Zhang Fan, Huang Xiuguang, Shu Hua, et al. Characteristics of dynamic fracture of aluminum and metallographic analysis of recovered samples in laser experiments[J]. High Power Laser and Particle Beams, 2015, 27: 071006. doi: 10.11884/HPLPB201527.071006
Citation: Qu Miao, Yan Sha. Correction method for pulse energy density of compression plasma flows[J]. High Power Laser and Particle Beams, 2023, 35: 065005. doi: 10.11884/HPLPB202335.220182

Correction method for pulse energy density of compression plasma flows

doi: 10.11884/HPLPB202335.220182
  • Received Date: 2022-06-01
  • Accepted Date: 2023-01-06
  • Rev Recd Date: 2022-08-26
  • Available Online: 2023-02-22
  • Publish Date: 2023-05-06
  • The problems of energy density diagnosis of compression plasma flows are introduced in this paper. Based on the energy dissipation analysis and the heat conduction calculation model, aiming at the errors caused by vaporization, an energy density correction method based on measured mass loss is proposed, and the input energies required to lose the same mass are deduced through the finite element calculation of surface receding. The energy density correction is evaluated, and the corrected energy density obtained by this method is in good agreement with the experimental results. However, to obtain more accurate energy density, it is necessary to correct the energy density for shielded plasma and recoil stress wave or develop a more accurate energy density diagnosis method.
  • [1]
    Wilson H. Edge localized modes in tokamaks[J]. Fusion Science and Technology, 2010, 57(2T): 174-182. doi: 10.13182/FST10-A9408
    [2]
    Pintsuk G, Kühnlein W, Linke J, et al. Investigation of tungsten and beryllium behaviour under short transient events[J]. Fusion Engineering and Design, 2007, 82(15/24): 1720-1729.
    [3]
    Zhitlukhin A, Klimov N, Landman I, et al. Effects of ELMs on ITER divertor armour materials[J]. Journal of Nuclear Materials, 2007, 363/365: 301-307. doi: 10.1016/j.jnucmat.2007.01.027
    [4]
    Khimchenko L N, Gureev V M, Federici G, et al. Study of erosion products in experiments simulating ELMs and disruptions in ITER on plasma gun QSPA-facility[C]//Proc. 21 Fusion Energy Conf. 2006.
    [5]
    Hirai T, Ezato K, Majerus P. ITER relevant high heat flux testing on plasma facing surfaces[J]. Materials Transactions, 2005, 46(3): 412-424. doi: 10.2320/matertrans.46.412
    [6]
    Linke J, Escourbiac F, Mazul I V, et al. High heat flux testing of plasma facing materials and components – Status and perspectives for ITER related activities[J]. Journal of Nuclear Materials, 2007, 367/370: 1422-1431. doi: 10.1016/j.jnucmat.2007.04.028
    [7]
    Kovalenko D V, Klimov N S, Podkovyrov V L, et al. Behavior of divertor and first wall armour materials at plasma heat fluxes relevant to ITER ELMs and disruptions[J]. Nuclear Materials and Energy, 2017, 12: 156-163. doi: 10.1016/j.nme.2017.05.007
    [8]
    张博尧. 注He纯钨在瞬态热负载下的性能研究[D]. 北京: 北京大学, 2014

    Zhang Boyao. The performance research of helium irradiated tungsten under transient thermal load[D]. Beijing: Peking University, 2014
    [9]
    屈苗, 喻晓, 张洁, 等. 强流脉冲离子束能量密度分布的红外诊断[J]. 强激光与粒子束, 2015, 27:075002 doi: 10.11884/HPLPB201527.075002

    Qu Miao, Yu Xiao, Zhang Jie, et al. Infrared imaging diagnostics of the energy density distribution at the intense pulsed ion beam cross-section[J]. High Power Laser and Particle Beams, 2015, 27: 075002 doi: 10.11884/HPLPB201527.075002
    [10]
    Astashinskii V M, Bakanovich G I, Kuz'mitskii A M, et al. Choice of operating conditions and plasma parameters of a magnetoplasma compressor[J]. Journal of Engineering Physics and Thermophysics, 1992, 62(3): 281-284. doi: 10.1007/BF00851755
    [11]
    Uglov V V, Anishchik V M, Astashynski V V, et al. The effect of dense compression plasma flow on silicon surface morphology[J]. Surface and Coatings Technology, 2002, 158/159: 273-276. doi: 10.1016/S0257-8972(02)00182-2
    [12]
    Sari A H, Astashynski V M, Kostyukevich E A, et al. Alloying of austenitic steel surface with zirconium using nitrogen compression plasma flow[J]. Vacuum, 2015, 115: 39-45. doi: 10.1016/j.vacuum.2015.01.032
    [13]
    Anishchik V M, Uglov V V, Astashynski V V, et al. Compressive plasma flows interaction with steel surface: structure and mechanical properties of modified layer[J]. Vacuum, 2003, 70(2/3): 269-274.
    [14]
    Vinogradova A K, Morozov A I. Physics and application of plasma accelerators[in Russian], Minsk (1974).
    [15]
    Dojčinović I P, Kuraica M M, Obradovć B M, et al. Optimization of plasma flow parameters of the magnetoplasma compressor[J]. Plasma Sources Science and Technology, 2007, 16(1): 72-79. doi: 10.1088/0963-0252/16/1/010
    [16]
    Lienhard J H. A heat transfer textbook[M]. New Jersey: Prentice-Hall, 1981.
    [17]
    Federici G, Loarte A, Strohmayer G. Assessment of erosion of the ITER divertor targets during type I ELMs[J]. Plasma Physics and Controlled Fusion, 2003, 45(9): 1523-1547. doi: 10.1088/0741-3335/45/9/301
  • Relative Articles

