimental results are very different and depending on many conditions. This leads to some controversies on whether the mechanisms of the electron guiding exists or not . This work studies the electron beam with an energy of 1500 eV transmitting through the insulating PET capillaries of 400 nm in diameter. The capillaries have never been irradiated by any beams before. The two-dimensional angular distributions of transmitted electrons and their evolution are measured by a Mirco-channel Plate (MCP) detector with the phosphor screen. The energy distribution of the transmitted electrons is also measured by a mesh system before the MCP detector where the stepping voltages are put on and the transmitted electrons are recorded by the MCP detector accordingly. The experimental results show that the intensity of transmitted electrons increases with the charging time when the capillaries starts to be exposed to the electron beam, and a typical charging-up is observed. During the charging process, the angular distribution width of transmitted electrons increases from small to large, but the center of the angular distribution remains the same. The energy spectrum of the transmitted electrons when they reach the stationary state shows that the most transmitted electrons keep their initial energy. This work provides new experimental evidence for understanding electron transport in insulator micropores, and gives the conditions for the formation of guiding electric field in micropores that may form guiding effect.
  • [1]
    Lemell C, Burgdörfer J, Aumayr F. Interaction of charged particles with insulating capillary targets—The guiding effect[J]. Progress in Surface Science, 2013, 88(3): 237-278. doi: 10.1016/j.progsurf.2013.06.001
    [2]
    Stolterfoht N, Yamazaki Y. Guiding of charged particles through capillaries in insulating materials[J]. Physics Reports, 2016, 629: 1-107. doi: 10.1016/j.physrep.2016.02.008
    [3]
    Martin C R. Nanomaterials: a membrane-based synthetic approach[J]. Science, 1994, 266(5193): 1961-1966. doi: 10.1126/science.266.5193.1961
    [4]
    Stolterfoht N, Hellhammer R, Bundesmann J, et al. Scaling laws for guiding of highly charged ions through nanocapillaries in an insulating polymer[J]. Physical Review A, 2008, 77: 032905. doi: 10.1103/PhysRevA.77.032905
    [5]
    Stolterfoht N, Hellhammer R, Bundesmann J, et al. Density effects on the guided transmission of 3 keV Ne7+ ions through PET nanocapillaries[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2009, 267(2): 226-230. doi: 10.1016/j.nimb.2008.10.046
    [6]
    Vokhmyanina K A, Kubankin A S, Myshelovka L V, et al. Transport of accelerated electrons through dielectric nanochannels in PET films[J]. Journal of Instrumentation, 2020, 15: C04003. doi: 10.1088/1748-0221/15/04/C04003
    [7]
    Sahana M B, Skog P, Víkor G, et al. Guiding of highly charged ions by highly ordered SiO2 nanocapillaries[J]. Physical Review A, 2006, 73: 040901(R). doi: 10.1103/PhysRevA.73.040901
    [8]
    Zhang H Q, Skog P, Schuch R. Dynamics of guiding highly charged ions through SiO2 nanocapillaries[J]. Physical Review A, 2010, 82: 052901. doi: 10.1103/PhysRevA.82.052901
    [9]
    Stolterfoht N, Hellhammer R, Juhász Z, et al. Guided transmission of Ne7+ ions through nanocapillaries in insulating polymers: scaling laws for projectile energies up to 50 keV[J]. Physical Review A, 2009, 79: 042902. doi: 10.1103/PhysRevA.79.042902
    [10]
    哈帅, 张文铭, 谢一鸣, 等. 低能Cl在Al2O3绝缘微孔膜中的输运过程[J]. 物理学报, 2020, 69:094101 doi: 10.7498/aps.69.20190933

    Ha Shuai, Zhang Wenming, Xie Yiming, et al. Transmission of low-energy Cl ions through Al2O3 insulating nanocapillaries[J]. Acta Physica Sinica, 2020, 69: 094101 doi: 10.7498/aps.69.20190933
    [11]
    Skog P, Soroka I L, Johansson A, et al. Guiding of highly charged ions through Al2O3 nano-capillaries[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2007, 258(1): 145-149.
    [12]
    Zhang Qi, Liu Zhonglin, Li Pengfei, et al. Transmission of low-energy negative ions through insulating nanocapillaries[J]. Physical Review A, 2018, 97: 042704. doi: 10.1103/PhysRevA.97.042704
    [13]
    Das S, Dassanayake B S, Winkworth M, et al. Inelastic guiding of electrons in polymer nanocapillaries[J]. Physical Review A, 2007, 76: 042716. doi: 10.1103/PhysRevA.76.042716
    [14]
    李鹏飞, 袁华, 程紫东, 等. 低能电子在玻璃管中的稳定传输[J]. 物理学报, 2022, 71:074101 doi: 10.7498/aps.71.20212036

