Volume 35 Issue 1
Jan.  2023
Turn off MathJax
Article Contents
Gong Chi, Li Ziliang, Li Yingjun. Progress of pair production from vacuum in strong laser fields[J]. High Power Laser and Particle Beams, 2023, 35: 012002. doi: 10.11884/HPLPB202335.220145
Citation: Gong Chi, Li Ziliang, Li Yingjun. Progress of pair production from vacuum in strong laser fields[J]. High Power Laser and Particle Beams, 2023, 35: 012002. doi: 10.11884/HPLPB202335.220145

Progress of pair production from vacuum in strong laser fields

doi: 10.11884/HPLPB202335.220145
  • Received Date: 2022-05-08
  • Rev Recd Date: 2022-07-22
  • Available Online: 2022-07-30
  • Publish Date: 2023-01-15
  • With the rapid development of laser technology and the continuous improvement of laser intensity, the process of electron-positron pair creation in vacuum under super strong external field, namely the process of energy conversion to mass, has become a research hot spot. In this paper, we mainly review the progress of quantum Vlasov equation and computational quantum field theory (numerical solution of Dirac equation) in the study of the electron-positron pair production in vacuum under intense laser field in recent years, and introduce two situations of particle pair generation spatially homogeneous field and spatially inhomogeneous field, separally. In the first case, there are electron-positron pair production in oscillating electric fields with double-pulse structure, electron-positron pair generation in the strong dual frequency oscillating electric field, electron-positron pair production in frequency modulated laser fields, and resolving rapidly chirped external fields with Dirac vacuum are introduced. The second case mainly introduces the optimization of spatially localized electric fields for electron-positron pair creation, enhanced pair creation by an oscillating potential with multiple well-barrier structures in space, electron-positron pair production in an oscillating Sauter potential, manipulation of the vacuum to control its field-induced decay and Dirac vacuum as a transport medium for information and transition between coherent and incoherent chirping mechanisms in electron-positron pair production.
  • loading
  • [1]
    Strickland D, Mourou G. Compression of amplified chirped optical pulses[J]. Optics Communications, 1985, 55(6): 447-449. doi: 10.1016/0030-4018(85)90151-8
    [2]
    张杰. 强场物理——一门崭新的学科[J]. 物理, 1997, 26(11):643-649

    Zhang Jie. A new horizon high field physics[J]. Physics, 1997, 26(11): 643-649
    [3]
    Schrödinger E. Quantisierung als Eigenwertproblem[J]. Annalen der Physik, 1926, 384(4): 361-376. doi: 10.1002/andp.19263840404
    [4]
    Gordon W. Der Comptoneffekt nach der Schrödingerschen Theorie[J]. Zeitschrift für Physik, 1926, 40(1): 117-133. Klein O. Quantentheorie und fünfdimensionale Relativitätstheorie[J]. Zeitschrift für Physik, 1926, 37(12): 895-906.
    [5]
    Dirac P A M. The principles of quantum mechanics[M]. 4th ed. Oxford: Oxford University Press, 1982.
    [6]
    Schwinger J. On gauge invariance and vacuum polarization[J]. Physical Review Journals Archive, 1951, 82(5): 664-679.
    [7]
    Bulanov S S, Esirkepov T Z, Thomas A G R, et al. Schwinger limit attainability with extreme power lasers[J]. Physical Review Letters, 2010, 105: 220407. doi: 10.1103/PhysRevLett.105.220407
    [8]
    Fedotov A M, Narozhny N B, Mourou G, et al. Limitations on the attainable intensity of high power lasers[J]. Physical Review Letters, 2010, 105: 080402.
    [9]
    Elkina N V, Fedotov A M, Kostyukov I Y, et al. QED cascades induced by circularly polarized laser fields[J]. Physical Review Accelerators and Beams, 2011, 14: 054401. doi: 10.1103/PhysRevSTAB.14.054401
    [10]
    Cowan T, Backe H, Bethge K, et al. Observation of correlated narrow-peak structures in positron and electron spectra from superheavy collision systems[J]. Physical Review Letters, 1986, 56(5): 444-447. doi: 10.1103/PhysRevLett.56.444
    [11]
    Dunne G V. Extreme quantum field theory and particle physics with IZEST[J]. The European Physical Journal Special Topics, 2014, 223(6): 1055-1061. doi: 10.1140/epjst/e2014-02156-4
    [12]
    Mocken G R, Keitel C H. FFT-split-operator code for solving the Dirac equation in 2+1 dimensions[J]. Computer Physics Communications, 2008, 178(11): 868-882.
