Citation: | Zhao Kai, Wang Youjing, Fu Changbo, et al. Review on Hawking-Unruh radiation studies with high-intensity lasers[J]. High Power Laser and Particle Beams, 2023, 35: 012012. doi: 10.11884/HPLPB202335.220197 |
[1] |
Carlip S. Quantum gravity: a progress report[J]. Reports on Progress in Physics, 2001, 64(8): 885-942. doi: 10.1088/0034-4885/64/8/301
|
[2] |
Howl R, Hackermüller L, Bruschi D E, et al. Gravity in the quantum lab[J]. Advances in Physics: X, 2018, 3: 1383184.
|
[3] |
Xu Renxin, Wu Fei. Ultra high energy cosmic rays: strangelets?[J]. Chinese Physics Letters, 2003, 20(6): 806-809. doi: 10.1088/0256-307X/20/6/308
|
[4] |
Faccio D. Laser pulse analogues for gravity and analogue Hawking radiation[J]. Contemporary Physics, 2012, 53(2): 97-112. doi: 10.1080/00107514.2011.642559
|
[5] |
Hajicek P. Origin of Hawking radiation[J]. Physical Review D, 1987, 36(4): 1065-1079. doi: 10.1103/PhysRevD.36.1065
|
[6] |
Almheiri A, Hartman T, Maldacena J, et al. The entropy of Hawking radiation[J]. Reviews of Modern Physics, 2021, 93: 035002. doi: 10.1103/RevModPhys.93.035002
|
[7] |
Fulling S A. Nonuniqueness of canonical field quantization in Riemannian space-time[J]. Physical Review D, 1973, 7(10): 2850-2862. doi: 10.1103/PhysRevD.7.2850
|
[8] |
Davies P C W. Scalar production in Schwarzschild and Rindler metrics[J]. Journal of Physics A: Mathematical and General, 1975, 8(4): 609-616. doi: 10.1088/0305-4470/8/4/022
|
[9] |
Unruh W G. Notes on black-hole evaporation[J]. Physical Review D, 1976, 14(4): 870-892. doi: 10.1103/PhysRevD.14.870
|
[10] |
Crispino L C B, Higuchi A, Matsas G E A. The Unruh effect and its applications[J]. Reviews of Modern Physics, 2008, 80(3): 787-838. doi: 10.1103/RevModPhys.80.787
|
[11] |
Schützhold R, Schaller G, Habs D. Publisher’s note: signatures of the Unruh effect from electrons accelerated by ultrastrong laser fields [Phys. Rev. Lett. 97, 121302 (2006)][J]. Physical Review Letters, 2006, 97: 139904. doi: 10.1103/PhysRevLett.97.139904
|
[12] |
Bays H. Adiposopathy, metabolic syndrome, quantum physics, general relativity, chaos and the Theory of Everything[J]. Expert Review of Cardiovascular Therapy, 2005, 3(3): 393-404. doi: 10.1586/14779072.3.3.393
|
[13] |
Laughlin R B, Pines D. The Theory of Everything[J]. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97(1): 28-31. doi: 10.1073/pnas.97.1.28
|
[14] |
Schützhold R, Schaller G, Habs D. Tabletop creation of entangled multi-keV photon pairs and the Unruh effect[J]. Physical Review Letters, 2008, 100: 091301. doi: 10.1103/PhysRevLett.100.091301
|
[15] |
Singleton D, Wilburn S. Hawking radiation, Unruh radiation, and the equivalence principle[J]. Physical Review Letters, 2011, 107: 081102. doi: 10.1103/PhysRevLett.107.081102
|
[16] |
Peña I, Sudarsky D. On the possibility of measuring the Unruh effect[J]. Foundations of Physics, 2014, 44(6): 689-708. doi: 10.1007/s10701-014-9806-0
|
[17] |
Lin S Y, Hu B L. Backreaction and the Unruh effect: new insights from exact solutions of uniformly accelerated detectors[J]. Physical Review D, 2007, 76: 064008. doi: 10.1103/PhysRevD.76.064008
|
[18] |
Thirolf P G, Habs D, Henig A, et al. Signatures of the Unruh effect via high-power, short-pulse lasers[J]. The European Physical Journal D, 2009, 55(2): 379-389. doi: 10.1140/epjd/e2009-00149-x
|
[19] |
Dodonov V V. Current status of the dynamical Casimir effect[J]. Physica Scripta, 2010, 82: 038105. doi: 10.1088/0031-8949/82/03/038105
|
[20] |
Schützhold R, Maia C. Quantum radiation by electrons in lasers and the Unruh effect[J]. The European Physical Journal D, 2009, 55(2): 375-378. doi: 10.1140/epjd/e2009-00038-4
|
[21] |
Levin O, Peleg Y, Peres A. Unruh effect for circular motion in a cavity[J]. Journal of Physics A: Mathematical and General, 1993, 26(12): 3001-3011. doi: 10.1088/0305-4470/26/12/035
|
[22] |
Bell J S, Leinaas J M. The Unruh effect and quantum fluctuations of electrons in storage rings[J]. Nuclear Physics B, 1987, 284: 488-508. doi: 10.1016/0550-3213(87)90047-2
|
[23] |
Belyanin A, Kocharovsky V V, Capasso F, et al. Quantum electrodynamics of accelerated atoms in free space and in cavities[J]. Physical Review A, 2006, 74: 023807. doi: 10.1103/PhysRevA.74.023807
|
[24] |
Fabbri A, Balbinot R. Ramp-up of Hawking radiation in Bose-Einstein-condensate analog black holes[J]. Physical Review Letters, 2021, 126: 111301. doi: 10.1103/PhysRevLett.126.111301
