Long Wenjun, Zheng Lei, Zhao Rui, et al. Heat reversal phenomenon of spray cooling and its heat transfer enhancement characteristics[J]. High Power Laser and Particle Beams, 2021, 33: 101001. doi: 10.11884/HPLPB202133.210101
Citation: Zhang Bo, Zhang Zhimeng, Zhou Weimin. Comparison of different improvements to mainstream model of nonlinear Compton scattering[J]. High Power Laser and Particle Beams, 2023, 35: 012007. doi: 10.11884/HPLPB202335.220204

Comparison of different improvements to mainstream model of nonlinear Compton scattering

doi: 10.11884/HPLPB202335.220204
  • Received Date: 2022-06-22
  • Rev Recd Date: 2022-10-17
  • Available Online: 2022-10-22
  • Publish Date: 2023-01-15
  • Nonlinear Compton scattering is one of the dominant processes in future ultra-short ultra-intense laser-matter interactions. Today, most related researches are based on the mainstream model of nonlinear Compton scattering, which assumes short radiation formation interval, ignores effects of involved laser photon energy and is not spin-resolved. To depict nonlinear Compton scattering more precisely in wider parameter space, improved theories beyond these assumptions have been proposed in recent years. In this paper, we reviewe the major recent improvements, analyze their applicability, discusse their basic characteristics and physical effects on nonlinear Compton scatterings.
  • [1]
    Danson C N, Brummitt P A, Clarke R J, et al. Vulcan Petawatt—an ultra-high-intensity interaction facility[J]. Nuclear Fusion, 2004, 44(12): S239-S246. doi: 10.1088/0029-5515/44/12/S15
    [2]
    Weber S, Bechet S, Borneis S, et al. P3: An installation for high-energy density plasma physics and ultra-high intensity laser-matter interaction at ELI-Beamlines[J]. Matter and Radiation at Extremes, 2017, 2(4): 149-176. doi: 10.1016/j.mre.2017.03.003
    [3]
    Guo Zhen, Yu Lianghong, Wang Jianye, et al. Improvement of the focusing ability by double deformable mirrors for 10-PW-level Ti: sapphire chirped pulse amplification laser system[J]. Optics Express, 2018, 26(20): 26776-26786. doi: 10.1364/OE.26.026776
    [4]
    Zou J P, Le Blanc C, Papadopoulos D N, et al. Design and current progress of the Apollon 10 PW project[J]. High Power Laser Science and Engineering, 2015, 3: e2. doi: 10.1017/hpl.2014.41
    [5]
    Gales S, Tanaka K A, Balabanski D L, et al. The extreme light infrastructure nuclear physics (ELI-NP) facility: new horizons in physics with 10 PW ultra-intense lasers and 20 MeV brilliant gamma beams[J]. Reports on Progress in Physics, 2018, 81: 094301. doi: 10.1088/1361-6633/aacfe8
    [6]
    Bromage J, Bahk S W, Begishev I A, et al. Technology development for ultraintense all-OPCPA systems[J]. High Power Laser Science and Engineering, 2019, 7: e4. doi: 10.1017/hpl.2018.64
    [7]
    Cartlidge E. The light fantastic[J]. Science, 2018, 359(6374): 382-385. doi: 10.1126/science.359.6374.382
    [8]
    Tiwari G, Gaul E, Martinez M, et al. Beam distortion effects upon focusing an ultrashort petawatt laser pulse to greater than 1022W/cm2[J]. Optics Letters, 2019, 44(11): 2764-2767. doi: 10.1364/OL.44.002764
    [9]
    Zeng Xiaoming, Zhou Kainan, Zuo Yanlei, et al. Multi-petawatt laser facility fully based on optical parametric chirped pulse amplification[J]. Optics Letters, 2017, 42(10): 2014-2017. doi: 10.1364/OL.42.002014
    [10]
    Yanovsky V, Chvykov V, Kalinchenko G, et al. Ultra-high intensity-300-TW laser at 0.1 Hz repetition rate[J]. Optics Express, 2008, 16(3): 2109-2114. doi: 10.1364/OE.16.002109
    [11]
    Pirozhkov A S, Fukuda Y, Nishiuchi M, et al. Approaching the diffraction-limited, bandwidth-limited petawatt[J]. Optics Express, 2017, 25(17): 20486-20501. doi: 10.1364/OE.25.020486
    [12]
    Yoon J W, Jeon C, Shin J, et al. Achieving the laser intensity of 5.5×1022W/cm2 with a wavefront-corrected multi-PW laser[J]. Optics Express, 2019, 27(15): 20412-20420. doi: 10.1364/OE.27.020412
    [13]
    Yoon J W, Yoon J W, Kim Y G, et al. Realization of laser intensity over 1023W/cm2[J]. Optica, 2021, 8(5): 630-635. doi: 10.1364/OPTICA.420520
    [14]
    Danson C N, Haefner C, Bromage J, et al. Petawatt and exawatt class lasers worldwide[J]. High Power Laser Science and Engineering, 2019, 7: e54. doi: 10.1017/hpl.2019.36
    [15]
    Jackson J D. Classical electrodynamics[M]. New York: Wiley Press, 1975.
