Citation: | Gong Chi, Li Ziliang, Li Yingjun. Progress of pair production from vacuum in strong laser fields[J]. High Power Laser and Particle Beams, 2023, 35: 012002. doi: 10.11884/HPLPB202335.220145 |
[1] |
Strickland D, Mourou G. Compression of amplified chirped optical pulses[J]. Optics Communications, 1985, 55(6): 447-449. doi: 10.1016/0030-4018(85)90151-8
|
[2] |
张杰. 强场物理——一门崭新的学科[J]. 物理, 1997, 26(11):643-649
Zhang Jie. A new horizon high field physics[J]. Physics, 1997, 26(11): 643-649
|
[3] |
Schrödinger E. Quantisierung als Eigenwertproblem[J]. Annalen der Physik, 1926, 384(4): 361-376. doi: 10.1002/andp.19263840404
|
[4] |
Gordon W. Der Comptoneffekt nach der Schrödingerschen Theorie[J]. Zeitschrift für Physik, 1926, 40(1): 117-133. Klein O. Quantentheorie und fünfdimensionale Relativitätstheorie[J]. Zeitschrift für Physik, 1926, 37(12): 895-906.
|
[5] |
Dirac P A M. The principles of quantum mechanics[M]. 4th ed. Oxford: Oxford University Press, 1982.
|
[6] |
Schwinger J. On gauge invariance and vacuum polarization[J]. Physical Review Journals Archive, 1951, 82(5): 664-679.
|
[7] |
Bulanov S S, Esirkepov T Z, Thomas A G R, et al. Schwinger limit attainability with extreme power lasers[J]. Physical Review Letters, 2010, 105: 220407. doi: 10.1103/PhysRevLett.105.220407
|
[8] |
Fedotov A M, Narozhny N B, Mourou G, et al. Limitations on the attainable intensity of high power lasers[J]. Physical Review Letters, 2010, 105: 080402.
|
[9] |
Elkina N V, Fedotov A M, Kostyukov I Y, et al. QED cascades induced by circularly polarized laser fields[J]. Physical Review Accelerators and Beams, 2011, 14: 054401. doi: 10.1103/PhysRevSTAB.14.054401
|
[10] |
Cowan T, Backe H, Bethge K, et al. Observation of correlated narrow-peak structures in positron and electron spectra from superheavy collision systems[J]. Physical Review Letters, 1986, 56(5): 444-447. doi: 10.1103/PhysRevLett.56.444
|
[11] |
Dunne G V. Extreme quantum field theory and particle physics with IZEST[J]. The European Physical Journal Special Topics, 2014, 223(6): 1055-1061. doi: 10.1140/epjst/e2014-02156-4
|
[12] |
Mocken G R, Keitel C H. FFT-split-operator code for solving the Dirac equation in 2+1 dimensions[J]. Computer Physics Communications, 2008, 178(11): 868-882.
|
[13] |
Ruf M, Bauke H, Keitel C H. A real space split operator method for the Klein–Gordon equation[J]. Journal of Computational Physics, 2009, 228(24): 9092-9106. doi: 10.1016/j.jcp.2009.09.012
|
[14] |
Furry W H. On bound states and scattering in positron theory[J]. Physical Review Journals Archive, 1951, 81(1): 115-124.
|
[15] |
Aleksandrov I A, Di Piazza A, Plunien G, et al. Stimulated vacuum emission and photon absorption in strong electromagnetic fields[J]. Physical Review D, 2022, 105: 116005. doi: 10.1103/PhysRevD.105.116005
|
[16] |
Kim S P, Page D N. Schwinger pair production via instantons in strong electric fields[J]. Physical Review D, 2002, 65: 105002. doi: 10.1103/PhysRevD.65.105002
|
[17] |
Dietrich D D, Dunne G V. Gutzwiller's trace formula and vacuum pair production[J]. Journal of Physics A: Mathematical and Theoretical, 2007, 40(34): F825-F830.