    Li Pengfei, Yuan Hua, Cheng Zidong, et al. Stable transmission of low energy electrons in glass tube with outer surface grounded conductively shielding[J]. Acta Physica Sinica, 2022, 71: 074101 doi: 10.7498/aps.71.20212036
    [15]
    李鹏飞, 袁华, 程紫东, 等. 低能电子穿越玻璃直管时倾角依赖的输运动力学[J]. 物理学报, 2022, 71:084104 doi: 10.7498/aps.71.20212335

    Li Pengfei, Yuan Hua, Cheng Zidong, et al. Dynamics of low energy electrons transmitting through straight glass capillary: tilt angle dependence[J]. Acta Physica Sinica, 2022, 71: 084104 doi: 10.7498/aps.71.20212335
    [16]
    Milosavljević A R, Víkor G, Pešić Z D, et al. Guiding of low-energy electrons by highly ordered Al2O3 nanocapillaries[J]. Physical Review A, 2007, 75: 030901(R). doi: 10.1103/PhysRevA.75.030901
    [17]
    Dassanayake B S, Das S, Bereczky R J, et al. Energy dependence of electron transmission through a single glass macrocapillary[J]. Physical Review A, 2010, 81: 020701(R). doi: 10.1103/PhysRevA.81.020701
    [18]
    Wickramarachchi S J, Dassanayake B S, Keerthisinghe D, et al. Electron transmission through a microsize tapered glass capillary[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2011, 269(11): 1248-1252. doi: 10.1016/j.nimb.2010.11.089
    [19]
    Zhang Hongqiang, Akram N, Soroka I L, et al. Transmission of highly charged ions through mica nanocapillaries of rhombic cross section[J]. Physical Review A, 2012, 86: 022901(R). doi: 10.1103/PhysRevA.86.022901
    [20]
    Zhang H Q, Akram N, Skog P, et al. Tailoring of keV-ion beams by image charge when transmitting through rhombic and rectangular shaped nanocapillaries[J]. Physical Review Letters, 2012, 108: 193202. doi: 10.1103/PhysRevLett.108.193202
    [21]
    Zhang Hongqiang, Akram N, Schuch R. Guiding and scattering of ions in transmission through mica nanocapillaries[J]. Physical Review A, 2016, 94: 032704. doi: 10.1103/PhysRevA.94.032704
    [22]
    Schiessl K, Tőkési K, Solleder B, et al. Electron guiding through insulating nanocapillaries[J]. Physical Review Letters, 2009, 102: 163201. doi: 10.1103/PhysRevLett.102.163201
    [23]
    Dassanayake B S, Keerthisinghe D, Wickramarachchi S, et al. Temporal evolution of electron transmission through insulating PET nanocapillaries[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2013, 298: 1-4.
    [24]
    Keerthisinghe D, Dassanayake B S, Wickramarachchi S J, et al. Charge deposition dependence and energy loss of electrons transmitted through insulating PET nanocapillaries[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2013, 317: 105-108.
    [25]
    Keerthisinghe D, Dassanayake B S, Wickramarachchi S J, et al. Elastic and inelastic transmission of electrons through insulating polyethylene terephthalate nanocapillaries[J]. Physical Review A, 2015, 92: 012703. doi: 10.1103/PhysRevA.92.012703
    [26]
    Dassanayake B S, Bereczky R J, Das S, et al. Time evolution of electron transmission through a single glass macrocapillary: charge build-up, sudden discharge, and recovery[J]. Physical Review A, 2011, 83: 012707. doi: 10.1103/PhysRevA.83.012707
    [27]
    Wickramarachchi S J, Ikeda T, Dassanayake B S, et al. Electron-beam transmission through a micrometer-sized tapered-glass capillary: dependence on incident energy and angular tilt angle[J]. Physical Review A, 2016, 94: 022701. doi: 10.1103/PhysRevA.94.022701
    [28]
    Wickramarachchi S J, Ikeda T, Dassanayake B S, et al. Incident energy and charge deposition dependences of electron transmission through a microsized tapered glass capillary[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2016, 382: 60-66.
    [29]
    Hovington P, Drouin D, Gauvin R, et al. CASINO: a new Monte Carlo code in C language for electron beam interactions—part III: stopping power at low energies[J]. Scanning, 1997, 19(1): 29-35. doi: 10.1002/sca.4950190104
    [30]
    Drouin D, Couture A R, Joly D, et al. CASINO V2.42—A fast and easy-to-use modeling tool for scanning electron microscopy and microanalysis users[J]. Scanning, 2007, 29(3): 92-101. doi: 10.1002/sca.20000
    [31]
    Demers H, Poirrier-Demers N, Couture A R, et al. Three-dimensional electron microscopy simulation with the CASINO Monte Carlo software[J]. Scanning, 2011, 33(3): 135-146. doi: 10.1002/sca.20262
    [32]
    Joy D C, Luo S. An empirical stopping power relationship for low-energy electrons[J]. Scanning, 1989, 11(4): 176-180. doi: 10.1002/sca.4950110404
    [33]
    Lowney J R. Monte Carlo simulation of scanning electron microscope signals for lithographic metrology[J]. Scanning, 1996, 18(4): 301-306.
  • Relative Articles

