Citation: | Zhang Bo, Zhang Zhimeng, Zhou Weimin. Comparison of different improvements to mainstream model of nonlinear Compton scattering[J]. High Power Laser and Particle Beams, 2023, 35: 012007. doi: 10.11884/HPLPB202335.220204 |
[1] |
Danson C N, Brummitt P A, Clarke R J, et al. Vulcan Petawatt—an ultra-high-intensity interaction facility[J]. Nuclear Fusion, 2004, 44(12): S239-S246. doi: 10.1088/0029-5515/44/12/S15
|
[2] |
Weber S, Bechet S, Borneis S, et al. P3: An installation for high-energy density plasma physics and ultra-high intensity laser-matter interaction at ELI-Beamlines[J]. Matter and Radiation at Extremes, 2017, 2(4): 149-176. doi: 10.1016/j.mre.2017.03.003
|
[3] |
Guo Zhen, Yu Lianghong, Wang Jianye, et al. Improvement of the focusing ability by double deformable mirrors for 10-PW-level Ti: sapphire chirped pulse amplification laser system[J]. Optics Express, 2018, 26(20): 26776-26786. doi: 10.1364/OE.26.026776
|
[4] |
Zou J P, Le Blanc C, Papadopoulos D N, et al. Design and current progress of the Apollon 10 PW project[J]. High Power Laser Science and Engineering, 2015, 3: e2. doi: 10.1017/hpl.2014.41
|
[5] |
Gales S, Tanaka K A, Balabanski D L, et al. The extreme light infrastructure nuclear physics (ELI-NP) facility: new horizons in physics with 10 PW ultra-intense lasers and 20 MeV brilliant gamma beams[J]. Reports on Progress in Physics, 2018, 81: 094301. doi: 10.1088/1361-6633/aacfe8
|
[6] |
Bromage J, Bahk S W, Begishev I A, et al. Technology development for ultraintense all-OPCPA systems[J]. High Power Laser Science and Engineering, 2019, 7: e4. doi: 10.1017/hpl.2018.64
|
[7] |
Cartlidge E. The light fantastic[J]. Science, 2018, 359(6374): 382-385. doi: 10.1126/science.359.6374.382
|
[8] |
Tiwari G, Gaul E, Martinez M, et al. Beam distortion effects upon focusing an ultrashort petawatt laser pulse to greater than 1022W/cm2[J]. Optics Letters, 2019, 44(11): 2764-2767. doi: 10.1364/OL.44.002764
|
[9] |
Zeng Xiaoming, Zhou Kainan, Zuo Yanlei, et al. Multi-petawatt laser facility fully based on optical parametric chirped pulse amplification[J]. Optics Letters, 2017, 42(10): 2014-2017. doi: 10.1364/OL.42.002014
|
[10] |
Yanovsky V, Chvykov V, Kalinchenko G, et al. Ultra-high intensity-300-TW laser at 0.1 Hz repetition rate[J]. Optics Express, 2008, 16(3): 2109-2114. doi: 10.1364/OE.16.002109
|
[11] |
Pirozhkov A S, Fukuda Y, Nishiuchi M, et al. Approaching the diffraction-limited, bandwidth-limited petawatt[J]. Optics Express, 2017, 25(17): 20486-20501. doi: 10.1364/OE.25.020486
|
[12] |
Yoon J W, Jeon C, Shin J, et al. Achieving the laser intensity of 5.5×1022W/cm2 with a wavefront-corrected multi-PW laser[J]. Optics Express, 2019, 27(15): 20412-20420. doi: 10.1364/OE.27.020412
|
[13] |
Yoon J W, Yoon J W, Kim Y G, et al. Realization of laser intensity over 1023W/cm2[J]. Optica, 2021, 8(5): 630-635. doi: 10.1364/OPTICA.420520
|
[14] |
Danson C N, Haefner C, Bromage J, et al. Petawatt and exawatt class lasers worldwide[J]. High Power Laser Science and Engineering, 2019, 7: e54. doi: 10.1017/hpl.2019.36
|
[15] |
Jackson J D. Classical electrodynamics[M]. New York: Wiley Press, 1975.