|
[18] |
Bergues B, Ni Yongfeng, Helm H, et al. Experimental study of photodetachment in a strong laser field of circular polarization[J]. Physical Review Letters, 2005, 95: 263002. doi: 10.1103/PhysRevLett.95.263002
|
[19] |
Tanaka K A, Spohr K M, Balabanski D L, et al. Current status and highlights of the ELI-NP research program[J]. Matter and Radiation at Extremes, 2020, 5: 024402. doi: 10.1063/1.5093535
|
[20] |
Wang Weimin, Sheng Zhengming, Gibbon P, et al. Collimated ultrabright gamma rays from electron wiggling along a petawatt laser-irradiated wire in the QED regime[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(40): 9911-9916.
|
[21] |
Zhu Xinglong, Chen Min, Yu Tongpu, et al. Collimated GeV attosecond electron–positron bunches from a plasma channel driven by 10 PW lasers[J]. Matter and Radiation at Extremes, 2019, 4: 014401.
|
[22] |
Wen M, Tamburini M, Keitel C H. Polarized laser-WakeField-accelerated kiloampere electron beams[J]. Physical Review Letters, 2019, 122: 214801. doi: 10.1103/PhysRevLett.122.214801
|
[23] |
Geng Xuesong, Ji Liangliang, Shen B F, et al. Quantum reflection above the classical radiation-reaction barrier in the quantum electro-dynamics regime[J]. Communications Physics, 2019, 2: 66. doi: 10.1038/s42005-019-0164-2
|
[24] |
Chen P. Laser cosmology[J]. The European Physical Journal Special Topics, 2014, 223(6): 1121-1129. doi: 10.1140/epjst/e2014-02163-5
|
[25] |
Jiang M, Su W, Lu X, et al. Electron-positron pair creation induced by quantum-mechanical tunneling[J]. Physical Review A, 2011, 83: 053402. doi: 10.1103/PhysRevA.83.053402
|
[26] |
Lv Q Z, Li Y J, Grobe R, et al. Quantum mechanical tunneling in multifield-induced pair creation from vacuum[J]. Physical Review A, 2013, 88: 033403. doi: 10.1103/PhysRevA.88.033403
|
[27] |
Liu Yan, Lv Q Z, Li Yutong, et al. Pair creation induced by transitions between electronic and positronic bound states[J]. Physical Review A, 2015, 91: 052123. doi: 10.1103/PhysRevA.91.052123
|
[28] |
Schützhold R, Gies H, Dunne G. Dynamically assisted Schwinger mechanism[J]. Physical Review Letters, 2008, 101: 130404. doi: 10.1103/PhysRevLett.101.130404
|
[29] |
Di Piazza A, Lötstedt E, Milstein A I, et al. Barrier control in tunneling e+ e− photoproduction[J]. Physical Review Letters, 2009, 103: 170403. doi: 10.1103/PhysRevLett.103.170403
|
[30] |
Bulanov S S, Mur V D, Narozhny N B, et al. Multiple colliding electromagnetic pulses: a way to lower the threshold of e+e− pair production from vacuum[J]. Physical Review Letters, 2010, 104: 220404. doi: 10.1103/PhysRevLett.104.220404
|
[31] |
Taya H. Dynamically assisted Schwinger mechanism and chirality production in parallel electromagnetic field[J]. Physical Review Research, 2020, 2: 023257. doi: 10.1103/PhysRevResearch.2.023257
|
[32] |
Hubbell J H. Review and history of photon cross section calculations[J]. Physics in Medicine & Biology, 2006, 51(13): R245-R262.
