Citation: | Jiang Wei, Dong Yunsong, Zhang Xing, et al. Uncertainty evaluate of core symmetry which observed by Kirkpatrick-Baez microscope[J]. High Power Laser and Particle Beams, 2023, 35: 032002. doi: 10.11884/HPLPB202335.220139 |
[1] |
Lindl J D, Amendt P, Berger R L, et al. The physics basis for ignition using indirect-drive targets on the National Ignition Facility[J]. Phys Plasmas, 2004, 11(2): 339-491. doi: 10.1063/1.1578638
|
[2] |
Murphy T J, Wallace J M, Delamater N D, et al. Hohlraum symmetry experiments with multiple beam cones on the Omega laser facility[J]. Phys Rev Lett, 1998, 81(1): 108-111. doi: 10.1103/PhysRevLett.81.108
|
[3] |
Kyrala G A, Kline J L, Dixit S, et al. Symmetry tuning for ignition capsules via the symcap technique[J]. Phys Plasmas, 2011, 18: 056307. doi: 10.1063/1.3574504
|
[4] |
Pollaine S M, Bradley D K, Landen O L, et al. National Ignition Facility scale hohlraum asymmetry studies by thin shell radiography[J]. Phys Plasmas, 2001, 8(5): 2357-2364. doi: 10.1063/1.1364514
|
[5] |
Kirkwood R K, Milovich J, Bradley D K, et al. Sensitivity of ignition scale backlit thin-shell implosions to hohlraum symmetry in the foot of the drive pulse[J]. Phys Plasmas, 2009, 16: 012702. doi: 10.1063/1.3041160
|
[6] |
Dewald E L, Milovich J, Thomas C, et al. Experimental demonstration of early time, hohlraum radiation symmetry tuning for indirect drive ignition experiments[J]. Phys Plasmas, 2011, 18: 092703. doi: 10.1063/1.3624497
|
[7] |
陈伯伦, 蒋炜, 景龙飞, 等. 再发射技术测量SGII黑腔靶早期对称性[J]. 强激光与粒子束, 2013, 25(2):385-388 doi: 10.3788/HPLPB20132502.0385
Chen Bolun, Jiang Wei, Jing Longfei, et al. Re-emission technique for early time, hohlraum radiation symmetry measurements on SGⅡ facility[J]. High Power Laser and Particle Beams, 2013, 25(2): 385-388 doi: 10.3788/HPLPB20132502.0385
|
[8] |
Dong Yunsong, Kang Dongguo, Jiang Wei, et al. Study of the asymmetry of hot-spot self-emission imaging of inertial confinement fusion implosion driven by high-power laser facilities[J]. Plasma Sci Technol, 2020, 22: 084003. doi: 10.1088/2058-6272/ab9804
|
[9] |
Town R P J, Bradley D K, Kritcher A, et al. Dynamic symmetry of indirectly driven inertial confinement fusion capsules on the National Ignition Facility[J]. Phys Plasmas, 2014, 21: 056313. doi: 10.1063/1.4876609
|
[10] |
Pickworth L A, McCarville T, Decker T, et al. A kirkpatrick-baez microscope for the National Ignition Facility[J]. Rev Sci Instrum, 2014, 85: 11D611. doi: 10.1063/1.4886433
|
[11] |
穆宝忠, 吴雯靓, 伊圣振, 等. 4.75 keV能点四通道Kirkpatrick-Baez显微镜[J]. 强激光与粒子束, 2013, 25(4):903-907 doi: 10.3788/HPLPB20132504.0903
Mu Baozhong, Wu Wenliang, Yi Shengzhen, et al. 4.75 keV four-channel Kirkpatrick-Baez microscope[J]. High Power Laser and Particle Beams, 2013, 25(4): 903-907 doi: 10.3788/HPLPB20132504.0903
|
[12] |
Meadowcroft A L, Bentley C D, Stott E N. Evaluation of the sensitivity and fading characteristics of an image plate system for X-ray diagnostics[J]. Rev Sci Instrum, 2008, 79: 113102. doi: 10.1063/1.3013123
|
[13] |
Pawley C J, Deniz A V. Improved measurements of noise and resolution of X-ray framing cameras at 1-2 keV[J]. Rev Sci Instrum, 2000, 71(3): 1286-1295. doi: 10.1063/1.1150497
|
[14] |
Callahan D A, Meezan N B, Glenzer S H, et al. The velocity campaign for ignition on NIF[J]. Phys Plasmas, 2012, 19: 056305. doi: 10.1063/1.3694840
|
[1] | Huang Hairong, Zhang Liangqi, Liu Weiyuan, Yu Tongpu, Luo Wen. Research progress of quantum electrodynamics cascade and dense positron production driven by interaction between extremely intense lasers and solid targets[J]. High Power Laser and Particle Beams, 2023, 35(1): 012004. doi: 10.11884/HPLPB202335.220208 |
[2] | Wu Guanjian, Wang Lei, Wang Guanwen, Shi Xiaolei, Zhai Xinzhe, Chen Jinhui. Design of injection and extraction delay-line kicker magnet for circular electron-positron collider[J]. High Power Laser and Particle Beams, 2023, 35(5): 054002. doi: 10.11884/HPLPB202335.220364 |