    [13]
    Ruf M, Bauke H, Keitel C H. A real space split operator method for the Klein–Gordon equation[J]. Journal of Computational Physics, 2009, 228(24): 9092-9106. doi: 10.1016/j.jcp.2009.09.012
    [14]
    Furry W H. On bound states and scattering in positron theory[J]. Physical Review Journals Archive, 1951, 81(1): 115-124.
    [15]
    Aleksandrov I A, Di Piazza A, Plunien G, et al. Stimulated vacuum emission and photon absorption in strong electromagnetic fields[J]. Physical Review D, 2022, 105: 116005. doi: 10.1103/PhysRevD.105.116005
    [16]
    Kim S P, Page D N. Schwinger pair production via instantons in strong electric fields[J]. Physical Review D, 2002, 65: 105002. doi: 10.1103/PhysRevD.65.105002
    [17]
    Dietrich D D, Dunne G V. Gutzwiller's trace formula and vacuum pair production[J]. Journal of Physics A: Mathematical and Theoretical, 2007, 40(34): F825-F830.
    [18]
    Bergues B, Ni Yongfeng, Helm H, et al. Experimental study of photodetachment in a strong laser field of circular polarization[J]. Physical Review Letters, 2005, 95: 263002. doi: 10.1103/PhysRevLett.95.263002
    [19]
    Tanaka K A, Spohr K M, Balabanski D L, et al. Current status and highlights of the ELI-NP research program[J]. Matter and Radiation at Extremes, 2020, 5: 024402. doi: 10.1063/1.5093535
    [20]
    Wang Weimin, Sheng Zhengming, Gibbon P, et al. Collimated ultrabright gamma rays from electron wiggling along a petawatt laser-irradiated wire in the QED regime[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(40): 9911-9916.
    [21]
    Zhu Xinglong, Chen Min, Yu Tongpu, et al. Collimated GeV attosecond electron–positron bunches from a plasma channel driven by 10 PW lasers[J]. Matter and Radiation at Extremes, 2019, 4: 014401.
    [22]
    Wen M, Tamburini M, Keitel C H. Polarized laser-WakeField-accelerated kiloampere electron beams[J]. Physical Review Letters, 2019, 122: 214801. doi: 10.1103/PhysRevLett.122.214801
    [23]
    Geng Xuesong, Ji Liangliang, Shen B F, et al. Quantum reflection above the classical radiation-reaction barrier in the quantum electro-dynamics regime[J]. Communications Physics, 2019, 2: 66. doi: 10.1038/s42005-019-0164-2
    [24]
    Chen P. Laser cosmology[J]. The European Physical Journal Special Topics, 2014, 223(6): 1121-1129. doi: 10.1140/epjst/e2014-02163-5
    [25]
    Jiang M, Su W, Lu X, et al. Electron-positron pair creation induced by quantum-mechanical tunneling[J]. Physical Review A, 2011, 83: 053402. doi: 10.1103/PhysRevA.83.053402
    [26]
    Lv Q Z, Li Y J, Grobe R, et al. Quantum mechanical tunneling in multifield-induced pair creation from vacuum[J]. Physical Review A, 2013, 88: 033403. doi: 10.1103/PhysRevA.88.033403
    [27]
    Liu Yan, Lv Q Z, Li Yutong, et al. Pair creation induced by transitions between electronic and positronic bound states[J]. Physical Review A, 2015, 91: 052123. doi: 10.1103/PhysRevA.91.052123
    [28]
    Schützhold R, Gies H, Dunne G. Dynamically assisted Schwinger mechanism[J]. Physical Review Letters, 2008, 101: 130404. doi: 10.1103/PhysRevLett.101.130404
    [29]
    Di Piazza A, Lötstedt E, Milstein A I, et al. Barrier control in tunneling e+ e photoproduction[J]. Physical Review Letters, 2009, 103: 170403. doi: 10.1103/PhysRevLett.103.170403
    [30]
    Bulanov S S, Mur V D, Narozhny N B, et al. Multiple colliding electromagnetic pulses: a way to lower the threshold of e+e pair production from vacuum[J]. Physical Review Letters, 2010, 104: 220404. doi: 10.1103/PhysRevLett.104.220404
    [31]
    Taya H. Dynamically assisted Schwinger mechanism and chirality production in parallel electromagnetic field[J]. Physical Review Research, 2020, 2: 023257. doi: 10.1103/PhysRevResearch.2.023257
    [32]
    Hubbell J H. Review and history of photon cross section calculations[J]. Physics in Medicine & Biology, 2006, 51(13): R245-R262.