|
[16] |
Landau L D, Lifshitz E M. The classical theory of fields[M]. Oxford: Pergamon Press, 1975.
|
[17] |
Schwinger J. On gauge invariance and vacuum polarization[J]. Physical Review, 1951, 82(5): 664-679. doi: 10.1103/PhysRev.82.664
|
[18] |
Klein J J, Nigam B P. Birefringence of the vacuum[J]. Physical Review, 1964, 135(5B): B1279-B1280. doi: 10.1103/PhysRev.135.B1279
|
[19] |
Adler S L, Bahcall J N, Callan C G, et al. Photon splitting in a strong magnetic field[J]. Physical Review Letters, 1970, 25(15): 1061-1065. doi: 10.1103/PhysRevLett.25.1061
|
[20] |
Unruh W G. Notes on black-hole evaporation[J]. Physical Review D, 1976, 14(4): 870-892. doi: 10.1103/PhysRevD.14.870
|
[21] |
Zhang Bo, Zhang Zhimeng, Hong Wei, et al. Vacuum radiation induced by time dependent electric field[J]. Physics Letters B, 2017, 767: 431-436. doi: 10.1016/j.physletb.2017.01.076
|
[22] |
Marklund M, Shukla P K. Nonlinear collective effects in photon-photon and photon-plasma interactions[J]. Reviews of Modern Physics, 2006, 78(2): 591-640. doi: 10.1103/RevModPhys.78.591
|
[23] |
Ehlotzky F, Krajewska K, Kamiński J Z. Fundamental processes of quantum electrodynamics in laser fields of relativistic power[J]. Reports on Progress in Physics, 2009, 72: 046401. doi: 10.1088/0034-4885/72/4/046401
|
[24] |
Di Piazza A, Müller C, Hatsagortsyan K Z, et al. Extremely high-intensity laser interactions with fundamental quantum systems[J]. Reviews of Modern Physics, 2012, 84(3): 1177-1228. doi: 10.1103/RevModPhys.84.1177
|
[25] |
Mourou G, Tajima T. Summary of the IZEST science and aspiration[J]. The European Physical Journal Special Topics, 2014, 223(6): 979-984. doi: 10.1140/epjst/e2014-02148-4
|
[26] |
Cole J M, Behm K T, Gerstmayr E, et al. Experimental evidence of radiation reaction in the collision of a high-intensity laser pulse with a laser-wakefield accelerated electron beam[J]. Physical Review X, 2018, 8: 011020.
|
[27] |
Poder K, Tamburini M, Sarri G, et al. Experimental signatures of the quantum nature of radiation reaction in the field of an ultraintense laser[J]. Physical Review X, 2018, 8: 031004.
|
[28] |
Wistisen T N, Di Piazza A, Knudsen H V, et al. Experimental evidence of quantum radiation reaction in aligned crystals[J]. Nature Communications, 2018, 9: 795. doi: 10.1038/s41467-018-03165-4
|
[29] |
Wistisen T N, Di Piazza A, Nielsen C F, et al. Quantum radiation reaction in aligned crystals beyond the local constant field approximation[J]. Physical Review Research, 2019, 1: 033014. doi: 10.1103/PhysRevResearch.1.033014
|
[30] |
Nikishov A I, Ritus V I. Quantum processes in the field of a plane electromagnetic wave and in a constant field. Part II[J]. Zh. Eksp. Teor. Fiz, 1964, 46: 776.
|
[31] |
Nikishov A I, Ritus V I. Pair production by a photon and photon emission by an electron in the field of an intense electromagnetic wave and in a constant field[J]. Soviet Physics JETP, 1967, 25(6): 1135-1142.
