Zhou Liang, Zhang Ming, Zhao Zheng, et al. Research of positive and negative polarity pseudo-spark switches[J]. High Power Laser and Particle Beams, 2024, 36: 115010. doi: 10.11884/HPLPB202436.240313
Citation: Yuan Lei, Wang Biyi, Luo Chao, et al. Simulation analysis of thermal effect of laser irradiation in infrared detection system[J]. High Power Laser and Particle Beams, 2023, 35: 021003. doi: 10.11884/HPLPB202335.220157

Simulation analysis of thermal effect of laser irradiation in infrared detection system

doi: 10.11884/HPLPB202335.220157
  • Received Date: 2022-05-16
  • Accepted Date: 2022-10-12
  • Rev Recd Date: 2022-09-29
  • Available Online: 2022-10-17
  • Publish Date: 2023-01-14
  • To study the thermal effect and secondary thermal radiation of infrared detection system after laser irradiation on the detector imaging, this paper uses Ansys software for thermal radiation simulation and finite element structure simulation of infrared detector. The blackbody radiation law and DO radiation calculation model are used to simulate the temperature variation with time of the optical system in the detector under different laser irradiance and the interference of the secondary thermal radiation caused by the temperature rise in the detector to the imaging of the target surface. The thermal stress and deformation in the detector are simulated by thermoelastic model. The results show that, under the condition that the detector is irradiated by 1.06 μm laser while the laser irradiance of the corrective lenses is 50 W/cm2, then, the secondary thermal irradiance of the target reaches the order of 100 μW/cm2 in 0.6 seconds, the infrared detector reaches saturation. After the detector is irradiated by laser, the maximum temperature of the system appears at the center of the corrective lenses, and the function relationship between the maximum temperature of the system and the exposure time is obtained by fitting, which can predict the damage of the heating structure of the detector. The maximum thermal deformation appeared at the center of the back of the mirror, which formed unequal additional optical path difference from the outside to the inside and interfered with the imaging effect of the detector. The maximum thermal stress appeared in the front center of the corrective lenses, and the linear relationship between the maximum thermal stress and the laser irradiance was obtained, which provide the prediction parameters for the thermal stress damage of the corrective lenses.
  • [1]
    刘炜, 牛誉霏, 肖龙龙, 等. 红外焦平面阵列及星载红外成像系统的发展[J]. 红外, 2021, 42(11):15-24

    Liu Wei, Niu Yufei, Xiao Longlong, et al. Development of infrared focal plane array and spaceborne infrared imaging system[J]. Infrared, 2021, 42(11): 15-24
    [2]
    张晓菲. 红外成像系统及其超分辨率重建技术的研究[D]. 长春: 中国科学院大学(中国科学院长春光学精密机械与物理研究所), 2020

    Zhang Xiaofei. Study on the imaging and super-resolution reconstruction of the infrared optical system[D]. Changchun: Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 2020
    [3]
    闫晶. 高变倍比红外连续变焦光学系统设计研究[D]. 长春: 长春理工大学, 2014

    Yan Jing. Design & research of high ratio IR continuous zoom system[D]. Changchun: Changchun University of Science and Technology, 2014
    [4]
    杨小乐, 史漫丽, 凌龙. 制冷型红外探测器关键驱动与信号处理电路设计[J]. 红外技术, 2016, 38(7):556-560 doi: 10.11846/j.issn.1001_8891.201607004

    Yang Xiaole, Shi Manli, Ling Long. Design of the key driving and signal processing circuit for cooled infrared detector[J]. Infrared Technology, 2016, 38(7): 556-560 doi: 10.11846/j.issn.1001_8891.201607004
    [5]
    邢素霞, 张俊举, 常本康, 等. 非制冷红外热成像技术的发展与现状[J]. 红外与激光工程, 2004, 33(5):441-444 doi: 10.3969/j.issn.1007-2276.2004.05.001

