Volume 35 Issue 2
Jan.  2023
Turn off MathJax
Article Contents
Yang Yixuan, Gao Zhiwei, Wu Teng, et al. Coupling effect of electromagnetic pulse to long rails with compensation capacitance of track circuit system[J]. High Power Laser and Particle Beams, 2023, 35: 023003. doi: 10.11884/HPLPB202335.220148
Citation: Yang Yixuan, Gao Zhiwei, Wu Teng, et al. Coupling effect of electromagnetic pulse to long rails with compensation capacitance of track circuit system[J]. High Power Laser and Particle Beams, 2023, 35: 023003. doi: 10.11884/HPLPB202335.220148

Coupling effect of electromagnetic pulse to long rails with compensation capacitance of track circuit system

doi: 10.11884/HPLPB202335.220148
  • Received Date: 2022-05-09
  • Accepted Date: 2022-09-26
  • Rev Recd Date: 2022-09-07
  • Available Online: 2022-09-28
  • Publish Date: 2023-01-14
  • At present, efficient time domain numerical methods used for the coupling effect analysis of electromagnetic pulse to long rails on infinite ground are still rare. An efficient time domain hybrid algorithm, consisting of the finite difference time domain (FDTD) method, the transmission line equation and the fast calculation method for the excitation fields of the long rails, is presented to realize fast electromagnetic pulse coupling simulation of the long rails with compensation capacitance in time domain. Firstly, to avoid direct modeling of the irregular structures of the rails, the rails are equivalent to the tubular conductor models based on the skin effect, and the corresponding per unit length distribution parameters are extracted. Then, the electric field distribution along the rails are calculated via the fast calculation method for the excitation fields of long rails rapidly, and the electromagnetic coupling model of the rails with compensation capacitance is constructed by the transmission line equation. Finally, the FDTD method is used to solve the transmission line equation to obtain the electromagnetic pulse coupling responses on the rails. The results show that the width of the coupling current waveform on the rails would extend, and the peak values of these currents would saturate with the rail length increasing to a certain value. This conclusion will provide important data for the electromagnetic protection design of track circuit system.
  • loading
  • [1]
    Hill R J, Brillante S, Leonard P J. Railway track transmission line parameters from finite element field modelling: Shunt admittance[J]. IEE Proceedings-Electric Power Applications, 2000, 147(3): 227-238. doi: 10.1049/ip-epa:20000373
    [2]
    Dolara A, Leva S. Calculation of rail internal impedance by using finite elements methods and complex magnetic permeability[J]. International Journal of Vehicular Technology, 2009, 2009: 505246.
    [3]
    支永健. 弓网电弧电磁干扰传播的若干理论研究[D]. 杭州: 浙江大学, 2013

    Zhi Yongjian. Some theoretical studies on pantograph-catenary arc electromagnetic interference propagation[D]. Hangzhou: Zhejiang University, 2013
    [4]
    朱冰. 轨道电路一次参数的建模与仿真[D]. 北京: 北京交通大学, 2014

    Zhu Bing. The modeling and simulation of the primary parameter of track circuit[D]. Beijing: Beijing Jiaotong University, 2014
    [5]
    王梓丞, 郭进, 罗蓉, 等. 轨道电路的EMTP建模及其雷电过电压的研究[J]. 电瓷避雷器, 2016(4):152-158 doi: 10.16188/j.isa.1003-8337.2016.04.031

    Wang Zicheng, Guo Jin, Luo Rong, et al. Study on EMTP modeling and lightning overvoltage of track circuit[J]. Insulators and Surge Arresters, 2016(4): 152-158 doi: 10.16188/j.isa.1003-8337.2016.04.031
    [6]
    王东. 无砟轨道轨道电路一次参数建模与仿真分析[D]. 兰州: 兰州交通大学, 2020

    Wang Dong. Primary parameter modeling and simulation analysis of track circuit with ballastless track[D]. Lanzhou: Lanzhou Jiaotong University, 2020
    [7]
    吴命利. 牵引供电系统电气参数与数学模型研究[D]. 北京: 北京交通大学, 2006

    Wu Mingli. Research on electrical parameters and mathematical model of traction power supply system[D]. Beijing: Beijing Jiaotong University, 2006
    [8]
    Woodruff L F. Principles of electric power transmission[M]. 2nd ed. New York: John Wiley & Sons, Inc. , 1938.
    [9]
    Dwight H B. Skin effect in tubular and flat conductors[J]. Transactions of the American Institute of Electrical Engineers, 1918, 37(2): 1379-1403.
    [10]
    彭涛. 牵引供电系统中钢轨频变参数特性研究[D]. 南昌: 华东交通大学, 2017

    Peng Tao. The research of frequency-dependent impedance in rail of traction power system[D]. Nanchang: East China Jiaotong University, 2017
    [11]
    谢彦召, 王赞基, 王群书. 地面附近架高线缆HEMP响应计算的Agrawal和Taylor模型比较[J]. 强激光与粒子束, 2005, 17(4):575-580

    Xie Yanzhao, Wang Zanji, Wang Qunshu. Comparison of Agrawal and Taylor models for response calculations of aboveground cable excited by HEMP[J]. High Power Laser and Particle Beams, 2005, 17(4): 575-580
    [12]
    Ye Zhihong, Wu Xiaolin, Li Yaoyao. Coupling analysis of transmission lines excited by space electromagnetic fields based on a time domain hybrid method using parallel technique[J]. Chinese Physics B, 2020, 29: 090701. doi: 10.1088/1674-1056/ab96a6
    [13]
    刘备, 刘强, 阚勇, 等. 基于传输线等效法的双腔体屏蔽系数快速算法[J]. 强激光与粒子束, 2015, 27:053203 doi: 10.11884/HPLPB201527.053203

    Liu Bei, Liu Qiang, Kan Yong, et al. Fast prediction algorithm for shielding effectiveness of double enclosures based on transmission line equavilent circuit method[J]. High Power Laser and Particle Beams, 2015, 27: 053203 doi: 10.11884/HPLPB201527.053203
    [14]
    葛德彪, 闫玉波. 电磁波时域有限差分方法[M]. 3版. 西安: 西安电子科技大学出版社, 2011

    Ge Debiao, Yan Yubo. Finite-difference time-domain method for electromagnetic waves[M]. 3rd ed. Xi'an: Xidian University Press, 2011
    [15]
    Ye Zhihong, Liao Cheng, Wen Chuan. Time-domain coupling analysis of shielded cable on the ground excited by plane wave[J]. Progress in Electromagnetics Research M, 2018, 67: 45-53. doi: 10.2528/PIERM18021101
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(2)

    Article views (561) PDF downloads(50) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return