|
[33] |
Jiang M, Lv Q Z, Sheng Z M, et al. Enhancement of electron-positron pair creation due to transient excitation of field-induced bound states[J]. Physical Review A, 2013, 87: 042503. doi: 10.1103/PhysRevA.87.042503
|
[34] |
江淼, 郑晓冉, 林南省, 等. 正负电子对产生过程中不同外场宽度下的多光子跃迁效应[J]. 物理学报, 2021, 70:231202 doi: 10.7498/aps.70.20202101
Jiang Miao, Zheng Xiaoran, Lin Nansheng, et al. Multi-photon transition effects under different external field widths in electron-positron-pair creation process[J]. Acta Physica Sinica, 2021, 70: 231202 doi: 10.7498/aps.70.20202101
|
[35] |
Burke D L, Field R C, Horton-Smith G, et al. Positron production in multiphoton light-by-light scattering[J]. Physical Review Letters, 1997, 79(9): 1626-1629. doi: 10.1103/PhysRevLett.79.1626
|
[36] |
Bamber C, Boege S J, Koffas T, et al. Studies of nonlinear QED in collisions of 46.6 GeV electrons with intense laser pulses[J]. Physical Review D, 1999, 60: 092004. doi: 10.1103/PhysRevD.60.092004
|
[37] |
Schmidt S, Blaschke D, Röpke G, et al. A quantum kinetic equation for particle production in the Schwinger mechanism[J]. International Journal of Modern Physics E, 1998, 7(6): 709-722. doi: 10.1142/S0218301398000403
|
[38] |
Dumlu C K. Schwinger vacuum pair production in chirped laser pulses[J]. Physical Review D, 2010, 82: 045007. doi: 10.1103/PhysRevD.82.045007
|
[39] |
Kohlfürst C. Electron-positron pair production in structured pulses of electric fields[DB/OL]. arXiv preprint arXiv: 1212.0880, 2012.
|
[40] |
Nuriman A, Xie Baisong, Li Ziliang, et al. Enhanced electron–positron pair creation by dynamically assisted combinational fields[J]. Physics Letters B, 2012, 717(4/5): 465-469.
|
[41] |
Abdukerim N, Li Ziliang, Xie Baisong. Enhanced electron–positron pair production by frequency chirping in one- and two-color laser pulse fields[J]. Chinese Physics B, 2017, 26: 020301. doi: 10.1088/1674-1056/26/2/020301
|
[42] |
Greiner W, Müller B, Rafelski J. Quantum electrodynamics of strong fields[M]. Berlin, Heidelberg: Springer, 1985.
|
[43] |
Dumlu C K. Multidimensional quantum tunneling in the Schwinger effect[J]. Physical Review D, 2016, 93: 065045. doi: 10.1103/PhysRevD.93.065045
|
[44] |
Akal I, Moortgat-Pick G. Quantum tunnelling from vacuum in multidimensions[J]. Physical Review D, 2017, 96: 096027. doi: 10.1103/PhysRevD.96.096027
|
[45] |
Ahmad I I, Austin S M, Back B B, et al. Search for narrow sum-energy lines in electron-positron pair emission from heavy-ion collisions near the Coulomb barrier[J]. Physical Review Letters, 1995, 75(14): 2658-2661. doi: 10.1103/PhysRevLett.75.2658
|
[46] |
Bell A R, Kirk J G. Possibility of prolific pair production with high-power lasers[J]. Physical Review Letters, 2008, 101: 200403. doi: 10.1103/PhysRevLett.101.200403
|
[47] |
Yanovsky V, Chvykov V, Kalinchenko G, et al. Ultra-high intensity-300-TW laser at 0.1 Hz repetition rate[J]. Optics Express, 2008, 16(3): 2109-2114. doi: 10.1364/OE.16.002109
|
[48] |
Bandrauk A D, Shen Hai. High-order split-step exponential methods for solving coupled nonlinear Schrödinger equations[J]. Journal of Physics A: Mathematical and General, 1994, 27(21): 7147-7155. doi: 10.1088/0305-4470/27/21/030
|
[49] |
Granz L F, Mathiak O, Villalba-Chávez S, et al. Electron-positron pair production in oscillating electric fields with double-pulse structure[J]. Physics Letters B, 2019, 793: 85-89. doi: 10.1016/j.physletb.2019.04.026