|
[32] |
Ritus V I. Quantum effects of the interaction of elementary particles with an intense electromagnetic field[J]. Journal of Soviet Laser Research, 1985, 6(5): 497-617. doi: 10.1007/BF01120220
|
[33] |
Ji Liangliang, Pukhov A, Kostyukov I Y, et al. Radiation-reaction trapping of electrons in extreme laser fields[J]. Physical Review Letters, 2014, 112: 145003. doi: 10.1103/PhysRevLett.112.145003
|
[34] |
Gonoskov A, Bashinov A, Gonoskov I, et al. Anomalous radiative trapping in laser fields of extreme intensity[J]. Physical Review Letters, 2014, 113: 014801. doi: 10.1103/PhysRevLett.113.014801
|
[35] |
Duclous R, Kirk J G, Bell A R. Monte Carlo calculations of pair production in high-intensity laser–plasma interactions[J]. Plasma Physics and Controlled Fusion, 2011, 53: 015009. doi: 10.1088/0741-3335/53/1/015009
|
[36] |
Arber T D, Bennett K, Brady C S, et al. Contemporary particle-in-cell approach to laser-plasma modelling[J]. Plasma Physics and Controlled Fusion, 2015, 57: 113001. doi: 10.1088/0741-3335/57/11/113001
|
[37] |
Ridgers C P, Kirk J G, Duclous R, et al. Modelling gamma-ray photon emission and pair production in high-intensity laser–matter interactions[J]. Journal of Computational Physics, 2014, 260: 273-285. doi: 10.1016/j.jcp.2013.12.007
|
[38] |
Zhang Bo, Zhang Zhimeng, Deng Zhigang, et al. Effects of involved laser photons on radiation and electron-positron pair production in one coherence interval in ultra intense lasers[J]. Scientific Reports, 2018, 8: 16862. doi: 10.1038/s41598-018-35312-8
|
[39] |
Zhang Bo, Zhang Zhimeng, Deng Zhigang, et al. Quantum mechanisms of electron and positron acceleration through nonlinear Compton scatterings and nonlinear Breit-Wheeler processes in coherent photon dominated regime[J]. Scientific Reports, 2019, 9: 18876. doi: 10.1038/s41598-019-55472-5
|
[40] |
Li Yanfei, Shaisultanov R, Hatsagortsyan K Z, et al. Ultrarelativistic electron-beam polarization in single-shot interaction with an ultraintense laser pulse[J]. Physical Review Letters, 2019, 122: 154801. doi: 10.1103/PhysRevLett.122.154801
|
[41] |
Li Yanfei, Shaisultanov R, Chen Y Y, et al. Polarized ultrashort brilliant multi-GeV γ rays via single-shot laser-electron interaction[J]. Physical Review Letters, 2020, 124: 014801. doi: 10.1103/PhysRevLett.124.014801
|
[42] |
Li Yanfei, Chen Yueyue, Wang Weimin, et al. Production of highly polarized positron beams via helicity transfer from polarized electrons in a strong laser field[J]. Physical Review Letters, 2020, 125: 044802. doi: 10.1103/PhysRevLett.125.044802
|
[43] |
McMaster W H. Matrix representation of polarization[J]. Reviews of Modern Physics, 1961, 33(1): 8-27. doi: 10.1103/RevModPhys.33.8
|
[44] |
Baier V N, Katkov V M, Strakhovenko V M. Quantum radiation theory in inhomogeneous external fields[J]. Nuclear Physics B, 1989, 328(2): 387-405. doi: 10.1016/0550-3213(89)90334-9
|
[45] |
Dinu V, Harvey C, Ilderton A, et al. Quantum radiation reaction: from interference to incoherence[J]. Physical Review Letters, 2016, 116: 044801. doi: 10.1103/PhysRevLett.116.044801
|
[46] |
Di Piazza A, Tamburini M, Meuren S, et al. Implementing nonlinear Compton scattering beyond the local-constant-field approximation[J]. Physical Review A, 2018, 98: 012134. doi: 10.1103/PhysRevA.98.012134
|