    [33]
    Jiang M, Lv Q Z, Sheng Z M, et al. Enhancement of electron-positron pair creation due to transient excitation of field-induced bound states[J]. Physical Review A, 2013, 87: 042503. doi: 10.1103/PhysRevA.87.042503
    [34]
    江淼, 郑晓冉, 林南省, 等. 正负电子对产生过程中不同外场宽度下的多光子跃迁效应[J]. 物理学报, 2021, 70:231202 doi: 10.7498/aps.70.20202101

    Jiang Miao, Zheng Xiaoran, Lin Nansheng, et al. Multi-photon transition effects under different external field widths in electron-positron-pair creation process[J]. Acta Physica Sinica, 2021, 70: 231202 doi: 10.7498/aps.70.20202101
    [35]
    Burke D L, Field R C, Horton-Smith G, et al. Positron production in multiphoton light-by-light scattering[J]. Physical Review Letters, 1997, 79(9): 1626-1629. doi: 10.1103/PhysRevLett.79.1626
    [36]
    Bamber C, Boege S J, Koffas T, et al. Studies of nonlinear QED in collisions of 46.6 GeV electrons with intense laser pulses[J]. Physical Review D, 1999, 60: 092004. doi: 10.1103/PhysRevD.60.092004
    [37]
    Schmidt S, Blaschke D, Röpke G, et al. A quantum kinetic equation for particle production in the Schwinger mechanism[J]. International Journal of Modern Physics E, 1998, 7(6): 709-722. doi: 10.1142/S0218301398000403
    [38]
    Dumlu C K. Schwinger vacuum pair production in chirped laser pulses[J]. Physical Review D, 2010, 82: 045007. doi: 10.1103/PhysRevD.82.045007
    [39]
    Kohlfürst C. Electron-positron pair production in structured pulses of electric fields[DB/OL]. arXiv preprint arXiv: 1212.0880, 2012.
    [40]
    Nuriman A, Xie Baisong, Li Ziliang, et al. Enhanced electron–positron pair creation by dynamically assisted combinational fields[J]. Physics Letters B, 2012, 717(4/5): 465-469.
    [41]
    Abdukerim N, Li Ziliang, Xie Baisong. Enhanced electron–positron pair production by frequency chirping in one- and two-color laser pulse fields[J]. Chinese Physics B, 2017, 26: 020301. doi: 10.1088/1674-1056/26/2/020301
    [42]
    Greiner W, Müller B, Rafelski J. Quantum electrodynamics of strong fields[M]. Berlin, Heidelberg: Springer, 1985.
    [43]
    Dumlu C K. Multidimensional quantum tunneling in the Schwinger effect[J]. Physical Review D, 2016, 93: 065045. doi: 10.1103/PhysRevD.93.065045
    [44]
    Akal I, Moortgat-Pick G. Quantum tunnelling from vacuum in multidimensions[J]. Physical Review D, 2017, 96: 096027. doi: 10.1103/PhysRevD.96.096027
    [45]
    Ahmad I I, Austin S M, Back B B, et al. Search for narrow sum-energy lines in electron-positron pair emission from heavy-ion collisions near the Coulomb barrier[J]. Physical Review Letters, 1995, 75(14): 2658-2661. doi: 10.1103/PhysRevLett.75.2658
    [46]
    Bell A R, Kirk J G. Possibility of prolific pair production with high-power lasers[J]. Physical Review Letters, 2008, 101: 200403. doi: 10.1103/PhysRevLett.101.200403
    [47]
    Yanovsky V, Chvykov V, Kalinchenko G, et al. Ultra-high intensity-300-TW laser at 0.1 Hz repetition rate[J]. Optics Express, 2008, 16(3): 2109-2114. doi: 10.1364/OE.16.002109
    [48]
    Bandrauk A D, Shen Hai. High-order split-step exponential methods for solving coupled nonlinear Schrödinger equations[J]. Journal of Physics A: Mathematical and General, 1994, 27(21): 7147-7155. doi: 10.1088/0305-4470/27/21/030
    [49]
    Granz L F, Mathiak O, Villalba-Chávez S, et al. Electron-positron pair production in oscillating electric fields with double-pulse structure[J]. Physics Letters B, 2019, 793: 85-89. doi: 10.1016/j.physletb.2019.04.026