    Xing Suxia, Zhang Junju, Chang Benkang, et al. Recent development and status of uncooled IR thermal imaging technology[J]. Infrared and Laser Engineering, 2004, 33(5): 441-444 doi: 10.3969/j.issn.1007-2276.2004.05.001
    [6]
    史衍丽. 第三代红外探测器的发展与选择[J]. 红外技术, 2013, 35(1):1-8

    Shi Yanli. Choice and development of the third-generation infrared detectors[J]. Infrared Technology, 2013, 35(1): 1-8
    [7]
    石永山. 红外焦平面成像技术的军事应用与发展[J]. 舰船电子工程, 2009, 29(10):21-24,39 doi: 10.3969/j.issn.1627-9730.2009.10.006

    Shi Yongshan. Application and the development of the abroad infrared stealth technology[J]. Ship Electronic Engineering, 2009, 29(10): 21-24,39 doi: 10.3969/j.issn.1627-9730.2009.10.006
    [8]
    刘永昌, 陈洪印. 红外制导与红外对抗技术分析[J]. 红外技术, 1997, 15(1):15-20

    Liu Yongchang, Chen Hongyin. Analysis of IR guidance and IRCM techniques[J]. Infrared Technology, 1997, 15(1): 15-20
    [9]
    王岭雪, 蔡毅. 红外成像光学系统进展与展望[J]. 红外技术, 2019, 41(1):1-12

    Wang Lingxue, Cai Yi. Recent progress and perspectives of infrared optical systems[J]. Infrared Technology, 2019, 41(1): 1-12
    [10]
    文爽. 基于卡尔曼滤波的参与性介质时变热流与温度场在线重构[D]. 哈尔滨: 哈尔滨工业大学, 2020

    Wen Shuang. Online retrieval of time-varying heat flux and temperature field in participating media based on Kalman filtering[D]. Harbin: Harbin Institute of Technology, 2020
    [11]
    Ebrahimpour Z, Sheikholeslami M, Farshad S A, et al. Solar energy application for LFR unit with trapezoidal cavity receiver considering radiative mode[J]. Physica Scripta, 2020, 95: 125701. doi: 10.1088/1402-4896/abc20e
    [12]
    付丽荣. 对流—辐射耦合传热模拟及其在柴油机缸内过程应用研究[D]. 哈尔滨: 哈尔滨工程大学, 2016

    Fu Lirong. Numerical simulation of convection and radiation combined heat transfer and study of the in-cylinder radiation heat transfer[D]. Harbin: Harbin Engineering University, 2016
    [13]
    尚钢. 热冲击下分区均质材料耦合热弹性问题的变分原理[J]. 武汉大学学报(自然科学版), 1999, 45(5A):610-612

    Shang Gang. Variational principles on coupled thermal-elasticity of zoned homogeneous materials under thermal shock[J]. Journal of Wuhan University (Natural Science Edition), 1999, 45(5A): 610-612
    [14]
    李欢, 胡亮, 孟祥福, 等. 基于ANSYS Workbench的光学探测系统热-结构仿真分析[J]. 红外技术, 2020, 42(12):1141-1150

    Li Huan, Hu Liang, Meng Xiangfu, et al. Simulation analysis of thermal-structure of an optical detection system[J]. Infrared Technology, 2020, 42(12): 1141-1150
    [15]
    任嘉木. 复合脉冲激光辐照下元件损伤特性研究[D]. 西安: 西安工业大学, 2021

    Ren Jiamu. Investigation on damage characteristics of element under composite pulse laser irradiation[D]. Xi'an: Xi'an Technological University, 2021
    [16]
    张成, 许宏, 赵万利, 等. 激光对红外探测系统产生的二次辐射效应[J]. 光电技术应用, 2021, 36(4):33-36 doi: 10.3969/j.issn.1673-1255.2021.04.009

    Zhang Cheng, Xu Hong, Zhao Wanli, et al. Effect of second radiation on laser to infrared detection system[J]. Electro-Optic Technology Application, 2021, 36(4): 33-36 doi: 10.3969/j.issn.1673-1255.2021.04.009
  • Relative Articles