    [1]Wang Jie, Chen Lin, Feng Yuanwei, Jiang Jihao, Zhao Yue, Liu Hongwei, Han Wenhui, Zhou Liangji. Influence of isolation element in trigger circuit on synchronization of multiple switches[J]. High Power Laser and Particle Beams, 2025, 37(3): 035023. doi: 10.11884/HPLPB202537.240371
    [2]Li Helong, Xu Jian, Yang Zhiqing, Song Jiahao, Wu Zhouyu, Tang Yihui, Zhao Shuang, Ding Lijian. Design of high-power repetitive pulse laser power supply[J]. High Power Laser and Particle Beams, 2024, 36(5): 055008. doi: 10.11884/HPLPB202436.240045
    [3]Zhou Liangji, He An, Ding Yu, Chen Lin, Wang Meng, Zhao Yue. Extendable high voltage trigger unit with 40 output cables[J]. High Power Laser and Particle Beams, 2018, 30(9): 095006. doi: 10.11884/HPLPB201830.170451
    [4]Lu Ze, Gao Zhixing, Hu Fengming. Pollution of lens in high pressure SF6 gas for high-voltage, high-current, laser triggered switch[J]. High Power Laser and Particle Beams, 2016, 28(01): 015011. doi: 10.11884/HPLPB201628.015011
    [5]Ma Chenggang, Li Xiqin, Li Yawei, Wu Lie. Development of 150 kV fast risetime low jitter Marx generator[J]. High Power Laser and Particle Beams, 2015, 27(04): 045001. doi: 10.11884/HPLPB201527.045001
    [6]Liang Tianxue, Sun Fengju, Jiang Xiaofeng, Wei Hao, Wang Zhiguo, Zhang Zhong, Qiu Aici. Influence study of FLTD stage output when switches discharge synchronous[J]. High Power Laser and Particle Beams, 2014, 26(10): 105001. doi: 10.11884/HPLPB201426.105001
    [7]Ding Mingjun, Li Xiqin, Ouyang Yanjing, Jia Xing, Huang Lei, Wu Hongguang. Design of 5 kHz repetition-rate trigger for hydrogen thyratron[J]. High Power Laser and Particle Beams, 2014, 26(04): 045026. doi: 10.11884/HPLPB201426.045026
    [8]Cong Peitian, Wu Hanyu, Sun Tieping, Li Yan, Lei Tianshi, Zeng Zhengzhong, Qiu Aici. Design of multi-gap rail gas switch and its performance test[J]. High Power Laser and Particle Beams, 2013, 25(04): 1059-1062.
    [9]Lu YanLei, Fan Yajun, Shi Lei, Wang Junjie, Xia Wenfeng. Laser-triggered synchronization experiment of GW-level nanosecond pulse sources[J]. High Power Laser and Particle Beams, 2012, 24(04): 975-979. doi: 10.3788/HPLPB20122404.0975
    [10]He An, Ren Ji, Feng Shuping, Xie Weiping, Wang Meng, Wei Bing, Ji Ce, Xia Minghe, Wang Yujuan, Fu Zhen, Li Yong, Wang Zhi, Yao Bin, Ding Yu. Laser triggering system for Z-pinch primary test stand[J]. High Power Laser and Particle Beams, 2012, 24(04): 839-842. doi: 10.3788/HPLPB20122404.0839
    [11]Zhang Xinjun, Wu Jian, Zhang Guowei, Wu Hanyu, Wang Liangping, Zeng ZhengZhong. Trigger system of laser triggered gas switch on Qiangguang-Ⅰ accelerator[J]. High Power Laser and Particle Beams, 2012, 24(03): 643-646. doi: 10.3788/HPLPB20122403.0643
    [12]liang tianxue, sun fengju, qiu aici, zeng jiangtao, liu xuandong, jiang xiaofeng, liu zhigang, yin jiahui, zhang zhong, . Influence of trigger voltage on ± 100 kV multi-gap multi-channel switch performance[J]. High Power Laser and Particle Beams, 2010, 22(05): 0- .
    [13]wang chuan, lu ze, wang jianzhong, zhang tianjue, jiang xingdong. Simulation of laser triggered gas switch with cylindrical electrodes on pre-breakdown stage[J]. High Power Laser and Particle Beams, 2010, 22(04): 0- .
    [14]wei bing, qing yanling, li hongtao, wang yujuan, fu zhen, he an, feng shuping. Uncertainty in delay and jitter measurement of laser-triggered switch[J]. High Power Laser and Particle Beams, 2010, 22(07): 0- .
    [15]wei bing, liu qineng, fu zhen, wang yujuan, qing yanling, gu yuanchao, li hongtao, feng shuping. Voltage and current measurement of laser-triggered switch[J]. High Power Laser and Particle Beams, 2009, 21(03): 0- .
    [16]yang jian-jun, zhou xiao-jun, guo wen-qiong, zhang xiong-jun, sui zhan, wu deng-sheng. Method to reduce breakdown time delay and jitter of large aperture electro-optic switch by one-pulse process[J]. High Power Laser and Particle Beams, 2008, 20(07): 0- .
    [17]du qiang, huang wen-hui, sun da-rui, dai jian-ping, tang chuan-xiang. Frequency stabilization of mode-locked laser for Thomson scattering X-ray source[J]. High Power Laser and Particle Beams, 2006, 18(03): 0- .
    [18]wu hui, wu jian qiang, guo xing kuan. rigger system development of a new type thyratron HY3202[J]. High Power Laser and Particle Beams, 2002, 14(04): 0- .
    [19]liu sheng guang, li yong gui, wang ming kai. Measurement method of time jitter between pump laser pulse and RF wave by the charge change in photoinjector[J]. High Power Laser and Particle Beams, 2002, 14(05): 0- .
    [20]li zheng-hong, hu ke-song. Investigation of laser pulse's timing jitter in RF photoinjector[J]. High Power Laser and Particle Beams, 2001, 13(01): 0- .
  • Cited by

