Citation: | Cai Dafeng, Wang Jian, Gu Yuqiu, et al. Research evolution of the positron jet generated by intense laser interaction with the plasmas[J]. High Power Laser and Particle Beams, 2023, 35: 072001. doi: 10.11884/HPLPB202335.220189 |
The history and development about the study of positrons generated by intense laser interaction with the plasmas are introduced. The mechanisms of the positron generation are presented. Specially, the typical experiment scheme (direct and indirect) of the positron generation, including important results about the experiment and computer simulation are described systemically. Eventually, the study of positron is reviewed and summarized. At present, the conclusions obtained from theoretical research and experimental research are quite different, and a lot of detailed work needs to be done in terms of laser equipment, experimental scheme design, and theoretical and simulation research.
[1] |
苑红霞. 正电子的预言与发现[J]. 大学物理, 2002, 21(2):34-36 doi: 10.3969/j.issn.1000-0712.2002.02.013
Yuan Hongxia. The prediction and discovery positron[J]. Coll Phys, 2002, 21(2): 34-36 doi: 10.3969/j.issn.1000-0712.2002.02.013
|
[2] |
Cowan T E, Perry M D, Key M H, et al. High energy electrons, nuclear phenomena and heating in petawatt laser-solid experiments[J]. Laser Part Beams, 1999, 17(4): 773-783. doi: 10.1017/S0263034699174238
|
[3] |
Liu Jianxun, Gan Longfei, Ma Yanyun, et al. Positron generation via two sequent laser pulses irradiating a solid aluminum target[J]. Phys Plasmas, 2017, 24: 083113. doi: 10.1063/1.5000065
|
[4] |
Gahn C, Tsakiris G D, Pretzler G, et al. Generating positrons with femtosecond-laser pulses[J]. Appl Phys Lett, 2000, 77(17): 2662-2664. doi: 10.1063/1.1319526
|
[5] |
Chen Hui, Wilks S C, Bonlie J D, et al. Relativistic positron creation using ultraintense short pulse lasers[J]. Phys Rev Lett, 2009, 102: 105001. doi: 10.1103/PhysRevLett.102.105001
|
[6] |
Chen Hui, Wilks S C, Meyerhofer D D, et al. Relativistic quasimonoenergetic positron jets from intense laser-solid interactions[J]. Phys Rev Lett, 2010, 105: 015003. doi: 10.1103/PhysRevLett.105.015003
|
[7] |
Yan Yonghong, Zhang Bo, Wu Yuchi, et al. Comparison of direct and indirect positron-generation by an ultra-intense femtosecond laser[J]. Phys Plasmas, 2013, 20: 103114. doi: 10.1063/1.4826219
|
[8] |
Sarri G, Schumaker W, Di Piazza A, et al. Table-top laser-based source of femtosecond, collimated, ultrarelativistic positron beams[J]. Phys Rev Lett, 2013, 110: 255002. doi: 10.1103/PhysRevLett.110.255002
|
[9] |
Yan Yonghong, Dong Kegong, Wu Yuchi, et al. Numerical simulation study of positron production by intense laser-accelerated electrons[J]. Phys Plasmas, 2013, 20: 103106. doi: 10.1063/1.4824107
|
[10] |
Chen Hui, Fiuza F, Link A, et al. Scaling the yield of laser-driven electron-positron jets to laboratory astrophysical applications[J]. Phys Rev Lett, 2015, 114: 215001. doi: 10.1103/PhysRevLett.114.215001
|
[11] |
Williams G J, Pollock B B, Albert F, et al. Positron generation using laser-wakefield electron sources[J]. Phys Plasmas, 2015, 22: 093115. doi: 10.1063/1.4931044
|
[12] |