    [50]
    Ehlotzky F. Atomic phenomena in bichromatic laser fields[J]. Physics Reports, 2001, 345(4): 175-264. doi: 10.1016/S0370-1573(00)00100-9
    [51]
    Schafer K J, Kulander K C. Phase-dependent effects in multiphoton ionization induced by a laser field and its second harmonic[J]. Physical Review A, 1992, 45(11): 8026-8033. doi: 10.1103/PhysRevA.45.8026
    [52]
    Kim I J, Kim C M, Kim H T, et al. Highly efficient high-harmonic generation in an orthogonally polarized two-color laser field[J]. Physical Review Letters, 2005, 94: 243901. doi: 10.1103/PhysRevLett.94.243901
    [53]
    Gong Xiaochun, He Peilun, Song Qiying, et al. Two-dimensional directional proton emission in dissociative ionization of H2[J]. Physical Review Letters, 2014, 113: 203001. doi: 10.1103/PhysRevLett.113.203001
    [54]
    Braß J, Milbradt R, Villalba-Chávez S, et al. Two-color phase-of-the-phase spectroscopy applied to nonperturbative electron-positron pair production in strong oscillating electric fields[J]. Physical Review A, 2020, 101: 043401. doi: 10.1103/PhysRevA.101.043401
    [55]
    Skruszewicz S, Tiggesbäumker J, Meiwes-Broer K H, et al. Two-color strong-field photoelectron spectroscopy and the phase of the phase[J]. Physical Review Letters, 2015, 115: 043001. doi: 10.1103/PhysRevLett.115.043001
    [56]
    Almajid M A, Zabel M, Skruszewicz S, et al. Two-color phase-of-the-phase spectroscopy in the multiphoton regime[J]. Journal of Physics B: Atomic, Molecular and Optical Physics, 2017, 50: 194001. doi: 10.1088/1361-6455/aa896a
    [57]
    Tulsky V A, Almajid M A, Bauer D. Two-color phase-of-the-phase spectroscopy with circularly polarized laser pulses[J]. Physical Review A, 2018, 98: 053433. doi: 10.1103/PhysRevA.98.053433
    [58]
    Würzler D, Eicke N, Möller M, et al. Velocity map imaging of scattering dynamics in orthogonal two-color fields[J]. Journal of Physics B: Atomic, Molecular and Optical Physics, 2018, 51: 015001. doi: 10.1088/1361-6455/aa975c
    [59]
    Der L. Frequency modulation (FM) tutorial[R]. Silicon Laboratories Inc, 2008.
    [60]
    Gong C, Li Z L, Xie Baisong, et al. Electron-positron pair production in frequency modulated laser fields[J]. Physical Review D, 2020, 101: 016008. doi: 10.1103/PhysRevD.101.016008
    [61]
    Brézin E, Itzykson C. Pair production in vacuum by an alternating field[J]. Physical Review D, 1970, 2(7): 1191-1199. doi: 10.1103/PhysRevD.2.1191
    [62]
    Gong C, Li Z L, Li Y J, et al. Resolving rapidly chirped external fields with Dirac vacuum[J]. Physical Review A, 2020, 101: 063405. doi: 10.1103/PhysRevA.101.063405
    [63]
    Mandel L, Wolf E. Optical coherence and quantum optics[M]. Cambridge: Cambridge University Press, 1995.
    [64]
    Page C H. Instantaneous power spectra[J]. Journal of Applied Physics, 1952, 23(1): 103-106. doi: 10.1063/1.1701949
    [65]
    Lampard D G. Generalization of the Wiener-Khintchine theorem to nonstationary processes[J]. Journal of Applied Physics, 1954, 25(6): 802-803. doi: 10.1063/1.1721733
    [66]
    Liu Xinwei, Yuan Yaxiang. A null-space primal-dual interior-point algorithm for nonlinear optimization with nice convergence properties[J]. Mathematical Programming, 2010, 125(1): 163-193. doi: 10.1007/s10107-009-0272-y
    [67]
    Dechter R. Constraint processing[M]. San Francisco: Morgan Kaufmann Publishers, 2003.