    [1]Lü Qiang, Tian Chao, Tong Lili, Cao Xuewu. Aerosol scrubbing removal under high Weber number immersed jet condition[J]. High Power Laser and Particle Beams, 2025, 37(2): 026003. doi: 10.11884/HPLPB202537.240150
    [2]Wu Wenlong, Liu Yong, Qiang Yongfa, Wang Zhenguo, Xiong Qian, Li Ke, Liu Jianguo, Wang Lin, Lin Donghui, Chen lin, Miao Xinxiang, Yao Ke. Experimental study on online cleanliness of the 400 mm aperture 4×2 combined slab amplifier[J]. High Power Laser and Particle Beams, 2023, 35(6): 062002. doi: 10.11884/HPLPB202335.220358
    [3]Song Hairun, Wang Xiaolei, Li Hao. Inversion algorithm of vertical visibility based on lidar and its error evaluation[J]. High Power Laser and Particle Beams, 2020, 32(3): 031002. doi: 10.11884/HPLPB202032.190250
    [4]Miao Xinxiang, Yuan Xiaodong, Lv Haibing, Cheng Xiaofeng, He Qun, Zhou Hai, Zheng Wanguo, Zhou Guorui. Contamination in beampath and laser induced damage of optics in high power laser system[J]. High Power Laser and Particle Beams, 2015, 27(03): 032033. doi: 10.11884/HPLPB201527.032033
    [5]Zhang Xuehai, Wei Heli, Dai Congming, Cao Ya’nan, Li Xuebin. A Study of scattering properties of fly ash aerosols: comparison of laboratory and Lorenz-Mie results[J]. High Power Laser and Particle Beams, 2015, 27(07): 071004. doi: 10.11884/HPLPB201527.071004
    [6]Li Zhenzhen, Huang Yinbo. Scaling law about aerosol absorption optical depth of typical types[J]. High Power Laser and Particle Beams, 2015, 27(01): 011005. doi: 10.11884/HPLPB201527.011005
    [7]Miao Xinxiang, Yuan Xiaodong, Lv Haibing, Cheng Xiaofeng, Wei Zhengtong, Zhou Guorui. Contamination particles sensor based on microfiber[J]. High Power Laser and Particle Beams, 2014, 26(11): 114103. doi: 10.11884/HPLPB201426.114103
    [8]Yang Chengwu, Liu Wenqing, Zhang Yujun. Algorithm for retrieving vertical visibility of laser diode ceilometer[J]. High Power Laser and Particle Beams, 2012, 24(02): 307-311. doi: 10.3788/HPLPB20122402.0307
    [9]Xu Bo, Huang Yinbo, Fan Chengyu, Qiao Chunhong. Calculation of effective absorption coefficient for aerosols of internal mixture[J]. High Power Laser and Particle Beams, 2012, 24(11): 2523-2526. doi: 10.3788/HPLPB20122411.2523
    [10]tang lei, shu zhifeng, dong jihui, yue bin, shen fahua, dong jingjing, sun dongsong. Measurement of slant visibility and its iteration method with diode-laser lidar[J]. High Power Laser and Particle Beams, 2010, 22(05): 0- .
    [11]xue chunrong, yi kui, wei chaoyang, shao jianda, fan zhengxiu. Optical properties of vacuum ultraviolet and deep ultraviolet region substrate materials[J]. High Power Laser and Particle Beams, 2009, 21(02): 0- .
    [12]chen xiuhong, wei heli, li xuebin, xu chidong, xu qingshan. Calculating model for aerosol extinction from visible to far infrared wavelength[J]. High Power Laser and Particle Beams, 2009, 21(02): 0- .
    [13]li xue-bin, hu shun-xing, xu qing-shan, hu huan-ling. Characteristics measurement of extinction and refractive index of aerosol particles[J]. High Power Laser and Particle Beams, 2007, 19(02): 0- .
    [14]xu qing-shan, hu huan-ling, wei he-li. Determination of the atmospheric aerosol model by ground-based spectral extinction measurements[J]. High Power Laser and Particle Beams, 2006, 18(09): 0- .
    [15]xie chen-bo, han yong, li chao, yue gu-ming, qi fu-di, fan ai-yuan, yin jun, yuan song, hou jun. Mobile lidar for visibility measurement[J]. High Power Laser and Particle Beams, 2005, 17(07): 0- .
    [16]mao min-juan, wu yong-hua, qi fu-di, fan ai-yuan, yue gu-ming, zhou jun. Mobile dual- wavelength Mie lidar[J]. High Power Laser and Particle Beams, 2005, 17(05): 0- .
    [17]zhang gai-xia, zhang yin-chao, hu shun-xing, liu xiao-qin, shao shi-sheng, tan kun, zhou jun, hu huan-ling. Measurements of planetary boundary layer aerosols with mobile lidar AML-1[J]. High Power Laser and Particle Beams, 2004, 16(03): 0- .
    [18]yang xiao li, luo jiu qiang, wang jun bo, liu yan yan, wan de ming. Measurement of the absorption coefficient of light by aerosol particles in atmosphere[J]. High Power Laser and Particle Beams, 2003, 15(06): 0- .
    [19]zhong zhi-qing, zhou jun, qi fu di, fan ai-yuan, yue gu-ming, lan ju-sheng, jiang qing-wu. Portable Mie lidar for monitoring atmospheric aerosol extinction[J]. High Power Laser and Particle Beams, 2003, 15(12): 0- .
    [20]yu hai-wu, zheng wan-guo, tang jun, wang cheng-cheng, liu yong, he shao-bo, wei xiao-feng, zhang xiao-min. Investigation of slab cavity cleanliness of high power laser amplifiers[J]. High Power Laser and Particle Beams, 2001, 13(03): 0- .
  • Cited by