Xu Tongjun, Shen Baifei, Xu Jiancai, et al. Ultrashort megaelectronvolt positron beam generation based on laser-accelerated electrons[J]. Phys Plasmas, 2016, 23: 033109. doi: 10.1063/1.4943280
|
[13] |
Yu Jinqing, Lu Haiyang, Takahashi T, et al. Creation of electron-positron pairs in photon-photon collisions driven by 10-PW laser pulses[J]. Phys Rev Lett, 2019, 122: 014802. doi: 10.1103/PhysRevLett.122.014802
|
[14] |
闫永宏, 吴玉迟, 董克攻, 等. 激光固体靶相互作用产生正电子的模拟研究[J]. 强激光与粒子束, 2015, 27:112006 doi: 10.11884/HPLPB201527.112006
Yan Yonghong, Wu Yuchi, Dong Kegong, et al. Simulation study of positron production from laser-solid interactions[J]. High Power Laser Part Beams, 2015, 27: 112006 doi: 10.11884/HPLPB201527.112006
|
[15] |
冯磊, 马燕云, 赵子甲, 等. 激光尾波场电子轰击多层靶的正电子产额模拟计算[J]. 现代应用物理, 2019, 10:040201
Feng Lei, Ma Yanyun, Zhao Zijia, et al. Simulation of positron yield increased by the interaction of laser wakefield electrons with multi-layer targets[J]. Mod Appl Phys, 2019, 10: 040201
|
[16] |
Xu Zhangli, Yi Longqing, Shen Baifei, et al. Driving positron beam acceleration with coherent transition radiation[J]. Commun Phys, 2020, 3: 191. doi: 10.1038/s42005-020-00471-6
|
[1] | Mao Chongyang, Xue Chuang, Xiao Delong, Ding Ning. Simulation method of quadruple-level circuit model for stack and vacuum section of Julong-I facility[J]. High Power Laser and Particle Beams, 2020, 32(2): 025004. doi: 10.11884/HPLPB202032.190330 |
[2] | Mao Chongyang, Xue Chuang, Xiao Delong, Wang Xiaoguang, Wang Guanqiong, Ding Ning. Full circuit simulation for influence of the laser-triggered gas switches' closing time on load current in PTS facility[J]. High Power Laser and Particle Beams, 2019, 31(1): 015001. doi: 10.11884/HPLPB201931.180256 |
[3] | Zhang Huang, Wang Yi, Li Tiantao, Yang Zhiyong, Li Qin, Jiang Wei, Li Yuan, Huang Ziping, Chen Sifu, Shi Jinshui, Zhang Linwen, Deng Jianjun. Beam load effect on the cavity voltage waveform in linear induction accelerators[J]. High Power Laser and Particle Beams, 2016, 28(01): 015101. doi: 10.11884/HPLPB201628.015101 |
[4] | Xue Chuang, Ding Ning, Zhang Yang, Xiao Delong, Sun Shunkai, Ning Cheng, Shu Xiaojian, . Full circuit simulation for electromagnetic pulse forming and transmission in the PTS facility[J]. High Power Laser and Particle Beams, 2016, 28(01): 015014. doi: 10.11884/HPLPB201628.015014 |
[5] | Xue Chuang, Ding Ning, Xiao Delong, Zhang Yang, Sun Shunkai, Ning Cheng, Shu Xiaojian. Lumped circuit model for the PTS driving Z pinch load implosion[J]. High Power Laser and Particle Beams, 2016, 28(12): 125004. doi: 10.11884/HPLPB201628.160138 |
[6] | Xia Minghe, Li Fengping, Ji Ce, Wei Bing, Feng Shuping, Wang Meng, Xie Weiping. Current pulse shaping of load on Primary Test Stand facility[J]. High Power Laser and Particle Beams, 2016, 28(05): 055003. doi: 10.11884/HPLPB201628.055003 |
[7] | Kan Mingxian, Zhang Zhaohui, Duan Shuchao, Wang Ganghua, Yang Long, Xiao Bo, Wang Guilin. Numerical simulation of magnetically driven aluminum flyer plate on PTS accelerator[J]. High Power Laser and Particle Beams, 2015, 27(12): 125001. doi: 10.11884/HPLPB201527.125001 |