    Periodical cited type(9)

    1. 冯现永. 基于小波分析的图书馆电子阅览设备故障检测方法. 自动化与仪器仪表. 2021(02): 46-49 .
    2. 杨敬,贾召会,龚梦彤,蔡伟,刘佳豪,王轩,樊艳春. 基于多信号流图的亚跨超声速风洞故障诊断方法. 计算机测量与控制. 2021(08): 67-71 .
    3. 苏健,吴秀. 半导体激光宫颈糜烂治疗仪故障在线监测研究. 自动化与仪器仪表. 2020(01): 146-149 .
    4. 冯晓晖. 基于激光定位的非线性故障检测系统. 激光杂志. 2020(01): 81-85 .
    5. 黄将. 数据中心光纤通信网络传输非平稳数据无损检测技术研究. 激光杂志. 2019(04): 131-135 .
    6. 邵健,庄泽旭. 医用激光相机设备故障快速检测系统设计. 激光杂志. 2019(05): 104-107 .
    7. 王艳阁. 光纤传感网络链路故障自修复系统设计. 激光杂志. 2018(03): 172-175 .
    8. 黄燕. 复杂复印机故障信号的检测与提取. 现代电子技术. 2018(22): 103-105+109 .
    9. 吴华芹. 基于机器学习的光纤故障数据信息快速排除方法. 激光杂志. 2018(12): 160-165 .