|
[25] |
Gooding C, Biermann S, Erne S, et al. Interferometric Unruh detectors for Bose-Einstein condensates[J]. Physical Review Letters, 2020, 125: 213603. doi: 10.1103/PhysRevLett.125.213603
|
[26] |
Rodríguez-Laguna J, Tarruell L, Lewenstein M, et al. Synthetic Unruh effect in cold atoms[J]. Physical Review A, 2017, 95: 013627. doi: 10.1103/PhysRevA.95.013627
|
[27] |
Kharzeev D. Quantum black Holes and thermalization in relativistic heavy ion collisions[J]. Nuclear Physics A, 2006, 774: 315-324. doi: 10.1016/j.nuclphysa.2006.06.051
|
[28] |
Chen P, Tajima T. Testing Unruh radiation with ultraintense lasers[J]. Physical Review Letters, 1999, 83(2): 256-259. doi: 10.1103/PhysRevLett.83.256
|
[29] |
Euvé L P, Robertson S, James N, et al. Scattering of co-current surface waves on an analogue black hole[J]. Physical Review Letters, 2020, 124: 141101. doi: 10.1103/PhysRevLett.124.141101
|
[30] |
Patrick S, Goodhew H, Gooding C, et al. Backreaction in an analogue black hole experiment[J]. Physical Review Letters, 2021, 126: 041105. doi: 10.1103/PhysRevLett.126.041105
|
[31] |
Pelat A, Gautier F, Conlon S C, et al. The acoustic black hole: a review of theory and applications[J]. Journal of Sound and Vibration, 2020, 476: 115316. doi: 10.1016/j.jsv.2020.115316
|
[32] |
高南沙, 张智成, 王谦, 等. 声学黑洞研究进展与应用[J]. 科学通报, 2022, 67(12):1203-1213 doi: 10.1360/TB-2021-0439
Gao Nansha, Zhang Zhicheng, Wang Qian, et al. Progress and applications of acoustic black holes[J]. Chinese Science Bulletin, 2022, 67(12): 1203-1213 doi: 10.1360/TB-2021-0439
|
[33] |
Barceló C, Liberati S, Visser M. Analogue gravity[J]. Living Reviews in Relativity, 2011, 14: 3. doi: 10.12942/lrr-2011-3
|
[34] |
Frercks J. Fizeau’s research program on ether drag: a long quest for a publishable experiment[J]. Physics in Perspective, 2005, 7(1): 35-65. doi: 10.1007/s00016-004-0224-0
|
[35] |
Agrawal G. Nonlinear fiber optics[M]. 5th ed. Oxford: Academic Press, 2013.
|
[36] |
Rubino E, Belgiorno F, Cacciatori S L, et al. Experimental evidence of analogue Hawking radiation from ultrashort laser pulse filaments[J]. New Journal of Physics, 2011, 13: 085005. doi: 10.1088/1367-2630/13/8/085005
|
[37] |
Belgiorno F, Cacciatori S L, Clerici M, et al. Hawking radiation from ultrashort laser pulse filaments[J]. Physical Review Letters, 2010, 105: 203901. doi: 10.1103/PhysRevLett.105.203901
|
[38] |
Philbin T G, Kuklewicz C, Robertson S, et al. Fiber-optical analog of the event horizon[J]. Science, 2008, 319(5868): 1367-1370. doi: 10.1126/science.1153625
|
[39] |
Rubino E, McLenaghan J, Kehr S C, et al. Negative-frequency resonant radiation[J]. Physical Review Letters, 2012, 108: 253901. doi: 10.1103/PhysRevLett.108.253901
|
[40] |
Drori J, Rosenberg Y, Bermudez D, et al. Observation of stimulated Hawking radiation in an optical analogue[J]. Physical Review Letters, 2019, 122: 010404. doi: 10.1103/PhysRevLett.122.010404
|
[41] |
Wang Weibin, Yang Hua, Tang Pinghua, et al. Soliton trapping of dispersive waves in photonic crystal fiber with two zero dispersive wavelengths[J]. Optics Express, 2013, 21(9): 11215-11226. doi: 10.1364/OE.21.011215
|
[42] |
Petty J, König F. Optical analogue gravity physics: resonant radiation[J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2020, 378: 20190231. doi: 10.1098/rsta.2019.0231
|
[43] |
Ispirian K A. High energy experimental proposals for the study of Unruh (effect) radiation[C]//Proceedings of the 3rd International Conference on Quantum Electrodynamics and Statistical Physics. 2012: 209-212.
|
[44] |
Ringwald A. Fundamental physics at an X-ray free electron laser[C]//Proceedings of the Electromagnetic Probes of Fundamental Physics. 2003: 63-74.
|
[45] |
Consoli F, Tikhonchuk V T, Bardon M, et al. Laser produced electromagnetic pulses: generation, detection and mitigation[J]. High Power Laser Science and Engineering, 2020, 8: e22. doi: 10.1017/hpl.2020.13
|
[46] |
Han Manfen, Zheng Jinxing, Zeng Xianhu, et al. Investigation of combined degrader for proton facility based on BDSIM/FLUKA Monte Carlo methods[J]. Nuclear Science and Techniques, 2022, 33: 17. doi: 10.1007/s41365-022-01002-4
|
[47] |
Hu Po, Ma Zhiguo, Zhao Kai, et al. Development of gated fiber detectors for laser-induced strong electromagnetic pulse environments[J]. Nuclear Science and Techniques, 2021, 32: 58. doi: 10.1007/s41365-021-00898-8
|