    [1]Peng Ning, Yang Yong, Zhang Ming, Rao Bo, Zhang Zhengqing. Research on electromagnetic crosstalk in double differential mode unshielded cable loop[J]. High Power Laser and Particle Beams, 2024, 36(2): 025017. doi: 10.11884/HPLPB202436.230228
    [2]Jiao Guangwei, Tian Shunqiang, Zhang Wenzhi, Wu Xu, Sun Bo, Jin Lin, Zhao Shenjie, Xu Junjie. Influence and analysis of power grid fluctuation on the operation of shanghai synchrotron radiation facility[J]. High Power Laser and Particle Beams, 2022, 34(8): 084004. doi: 10.11884/HPLPB202234.210553
    [3]Zhang Ning, Lai Longwei, Yuan Renxian, Yu Luyang. Multi-bunch instability diagnostics via transverse feedback system in Shanghai Synchrotron Radiation Facility[J]. High Power Laser and Particle Beams, 2021, 33(4): 044003. doi: 10.11884/HPLPB202133.200212
    [4]Yang Yong, Leng Yongbin, Yan Yingbing. Beam signal stretching processing based on microstrip transmission line[J]. High Power Laser and Particle Beams, 2016, 28(09): 095103. doi: 10.11884/HPLPB201628.151286
    [5]Geng Helong, Leng Yongbin, Zhou Weimin, Lai Longwei, Yan Yinbing. FPGA-based storage ring beam orbit interlock system design[J]. High Power Laser and Particle Beams, 2014, 26(12): 125102. doi: 10.11884/HPLPB201426.125102
    [6]Shi Min, Yang Junyi, Li Zhongguo, Nie Zhongquan, Song Yinglin. High-sensitivity measurement of surface optical nonlinearities[J]. High Power Laser and Particle Beams, 2013, 25(03): 583-586. doi: 10.3788/HPLPB20132503.0583
    [7]Jiang Bocheng, Zhang Manzhou, Li Haohu, Zhao Zhentang. Top-up safety simulation of injection beam for Shanghai Synchrotron Radiation Facility storage ring[J]. High Power Laser and Particle Beams, 2013, 25(04): 985-988.
    [8]Yan Yingbing, Leng Yongbin, Lai Longwei, Zhang Ning, Yi Xing, Yang Guisen. Beam lifetime measurement using beam position monitor in SSRF[J]. High Power Laser and Particle Beams, 2012, 24(01): 189-192.
    [9]chen jie, ye kairong, leng yongbin. Development of Shanghai Synchrotron Radiation Facility synchrotron radiation interferometer[J]. High Power Laser and Particle Beams, 2011, 23(01): 0- .
    [10]tan moyan, zhu jingtao, wang zhanshan. Design of reflective multilayer polarizers in extreme ultraviolet range using different merit functions[J]. High Power Laser and Particle Beams, 2011, 23(04): 0- .
    [11]leng yongbin, yan yingbing, zhou weimin, yuan renxian. Precise beam current measurement for storage ring using beam position monitor[J]. High Power Laser and Particle Beams, 2010, 22(12): 0- .
    [12]tang siwei, yin chongxian, liu dekang. Orbit noise analysis in Shanghai Synchrotron Radiation Facility storage ring[J]. High Power Laser and Particle Beams, 2010, 22(07): 0- .
    [13]luo qing, sun baogen, he duohui, lu ping, wang xiaohui, fang jia. Beam position monitor with racetrack cavity[J]. High Power Laser and Particle Beams, 2010, 22(07): 0- .
    [14]leng yongbin, yan yingbing, yuan renxian, zhou weimin. Betatron tune measurement system for Shanghai Synchrotron Radiation Facility storage ring[J]. High Power Laser and Particle Beams, 2010, 22(10): 0- .
    [15]wu ying, chen jianping, ni xiaowu, chu ran. Experimental study of frequency shift of reflected microwave from laser-induced plasma[J]. High Power Laser and Particle Beams, 2009, 21(06): 0- .
    [16]ke ming, yu chenghao. Application of articulated arm to components’ fiducialization in Shanghai Synchrotron Radiation Facility[J]. High Power Laser and Particle Beams, 2009, 21(12): 0- .
    [17]yang chun-ping, wu jian, leng jie. Parameterized model of solar radiation reflection by the ground[J]. High Power Laser and Particle Beams, 2007, 19(02): 0- .
    [18]yu cheng-hao, yin li-xin, du han-wen, zhao zhen-tang, huang kai-xi. Survey and alignment design of Shanghai synchrotron radiation facility[J]. High Power Laser and Particle Beams, 2006, 18(07): 0- .
    [19]luo yong, li hong-fu, xu yong, deng xue, zhao qing. RF windows of low reflectivity and absorption for high average power gyroklystrons[J]. High Power Laser and Particle Beams, 2004, 16(11): 0- .
    [20]zhang jun, zhong hui huang. Reflection dependence on frequency of overmoded slow wave structure and the influence of resonant cavity[J]. High Power Laser and Particle Beams, 2003, 15(08): 0- .
  • Cited by

