Volume 35 Issue 6
May  2023
Turn off MathJax
Article Contents
Qu Miao, Yan Sha. Correction method for pulse energy density of compression plasma flows[J]. High Power Laser and Particle Beams, 2023, 35: 065005. doi: 10.11884/HPLPB202335.220182
Citation: Qu Miao, Yan Sha. Correction method for pulse energy density of compression plasma flows[J]. High Power Laser and Particle Beams, 2023, 35: 065005. doi: 10.11884/HPLPB202335.220182

Correction method for pulse energy density of compression plasma flows

doi: 10.11884/HPLPB202335.220182
  • Received Date: 2022-06-01
  • Accepted Date: 2023-01-06
  • Rev Recd Date: 2022-08-26
  • Available Online: 2023-02-22
  • Publish Date: 2023-05-06
  • The problems of energy density diagnosis of compression plasma flows are introduced in this paper. Based on the energy dissipation analysis and the heat conduction calculation model, aiming at the errors caused by vaporization, an energy density correction method based on measured mass loss is proposed, and the input energies required to lose the same mass are deduced through the finite element calculation of surface receding. The energy density correction is evaluated, and the corrected energy density obtained by this method is in good agreement with the experimental results. However, to obtain more accurate energy density, it is necessary to correct the energy density for shielded plasma and recoil stress wave or develop a more accurate energy density diagnosis method.
  • loading
  • [1]
    Wilson H. Edge localized modes in tokamaks[J]. Fusion Science and Technology, 2010, 57(2T): 174-182. doi: 10.13182/FST10-A9408
    [2]
    Pintsuk G, Kühnlein W, Linke J, et al. Investigation of tungsten and beryllium behaviour under short transient events[J]. Fusion Engineering and Design, 2007, 82(15/24): 1720-1729.
    [3]
    Zhitlukhin A, Klimov N, Landman I, et al. Effects of ELMs on ITER divertor armour materials[J]. Journal of Nuclear Materials, 2007, 363/365: 301-307. doi: 10.1016/j.jnucmat.2007.01.027
    [4]
    Khimchenko L N, Gureev V M, Federici G, et al. Study of erosion products in experiments simulating ELMs and disruptions in ITER on plasma gun QSPA-facility[C]//Proc. 21 Fusion Energy Conf. 2006.
    [5]
    Hirai T, Ezato K, Majerus P. ITER relevant high heat flux testing on plasma facing surfaces[J]. Materials Transactions, 2005, 46(3): 412-424. doi: 10.2320/matertrans.46.412
    [6]
    Linke J, Escourbiac F, Mazul I V, et al. High heat flux testing of plasma facing materials and components – Status and perspectives for ITER related activities[J]. Journal of Nuclear Materials, 2007, 367/370: 1422-1431. doi: 10.1016/j.jnucmat.2007.04.028
    [7]
    Kovalenko D V, Klimov N S, Podkovyrov V L, et al. Behavior of divertor and first wall armour materials at plasma heat fluxes relevant to ITER ELMs and disruptions[J]. Nuclear Materials and Energy, 2017, 12: 156-163. doi: 10.1016/j.nme.2017.05.007
    [8]
    张博尧. 注He纯钨在瞬态热负载下的性能研究[D]. 北京: 北京大学, 2014

    Zhang Boyao. The performance research of helium irradiated tungsten under transient thermal load[D]. Beijing: Peking University, 2014
    [9]
    屈苗, 喻晓, 张洁, 等. 强流脉冲离子束能量密度分布的红外诊断[J]. 强激光与粒子束, 2015, 27:075002 doi: 10.11884/HPLPB201527.075002

    Qu Miao, Yu Xiao, Zhang Jie, et al. Infrared imaging diagnostics of the energy density distribution at the intense pulsed ion beam cross-section[J]. High Power Laser and Particle Beams, 2015, 27: 075002 doi: 10.11884/HPLPB201527.075002
    [10]
    Astashinskii V M, Bakanovich G I, Kuz'mitskii A M, et al. Choice of operating conditions and plasma parameters of a magnetoplasma compressor[J]. Journal of Engineering Physics and Thermophysics, 1992, 62(3): 281-284. doi: 10.1007/BF00851755
    [11]
    Uglov V V, Anishchik V M, Astashynski V V, et al. The effect of dense compression plasma flow on silicon surface morphology[J]. Surface and Coatings Technology, 2002, 158/159: 273-276. doi: 10.1016/S0257-8972(02)00182-2
    [12]
    Sari A H, Astashynski V M, Kostyukevich E A, et al. Alloying of austenitic steel surface with zirconium using nitrogen compression plasma flow[J]. Vacuum, 2015, 115: 39-45. doi: 10.1016/j.vacuum.2015.01.032
    [13]
    Anishchik V M, Uglov V V, Astashynski V V, et al. Compressive plasma flows interaction with steel surface: structure and mechanical properties of modified layer[J]. Vacuum, 2003, 70(2/3): 269-274.
    [14]
    Vinogradova A K, Morozov A I. Physics and application of plasma accelerators[in Russian], Minsk (1974).
    [15]
    Dojčinović I P, Kuraica M M, Obradovć B M, et al. Optimization of plasma flow parameters of the magnetoplasma compressor[J]. Plasma Sources Science and Technology, 2007, 16(1): 72-79. doi: 10.1088/0963-0252/16/1/010
    [16]
    Lienhard J H. A heat transfer textbook[M]. New Jersey: Prentice-Hall, 1981.
    [17]
    Federici G, Loarte A, Strohmayer G. Assessment of erosion of the ITER divertor targets during type I ELMs[J]. Plasma Physics and Controlled Fusion, 2003, 45(9): 1523-1547. doi: 10.1088/0741-3335/45/9/301
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)  / Tables(4)

    Article views (437) PDF downloads(57) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return