    [68]
    Cheng T, Su Q, Grobe R. Introductory review on quantum field theory with space–time resolution[J]. Contemporary Physics, 2010, 51(4): 315-330. doi: 10.1080/00107510903450559
    [69]
    Dong S S, Chen Min, Su Q, et al. Optimization of spatially localized electric fields for electron-positron pair creation[J]. Physical Review A, 2017, 96: 032120. doi: 10.1103/PhysRevA.96.032120
    [70]
    Lv Q Z, Unger J, Li Yutong, et al. Spatially dependent electron-positron pair creation rate[J]. EPL (Europhysics Letters), 2016, 116: 40003. doi: 10.1209/0295-5075/116/40003
    [71]
    Gong C, Li Z L, Li Y J. Enhanced pair creation by an oscillating potential with multiple well-barrier structures in space[J]. Physical Review A, 2018, 98: 043424. doi: 10.1103/PhysRevA.98.043424
    [72]
    Wang Li, Wu Binbing, Xie Baisong. Electron-positron pair production in an oscillating Sauter potential[J]. Physical Review A, 2019, 100: 022127. doi: 10.1103/PhysRevA.100.022127
    [73]
    Ren Na, Wang Jiaxiang, Li Ankang, et al. Pair production in an intense laser pulse: the effect of pulse length[J]. Chinese Physics Letters, 2012, 29: 071201. doi: 10.1088/0256-307X/29/7/071201
    [74]
    Lv Q Z, Liu Yan, Li Y J, et al. Noncompeting channel approach to pair creation in supercritical fields[J]. Physical Review Letters, 2013, 111: 183204. doi: 10.1103/PhysRevLett.111.183204
    [75]
    Liu Yan, Jiang M, Lv Q Z, et al. Population transfer to supercritical bound states during pair creation[J]. Physical Review A, 2014, 89: 012127. doi: 10.1103/PhysRevA.89.012127
    [76]
    Rodriguez-Lopez P, Kort-Kamp W J M, Dalvit D A R, et al. Casimir force phase transitions in the graphene family[J]. Nature Communications, 2017, 8: 14699. doi: 10.1038/ncomms14699
    [77]
    Xie Baisong, Li Ziliang, Tang Suo. Electron-positron pair production in ultrastrong laser fields[J]. Matter and Radiation at Extremes, 2017, 2(5): 225-242. doi: 10.1016/j.mre.2017.07.002
    [78]
    King B, Di Piazza A, Keitel C H. A matterless double slit[J]. Nature Photonics, 2010, 4(2): 92-94. doi: 10.1038/nphoton.2009.261
    [79]
    Mourou G A, Tajima T, Bulanov S V. Optics in the relativistic regime[J]. Reviews of Modern Physics, 2006, 78(2): 309-371. doi: 10.1103/RevModPhys.78.309
    [80]
    Gonoskov A, Bashinov A, Gonoskov I, et al. Anomalous radiative trapping in laser fields of extreme intensity[J]. Physical Review Letters, 2014, 113: 014801. doi: 10.1103/PhysRevLett.113.014801
    [81]
    Lv Q Z, Su Q, Grobe R. Manipulation of the vacuum to control its field-induced decay[J]. Physical Review Letters, 2018, 121: 183606. doi: 10.1103/PhysRevLett.121.183606
    [82]
    Akkermans E, Dunne G V. Ramsey fringes and time-domain multiple-slit interference from vacuum[J]. Physical Review Letters, 2012, 108: 030401. doi: 10.1103/PhysRevLett.108.030401
    [83]
    Krekora P, Su Q, Grobe R. Klein paradox in spatial and temporal resolution[J]. Physical Review Letters, 2004, 92: 040406. doi: 10.1103/PhysRevLett.92.040406
    [84]
    Su Q, Grobe R. Dirac vacuum as a transport medium for information[J]. Physical Review Letters, 2019, 122: 023603. doi: 10.1103/PhysRevLett.122.023603
    [85]
    Elitzur A C, Vaidman L. Quantum mechanical interaction-free measurements[J]. Foundations of Physics, 1993, 23(7): 987-997. doi: 10.1007/BF00736012
    [86]
    Kwiat P, Weinfurter H, Herzog T, et al. Interaction-free measurement[J]. Physical Review Letters, 1995, 74(24): 4763-4766. doi: 10.1103/PhysRevLett.74.4763
    [87]
    Gong C, Penwell A, Li Z L, et al. Transition between coherent and incoherent chirping mechanisms in electron-positron pair creation[J]. Journal of the Optical Society of America B, 2020, 37(4): 1098-1108. doi: 10.1364/JOSAB.382822
    [88]
    Gong C, Su Q, Grobe R. Machine learning techniques in the examination of the electron-positron pair creation process[J]. Journal of the Optical Society of America B, 2021, 38(12): 3582-3591. doi: 10.1364/JOSAB.439484
    [89]
    Lorin E, Yang Xu. Computation of the time-dependent Dirac equation with physics-informed neural networks[DB/OL]. arXiv preprint arXiv: 2204.02959, 2022.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(25)  / Tables(3)

    Article views (1277) PDF downloads(174) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return