    Periodical cited type(3)

    1. 杨星,冷用斌,周逸媚. 逐束团三维信息提取软件HOTCAP的实时性能优化. 核技术. 2024(02): 27-34 .
    2. Xing Yang,Hong-Shuang Wang,Yi-Mei Zhou,Yong-Bin Leng. Determining beam transverse absolute position by triangulation of multi-electrode signal phase differences. Nuclear Science and Techniques. 2024(08): 57-66 .
    3. 周逸媚,许兴懿,冷用斌. 电子储存环同步工作点精确测量和应用. 核技术. 2021(09): 19-24 .

    Other cited types(0)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-040510152025
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 30.9 %FULLTEXT: 30.9 %META: 65.9 %META: 65.9 %PDF: 3.1 %PDF: 3.1 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 3.8 %其他: 3.8 %其他: 0.7 %其他: 0.7 %Austell: 0.0 %Austell: 0.0 %Canada: 0.2 %Canada: 0.2 %China: 0.5 %China: 0.5 %Colombia: 0.1 %Colombia: 0.1 %Germany: 0.0 %Germany: 0.0 %India: 0.0 %India: 0.0 %Italy: 0.0 %Italy: 0.0 %Kao-sung: 0.1 %Kao-sung: 0.1 %Korea Republic of: 0.1 %Korea Republic of: 0.1 %Netherlands: 0.1 %Netherlands: 0.1 %Saudi Arabia: 0.0 %Saudi Arabia: 0.0 %Spain: 0.1 %Spain: 0.1 %Taiwan, China: 0.1 %Taiwan, China: 0.1 %United Kingdom: 0.3 %United Kingdom: 0.3 %United States: 1.0 %United States: 1.0 %Wixom: 0.0 %Wixom: 0.0 %[]: 0.5 %[]: 0.5 %丁克尔舍尔本: 0.1 %丁克尔舍尔本: 0.1 %上海: 4.5 %上海: 4.5 %东莞: 0.2 %东莞: 0.2 %中山: 0.0 %中山: 0.0 %临汾: 0.1 %临汾: 0.1 %丹东: 0.0 %丹东: 0.0 %佛山: 0.0 %佛山: 0.0 %佛罗里达: 0.1 %佛罗里达: 0.1 %保定: 0.0 %保定: 0.0 %六安: 0.1 %六安: 0.1 %兰州: 1.6 %兰州: 1.6 %北京: 18.8 %北京: 18.8 %南京: 0.5 %南京: 0.5 %南平: 0.0 %南平: 0.0 %厦门: 0.0 %厦门: 0.0 %台州: 0.4 %台州: 0.4 %台湾省: 0.5 %台湾省: 0.5 %合肥: 1.0 %合肥: 1.0 %呼和浩特: 0.0 %呼和浩特: 0.0 %哥伦布: 0.0 %哥伦布: 0.0 %嘉兴: 0.0 %嘉兴: 0.0 %圣保罗: 0.0 %圣保罗: 0.0 %大连: 0.0 %大连: 0.0 %宁德: 0.1 %宁德: 0.1 %宣城: 0.3 %宣城: 0.3 %密蘇里城: 0.1 %密蘇里城: 0.1 %岳阳: 0.1 %岳阳: 0.1 %常州: 0.0 %常州: 0.0 %广州: 0.0 %广州: 0.0 %张家口: 0.4 %张家口: 0.4 %惠州: 0.0 %惠州: 0.0 %成都: 0.1 %成都: 0.1 %扬州: 0.2 %扬州: 0.2 %文昌: 0.0 %文昌: 0.0 %新乡: 0.0 %新乡: 0.0 %新竹: 0.1 %新竹: 0.1 %无锡: 0.0 %无锡: 0.0 %昆明: 0.1 %昆明: 0.1 %晋城: 0.1 %晋城: 0.1 %普洱: 0.0 %普洱: 0.0 %朝阳: 0.1 %朝阳: 0.1 %杭州: 1.3 %杭州: 1.3 %武汉: 0.2 %武汉: 0.2 %沈阳: 0.0 %沈阳: 0.0 %泽西: 0.3 %泽西: 0.3 %洛杉矶: 0.3 %洛杉矶: 0.3 %济南: 0.1 %济南: 0.1 %深圳: 0.3 %深圳: 0.3 %湖州: 0.4 %湖州: 0.4 %滁州: 0.2 %滁州: 0.2 %漯河: 0.4 %漯河: 0.4 %石家庄: 0.1 %石家庄: 0.1 %福州: 0.0 %福州: 0.0 %科珀斯克里斯蒂: 0.0 %科珀斯克里斯蒂: 0.0 %秦皇岛: 0.0 %秦皇岛: 0.0 %绵阳: 0.2 %绵阳: 0.2 %芒廷维尤: 9.4 %芒廷维尤: 9.4 %芝加哥: 0.7 %芝加哥: 0.7 %苏州: 0.2 %苏州: 0.2 %蚌埠: 0.0 %蚌埠: 0.0 %衡阳: 0.0 %衡阳: 0.0 %西宁: 45.5 %西宁: 45.5 %西安: 0.1 %西安: 0.1 %贵阳: 0.1 %贵阳: 0.1 %迈尔斯堡: 0.1 %迈尔斯堡: 0.1 %运城: 0.9 %运城: 0.9 %邯郸: 0.1 %邯郸: 0.1 %郑州: 0.1 %郑州: 0.1 %重庆: 0.1 %重庆: 0.1 %长治: 0.1 %长治: 0.1 %阳泉: 0.0 %阳泉: 0.0 %其他其他AustellCanadaChinaColombiaGermanyIndiaItalyKao-sungKorea Republic ofNetherlandsSaudi ArabiaSpainTaiwan, ChinaUnited KingdomUnited StatesWixom[]丁克尔舍尔本上海东莞中山临汾丹东佛山佛罗里达保定六安兰州北京南京南平厦门台州台湾省合肥呼和浩特哥伦布嘉兴圣保罗大连宁德宣城密蘇里城岳阳常州广州张家口惠州成都扬州文昌新乡新竹无锡昆明晋城普洱朝阳杭州武汉沈阳泽西洛杉矶济南深圳湖州滁州漯河石家庄福州科珀斯克里斯蒂秦皇岛绵阳芒廷维尤芝加哥苏州蚌埠衡阳西宁西安贵阳迈尔斯堡运城邯郸郑州重庆长治阳泉

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(4)

    Article views (893) PDF downloads(79) Cited by(3)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return