|
[50] |
Ehlotzky F. Atomic phenomena in bichromatic laser fields[J]. Physics Reports, 2001, 345(4): 175-264. doi: 10.1016/S0370-1573(00)00100-9
|
[51] |
Schafer K J, Kulander K C. Phase-dependent effects in multiphoton ionization induced by a laser field and its second harmonic[J]. Physical Review A, 1992, 45(11): 8026-8033. doi: 10.1103/PhysRevA.45.8026
|
[52] |
Kim I J, Kim C M, Kim H T, et al. Highly efficient high-harmonic generation in an orthogonally polarized two-color laser field[J]. Physical Review Letters, 2005, 94: 243901. doi: 10.1103/PhysRevLett.94.243901
|
[53] |
Gong Xiaochun, He Peilun, Song Qiying, et al. Two-dimensional directional proton emission in dissociative ionization of H2[J]. Physical Review Letters, 2014, 113: 203001. doi: 10.1103/PhysRevLett.113.203001
|
[54] |
Braß J, Milbradt R, Villalba-Chávez S, et al. Two-color phase-of-the-phase spectroscopy applied to nonperturbative electron-positron pair production in strong oscillating electric fields[J]. Physical Review A, 2020, 101: 043401. doi: 10.1103/PhysRevA.101.043401
|
[55] |
Skruszewicz S, Tiggesbäumker J, Meiwes-Broer K H, et al. Two-color strong-field photoelectron spectroscopy and the phase of the phase[J]. Physical Review Letters, 2015, 115: 043001. doi: 10.1103/PhysRevLett.115.043001
|
[56] |
Almajid M A, Zabel M, Skruszewicz S, et al. Two-color phase-of-the-phase spectroscopy in the multiphoton regime[J]. Journal of Physics B: Atomic, Molecular and Optical Physics, 2017, 50: 194001. doi: 10.1088/1361-6455/aa896a
|
[57] |
Tulsky V A, Almajid M A, Bauer D. Two-color phase-of-the-phase spectroscopy with circularly polarized laser pulses[J]. Physical Review A, 2018, 98: 053433. doi: 10.1103/PhysRevA.98.053433
|
[58] |
Würzler D, Eicke N, Möller M, et al. Velocity map imaging of scattering dynamics in orthogonal two-color fields[J]. Journal of Physics B: Atomic, Molecular and Optical Physics, 2018, 51: 015001. doi: 10.1088/1361-6455/aa975c
|
[59] |
Der L. Frequency modulation (FM) tutorial[R]. Silicon Laboratories Inc, 2008.
|
[60] |
Gong C, Li Z L, Xie Baisong, et al. Electron-positron pair production in frequency modulated laser fields[J]. Physical Review D, 2020, 101: 016008. doi: 10.1103/PhysRevD.101.016008
|
[61] |
Brézin E, Itzykson C. Pair production in vacuum by an alternating field[J]. Physical Review D, 1970, 2(7): 1191-1199. doi: 10.1103/PhysRevD.2.1191
|
[62] |
Gong C, Li Z L, Li Y J, et al. Resolving rapidly chirped external fields with Dirac vacuum[J]. Physical Review A, 2020, 101: 063405. doi: 10.1103/PhysRevA.101.063405
|
[63] |
Mandel L, Wolf E. Optical coherence and quantum optics[M]. Cambridge: Cambridge University Press, 1995.
|
[64] |
Page C H. Instantaneous power spectra[J]. Journal of Applied Physics, 1952, 23(1): 103-106. doi: 10.1063/1.1701949
|
[65] |
Lampard D G. Generalization of the Wiener-Khintchine theorem to nonstationary processes[J]. Journal of Applied Physics, 1954, 25(6): 802-803. doi: 10.1063/1.1721733
|
[66] |
Liu Xinwei, Yuan Yaxiang. A null-space primal-dual interior-point algorithm for nonlinear optimization with nice convergence properties[J]. Mathematical Programming, 2010, 125(1): 163-193. doi: 10.1007/s10107-009-0272-y
|
[67] |
Dechter R. Constraint processing[M]. San Francisco: Morgan Kaufmann Publishers, 2003.