[8] | Wang Jie, Chen Lin, Guo Fan, Zhao Yue, Zhang Yuanjun, Li Ye, Wang Meng, Dai Yingmin. Shaping of output current rise time on 1 MA-LTD cavity[J]. High Power Laser and Particle Beams, 2014, 26(04): 045009. doi: 10.11884/HPLPB201426.045009 |
[9] | Guo Fan, Zou Wenkang, Chen Lin. Circuit simulation method for calculating vacuum power flow in magnetically insulated transmission line[J]. High Power Laser and Particle Beams, 2013, 25(07): 1845-1850. doi: 10.3788/HPLPB20132507.1845 |
[10] | Zou Wenkang, He Yong, Chen Lin, Zhou Liangji, Wang Meng, Xie Weiping, Deng Jianjun. Power flow computation with circuit for magnetically-insulated inductive voltage adder[J]. High Power Laser and Particle Beams, 2012, 24(05): 1211-1216. doi: 10.3788/HPLPB20122405.1211 |
[11] | Lai Dingguo, Xie Linshen. Application of Pspice subcircuit to circuit simulation of pulsed power device[J]. High Power Laser and Particle Beams, 2012, 24(03): 689-692. doi: 10.3788/HPLPB20122403.0689 |
[12] | He Yong, Zou Wenkang, ZHang Le, Song SHengyi. Circuit simulation and analysis of magnetically insulated transmission line[J]. High Power Laser and Particle Beams, 2012, 24(03): 581-586. doi: 10.3788/HPLPB20122403.0581 |
[13] | Xia Minghe, Ji Ce, Wang Yujuan, Wang Meng, Li Feng, Feng Shuping, Xie Weiping. Operation models and waveform shaping of primary test stand[J]. High Power Laser and Particle Beams, 2012, 24(11): 2768-2772. doi: 10.3788/HPLPB20122411.2768 |
[14] | zeng zhengzhong. Circuit simulation of exponential transmission line for petawatt Z-pinch plasma drivers[J]. High Power Laser and Particle Beams, 2011, 23(07): 0- . |
[15] | zhou liangji, deng jianjun, chen lin, dai yingmin, wang meng, xie weiping, feng shuping, yang libing. Design of 1 MA linear transformer driver stage[J]. High Power Laser and Particle Beams, 2010, 22(03): 0- . |
[16] | wang ganping, xiang fei, tan jie, luo min, kang qiang, cao shaoyun. Physical design and simulation of LTD-based source with long pulse and high power[J]. High Power Laser and Particle Beams, 2010, 22(10): 0- . |
[17] | song sheng-yi, gu yuan-chao, guan yong-chao, zou wen-kang. Circuit simulation of magnetically insulated transmission line driving a wire array to implode[J]. High Power Laser and Particle Beams, 2008, 20(03): 0- . |
[18] | zou wen-kang, zhou liang-ji, chen lin, deng jian-jun. Physical design and simulation for a 100 GW LTD system[J]. High Power Laser and Particle Beams, 2008, 20(02): 0- . |
[19] | zhou liang-ji, deng jian-jun, chen lin, xie wei-ping, feng shu-ping, guan yong-chao, wu shou-dong, ren jing, li ye. Influence of volt-second product of magnetic core on output of linear transformer driver[J]. High Power Laser and Particle Beams, 2007, 19(01): 0- . |
[20] | song sheng-yi, qiu xu, wang wen-dou, xie wei-ping. Circuit model for magnetically insulated transmission line[J]. High Power Laser and Particle Beams, 2005, 17(05): 0- . |
1. | 张朝辉,王贵林,章征伟,郭帆,计策,傅贞,李勇. 10 MA多支路汇流装置上钽的强度实验研究. 强激光与粒子束. 2021(04): 121-129 . ![]() | |
2. | 毛重阳,薛创,肖德龙,丁宁. “聚龙一号”4层绝缘堆和真空区电路模拟方法. 强激光与粒子束. 2020(02): 24-28 . ![]() | |
3. | 王贵林,张朝辉,孙奇志,杨雯捷,计策,丰树平. 聚龙一号装置的强电磁干扰对PDV的影响研究. 强激光与粒子束. 2019(10): 99-103 . ![]() |