    Periodical cited type(1)

    1. 殷松超,何璐,戴博,张大伟. 基于光时分复用技术的高速成像系统. 强激光与粒子束. 2017(05): 15-19 . 本站查看

    Other cited types(2)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-0402.557.51012.515
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 22.0 %FULLTEXT: 22.0 %META: 76.6 %META: 76.6 %PDF: 1.4 %PDF: 1.4 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 4.3 %其他: 4.3 %其他: 0.2 %其他: 0.2 %China: 0.5 %China: 0.5 %France: 0.3 %France: 0.3 %India: 0.1 %India: 0.1 %United States: 0.9 %United States: 0.9 %[]: 0.6 %[]: 0.6 %上海: 1.7 %上海: 1.7 %中山: 0.1 %中山: 0.1 %丽水: 0.2 %丽水: 0.2 %北京: 24.5 %北京: 24.5 %十堰: 0.3 %十堰: 0.3 %南京: 0.3 %南京: 0.3 %台州: 0.7 %台州: 0.7 %合肥: 0.3 %合肥: 0.3 %天津: 0.1 %天津: 0.1 %巴黎: 0.1 %巴黎: 0.1 %广州: 0.2 %广州: 0.2 %廊坊: 0.1 %廊坊: 0.1 %张家口: 0.9 %张家口: 0.9 %抚州: 0.1 %抚州: 0.1 %昆明: 0.2 %昆明: 0.2 %普洱: 0.1 %普洱: 0.1 %杭州: 0.6 %杭州: 0.6 %枣庄: 0.3 %枣庄: 0.3 %桃园: 0.1 %桃园: 0.1 %武汉: 0.1 %武汉: 0.1 %深圳: 0.2 %深圳: 0.2 %湖州: 0.4 %湖州: 0.4 %漯河: 0.7 %漯河: 0.7 %石家庄: 0.1 %石家庄: 0.1 %福州: 0.2 %福州: 0.2 %秦皇岛: 0.1 %秦皇岛: 0.1 %芒廷维尤: 14.7 %芒廷维尤: 14.7 %芝加哥: 0.1 %芝加哥: 0.1 %衡阳: 0.1 %衡阳: 0.1 %衢州: 0.3 %衢州: 0.3 %西宁: 44.1 %西宁: 44.1 %西安: 0.1 %西安: 0.1 %贵阳: 0.1 %贵阳: 0.1 %运城: 0.1 %运城: 0.1 %邯郸: 0.1 %邯郸: 0.1 %郑州: 0.4 %郑州: 0.4 %重庆: 0.1 %重庆: 0.1 %金华: 0.1 %金华: 0.1 %长沙: 0.2 %长沙: 0.2 %阳泉: 0.1 %阳泉: 0.1 %鞍山: 0.2 %鞍山: 0.2 %黄山: 0.1 %黄山: 0.1 %其他其他ChinaFranceIndiaUnited States[]上海中山丽水北京十堰南京台州合肥天津巴黎广州廊坊张家口抚州昆明普洱杭州枣庄桃园武汉深圳湖州漯河石家庄福州秦皇岛芒廷维尤芝加哥衡阳衢州西宁西安贵阳运城邯郸郑州重庆金华长沙阳泉鞍山黄山

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)  / Tables(4)

    Article views (504) PDF downloads(57) Cited by(3)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return