[3] | Zhou Peng, Wan Chengliang, Yuan Hua, Cheng Zidong, Li Pengfei, Zhang Haowen, Cui Ying, Zhang Hongqiang, Chen Ximeng. Dynamic process of low energy electrons through insulating nanocapillaries[J]. High Power Laser and Particle Beams, 2023, 35(2): 026001. doi: 10.11884/HPLPB202335.220120 |
[4] | Gong Chi, Li Ziliang, Li Yingjun. Progress of pair production from vacuum in strong laser fields[J]. High Power Laser and Particle Beams, 2023, 35(1): 012002. doi: 10.11884/HPLPB202335.220145 |
[5] | Kang Dongdong, Zeng Qiyu, Zhang Shen, Wang Xiaowei, Dai Jiayu. Dynamics and micro-structures in generation of warm dense matter using intense laser[J]. High Power Laser and Particle Beams, 2020, 32(9): 092006. doi: 10.11884/HPLPB202032.200121 |
[6] | He Shoujie, Zhang Baoming, Wang Peng, Zhang Zhao, Han Yuhong. Simulation on the dynamics of hollow cathode discharge in helium[J]. High Power Laser and Particle Beams, 2018, 30(2): 024001. doi: 10.11884/HPLPB201830.170211 |
[7] | Dong Ye, Liu Qingxiang, Li Xiangqiang, Zhou Haijing, Dong Zhiwei. Configuration design and dynamic process study of novel multipacting cathode[J]. High Power Laser and Particle Beams, 2018, 30(3): 033001. doi: 10.11884/HPLPB201830.170328 |
[8] | He Jun, Zhang Cong, Deng Qingyong, Wang Lin, Sui Yanfeng, Yue Junhui, Cao Jianshe. Laser wire scanner system for Beijing Electron-Positron Collider Ⅱ[J]. High Power Laser and Particle Beams, 2015, 27(06): 065103. doi: 10.11884/HPLPB201527.065103 |
[9] | Qiu Rong, Wang Junbo, Ren Huan, Zhou Qiang, Tian Runni, Li Xiaohong, Liu Hao, Ma Ping. Dynamic process of nanosecond laser damage of fused silica[J]. High Power Laser and Particle Beams, 2013, 25(11): 2882-2886. doi: 10.3788/HPLPB20132511.2882 |
[10] | Li Jun. Transverse oscillation in relativistic electronpositron plasma with q distribution[J]. High Power Laser and Particle Beams, 2013, 25(04): 1009-1012. |
[11] | ding zhijie, tang yongjian, yi yong, luo jiangshan, li kai. Molecular dynamics simulation of Ni-Co alloy melt-spinning process[J]. High Power Laser and Particle Beams, 2011, 23(01): 0- . |
[12] | zhang peiqing, guan yefeng, xie xiangsheng, qiu zhiren, zhou jianying. Adaptive optimization for nonlinear optical frequency conversion of femtosecond laser[J]. High Power Laser and Particle Beams, 2010, 22(11): 0- . |
[13] | liao yan-li, liu san-qiu, wang hao. Transverse dispersion law of electron-positron plasma in ultra-relativistic regime[J]. High Power Laser and Particle Beams, 2008, 20(05): 0- . |
[14] | yu cheng-hui, wang lin, wei yuan-yuan. Beam-beam deflection effect in Beijing electron positron collider[J]. High Power Laser and Particle Beams, 2005, 17(11): 0- . |
[15] | liu shi-xing, zhang yong-ming, zhang jian, wei xiao-le, yin ze-jie, liu zheng-quan, cui xiang-zong, li jia-cai. Application of particle track system BEPC test beam[J]. High Power Laser and Particle Beams, 2004, 16(07): 0- . |
[16] | tang chuan xiang, tian kai, chen huai bi, li quan feng, jiang zhan feng, wang ying, xu yi yong. Beam dynamics researches on micropulse electron gun[J]. High Power Laser and Particle Beams, 2003, 15(08): 0- . |
[17] | hao dong shan. Influences of uncaptured electron on energy conversion efficiency of multiphoton nonlinear Compton scattering[J]. High Power Laser and Particle Beams, 2003, 15(09): 0- . |
[18] | ning cheng, yang zhen hua, ding ning. Process of radiation magnetohydrodynamics in Al wirearray Zpinch[J]. High Power Laser and Particle Beams, 2002, 14(06): 0- . |
[19] | fang jin-qing, yao wei-guang. Chaotic dynamics and chaos control in nonlinear laser systems[J]. High Power Laser and Particle Beams, 2001, 13(02): 0- . |
[20] | zhong zhi-cheng, li zhi-hua, zhang duan-ming, guan li. Modify the dynamic process of the bulk target’s plasma plume generated by pulsed laser[J]. High Power Laser and Particle Beams, 2001, 13(03): 0- . |
1. | 彭鹏, 彭倍, 周吴, 于慧君, 曲昊, 何晓平. 工艺误差对电容式微加速度计温度漂移的影响(英文). 强激光与粒子束. 2016(06): 128-131 . ![]() |