|
[68] |
Cheng T, Su Q, Grobe R. Introductory review on quantum field theory with space–time resolution[J]. Contemporary Physics, 2010, 51(4): 315-330. doi: 10.1080/00107510903450559
|
[69] |
Dong S S, Chen Min, Su Q, et al. Optimization of spatially localized electric fields for electron-positron pair creation[J]. Physical Review A, 2017, 96: 032120. doi: 10.1103/PhysRevA.96.032120
|
[70] |
Lv Q Z, Unger J, Li Yutong, et al. Spatially dependent electron-positron pair creation rate[J]. EPL (Europhysics Letters), 2016, 116: 40003. doi: 10.1209/0295-5075/116/40003
|
[71] |
Gong C, Li Z L, Li Y J. Enhanced pair creation by an oscillating potential with multiple well-barrier structures in space[J]. Physical Review A, 2018, 98: 043424. doi: 10.1103/PhysRevA.98.043424
|
[72] |
Wang Li, Wu Binbing, Xie Baisong. Electron-positron pair production in an oscillating Sauter potential[J]. Physical Review A, 2019, 100: 022127. doi: 10.1103/PhysRevA.100.022127
|
[73] |
Ren Na, Wang Jiaxiang, Li Ankang, et al. Pair production in an intense laser pulse: the effect of pulse length[J]. Chinese Physics Letters, 2012, 29: 071201. doi: 10.1088/0256-307X/29/7/071201
|
[74] |
Lv Q Z, Liu Yan, Li Y J, et al. Noncompeting channel approach to pair creation in supercritical fields[J]. Physical Review Letters, 2013, 111: 183204. doi: 10.1103/PhysRevLett.111.183204
|
[75] |
Liu Yan, Jiang M, Lv Q Z, et al. Population transfer to supercritical bound states during pair creation[J]. Physical Review A, 2014, 89: 012127. doi: 10.1103/PhysRevA.89.012127
|
[76] |
Rodriguez-Lopez P, Kort-Kamp W J M, Dalvit D A R, et al. Casimir force phase transitions in the graphene family[J]. Nature Communications, 2017, 8: 14699. doi: 10.1038/ncomms14699
|
[77] |
Xie Baisong, Li Ziliang, Tang Suo. Electron-positron pair production in ultrastrong laser fields[J]. Matter and Radiation at Extremes, 2017, 2(5): 225-242. doi: 10.1016/j.mre.2017.07.002
|
[78] |
King B, Di Piazza A, Keitel C H. A matterless double slit[J]. Nature Photonics, 2010, 4(2): 92-94. doi: 10.1038/nphoton.2009.261
|
[79] |
Mourou G A, Tajima T, Bulanov S V. Optics in the relativistic regime[J]. Reviews of Modern Physics, 2006, 78(2): 309-371. doi: 10.1103/RevModPhys.78.309
|
[80] |
Gonoskov A, Bashinov A, Gonoskov I, et al. Anomalous radiative trapping in laser fields of extreme intensity[J]. Physical Review Letters, 2014, 113: 014801. doi: 10.1103/PhysRevLett.113.014801
|
[81] |
Lv Q Z, Su Q, Grobe R. Manipulation of the vacuum to control its field-induced decay[J]. Physical Review Letters, 2018, 121: 183606. doi: 10.1103/PhysRevLett.121.183606
|
[82] |
Akkermans E, Dunne G V. Ramsey fringes and time-domain multiple-slit interference from vacuum[J]. Physical Review Letters, 2012, 108: 030401. doi: 10.1103/PhysRevLett.108.030401
|
[83] |
Krekora P, Su Q, Grobe R. Klein paradox in spatial and temporal resolution[J]. Physical Review Letters, 2004, 92: 040406. doi: 10.1103/PhysRevLett.92.040406
|
[84] |
Su Q, Grobe R. Dirac vacuum as a transport medium for information[J]. Physical Review Letters, 2019, 122: 023603. doi: 10.1103/PhysRevLett.122.023603
|
[85] |
Elitzur A C, Vaidman L. Quantum mechanical interaction-free measurements[J]. Foundations of Physics, 1993, 23(7): 987-997. doi: 10.1007/BF00736012
|
[86] |
Kwiat P, Weinfurter H, Herzog T, et al. Interaction-free measurement[J]. Physical Review Letters, 1995, 74(24): 4763-4766. doi: 10.1103/PhysRevLett.74.4763
|
[87] |
Gong C, Penwell A, Li Z L, et al. Transition between coherent and incoherent chirping mechanisms in electron-positron pair creation[J]. Journal of the Optical Society of America B, 2020, 37(4): 1098-1108. doi: 10.1364/JOSAB.382822
|
[88] |
Gong C, Su Q, Grobe R. Machine learning techniques in the examination of the electron-positron pair creation process[J]. Journal of the Optical Society of America B, 2021, 38(12): 3582-3591. doi: 10.1364/JOSAB.439484
|
[89] |
Lorin E, Yang Xu. Computation of the time-dependent Dirac equation with physics-informed neural networks[DB/OL]. arXiv preprint arXiv: 2204.02959, 2022.
|