    Other cited types(2)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-04010203040
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 21.6 %FULLTEXT: 21.6 %META: 71.3 %META: 71.3 %PDF: 7.1 %PDF: 7.1 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 4.2 %其他: 4.2 %其他: 0.4 %其他: 0.4 %China: 0.1 %China: 0.1 %Rochester: 0.1 %Rochester: 0.1 %San Lorenzo: 2.2 %San Lorenzo: 2.2 %San Mateo: 0.1 %San Mateo: 0.1 %United States: 0.1 %United States: 0.1 %[]: 0.1 %[]: 0.1 %上海: 1.3 %上海: 1.3 %东莞: 0.1 %东莞: 0.1 %中山: 0.2 %中山: 0.2 %临汾: 0.2 %临汾: 0.2 %丹东: 0.1 %丹东: 0.1 %丽水: 0.2 %丽水: 0.2 %保定: 0.2 %保定: 0.2 %兰州: 0.4 %兰州: 0.4 %内江: 0.2 %内江: 0.2 %北京: 2.2 %北京: 2.2 %十堰: 0.1 %十堰: 0.1 %南京: 0.3 %南京: 0.3 %台州: 1.1 %台州: 1.1 %合肥: 0.2 %合肥: 0.2 %哈尔滨: 0.1 %哈尔滨: 0.1 %哈尔科夫: 1.0 %哈尔科夫: 1.0 %哥伦布: 0.4 %哥伦布: 0.4 %大连: 0.1 %大连: 0.1 %天津: 0.3 %天津: 0.3 %太原: 0.1 %太原: 0.1 %安康: 0.1 %安康: 0.1 %宜昌: 0.4 %宜昌: 0.4 %宣城: 0.4 %宣城: 0.4 %常州: 0.1 %常州: 0.1 %常德: 0.2 %常德: 0.2 %广州: 0.3 %广州: 0.3 %张家口: 0.8 %张家口: 0.8 %徐州: 0.2 %徐州: 0.2 %德黑兰: 0.2 %德黑兰: 0.2 %成都: 1.9 %成都: 1.9 %扬州: 0.2 %扬州: 0.2 %晋城: 0.1 %晋城: 0.1 %普洱: 0.1 %普洱: 0.1 %杭州: 0.9 %杭州: 0.9 %武汉: 0.3 %武汉: 0.3 %沈阳: 0.3 %沈阳: 0.3 %洛阳: 0.1 %洛阳: 0.1 %济南: 0.2 %济南: 0.2 %深圳: 0.8 %深圳: 0.8 %湖州: 0.5 %湖州: 0.5 %漯河: 0.8 %漯河: 0.8 %烟台: 0.1 %烟台: 0.1 %眉山: 0.1 %眉山: 0.1 %石家庄: 0.1 %石家庄: 0.1 %绵阳: 3.6 %绵阳: 3.6 %芒廷维尤: 30.3 %芒廷维尤: 30.3 %芝加哥: 0.2 %芝加哥: 0.2 %衡阳: 0.1 %衡阳: 0.1 %衢州: 0.7 %衢州: 0.7 %襄阳: 0.1 %襄阳: 0.1 %西宁: 31.3 %西宁: 31.3 %西安: 1.3 %西安: 1.3 %西雅图: 0.1 %西雅图: 0.1 %诺沃克: 3.0 %诺沃克: 3.0 %贵阳: 0.3 %贵阳: 0.3 %费利蒙: 0.1 %费利蒙: 0.1 %运城: 2.0 %运城: 2.0 %郑州: 0.5 %郑州: 0.5 %鄂州: 0.1 %鄂州: 0.1 %重庆: 0.8 %重庆: 0.8 %长沙: 0.4 %长沙: 0.4 %长治: 0.1 %长治: 0.1 %青岛: 0.1 %青岛: 0.1 %鞍山: 0.2 %鞍山: 0.2 %鹰潭: 0.1 %鹰潭: 0.1 %其他其他ChinaRochesterSan LorenzoSan MateoUnited States[]上海东莞中山临汾丹东丽水保定兰州内江北京十堰南京台州合肥哈尔滨哈尔科夫哥伦布大连天津太原安康宜昌宣城常州常德广州张家口徐州德黑兰成都扬州晋城普洱杭州武汉沈阳洛阳济南深圳湖州漯河烟台眉山石家庄绵阳芒廷维尤芝加哥衡阳衢州襄阳西宁西安西雅图诺沃克贵阳费利蒙运城郑州鄂州重庆长沙长治青岛鞍山鹰潭

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)

    Article views (999) PDF downloads(48) Cited by(11)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return