    [16]
    Landau L D, Lifshitz E M. The classical theory of fields[M]. Oxford: Pergamon Press, 1975.
    [17]
    Schwinger J. On gauge invariance and vacuum polarization[J]. Physical Review, 1951, 82(5): 664-679. doi: 10.1103/PhysRev.82.664
    [18]
    Klein J J, Nigam B P. Birefringence of the vacuum[J]. Physical Review, 1964, 135(5B): B1279-B1280. doi: 10.1103/PhysRev.135.B1279
    [19]
    Adler S L, Bahcall J N, Callan C G, et al. Photon splitting in a strong magnetic field[J]. Physical Review Letters, 1970, 25(15): 1061-1065. doi: 10.1103/PhysRevLett.25.1061
    [20]
    Unruh W G. Notes on black-hole evaporation[J]. Physical Review D, 1976, 14(4): 870-892. doi: 10.1103/PhysRevD.14.870
    [21]
    Zhang Bo, Zhang Zhimeng, Hong Wei, et al. Vacuum radiation induced by time dependent electric field[J]. Physics Letters B, 2017, 767: 431-436. doi: 10.1016/j.physletb.2017.01.076
    [22]
    Marklund M, Shukla P K. Nonlinear collective effects in photon-photon and photon-plasma interactions[J]. Reviews of Modern Physics, 2006, 78(2): 591-640. doi: 10.1103/RevModPhys.78.591
    [23]
    Ehlotzky F, Krajewska K, Kamiński J Z. Fundamental processes of quantum electrodynamics in laser fields of relativistic power[J]. Reports on Progress in Physics, 2009, 72: 046401. doi: 10.1088/0034-4885/72/4/046401
    [24]
    Di Piazza A, Müller C, Hatsagortsyan K Z, et al. Extremely high-intensity laser interactions with fundamental quantum systems[J]. Reviews of Modern Physics, 2012, 84(3): 1177-1228. doi: 10.1103/RevModPhys.84.1177
    [25]
    Mourou G, Tajima T. Summary of the IZEST science and aspiration[J]. The European Physical Journal Special Topics, 2014, 223(6): 979-984. doi: 10.1140/epjst/e2014-02148-4
    [26]
    Cole J M, Behm K T, Gerstmayr E, et al. Experimental evidence of radiation reaction in the collision of a high-intensity laser pulse with a laser-wakefield accelerated electron beam[J]. Physical Review X, 2018, 8: 011020.
    [27]
    Poder K, Tamburini M, Sarri G, et al. Experimental signatures of the quantum nature of radiation reaction in the field of an ultraintense laser[J]. Physical Review X, 2018, 8: 031004.
    [28]
    Wistisen T N, Di Piazza A, Knudsen H V, et al. Experimental evidence of quantum radiation reaction in aligned crystals[J]. Nature Communications, 2018, 9: 795. doi: 10.1038/s41467-018-03165-4
    [29]
    Wistisen T N, Di Piazza A, Nielsen C F, et al. Quantum radiation reaction in aligned crystals beyond the local constant field approximation[J]. Physical Review Research, 2019, 1: 033014. doi: 10.1103/PhysRevResearch.1.033014
    [30]
    Nikishov A I, Ritus V I. Quantum processes in the field of a plane electromagnetic wave and in a constant field. Part II[J]. Zh. Eksp. Teor. Fiz, 1964, 46: 776.
    [31]
    Nikishov A I, Ritus V I. Pair production by a photon and photon emission by an electron in the field of an intense electromagnetic wave and in a constant field[J]. Soviet Physics JETP, 1967, 25(6): 1135-1142.
    [32]
    Ritus V I. Quantum effects of the interaction of elementary particles with an intense electromagnetic field[J]. Journal of Soviet Laser Research, 1985, 6(5): 497-617. doi: 10.1007/BF01120220
    [33]
    Ji Liangliang, Pukhov A, Kostyukov I Y, et al. Radiation-reaction trapping of electrons in extreme laser fields[J]. Physical Review Letters, 2014, 112: 145003. doi: 10.1103/PhysRevLett.112.145003
    [34]
    Gonoskov A, Bashinov A, Gonoskov I, et al. Anomalous radiative trapping in laser fields of extreme intensity[J]. Physical Review Letters, 2014, 113: 014801. doi: 10.1103/PhysRevLett.113.014801
    [35]
    Duclous R, Kirk J G, Bell A R. Monte Carlo calculations of pair production in high-intensity laser–plasma interactions[J]. Plasma Physics and Controlled Fusion, 2011, 53: 015009. doi: 10.1088/0741-3335/53/1/015009
    [36]
    Arber T D, Bennett K, Brady C S, et al. Contemporary particle-in-cell approach to laser-plasma modelling[J]. Plasma Physics and Controlled Fusion, 2015, 57: 113001. doi: 10.1088/0741-3335/57/11/113001
    [37]
    Ridgers C P, Kirk J G, Duclous R, et al. Modelling gamma-ray photon emission and pair production in high-intensity laser–matter interactions[J]. Journal of Computational Physics, 2014, 260: 273-285. doi: 10.1016/j.jcp.2013.12.007
    [38]
    Zhang Bo, Zhang Zhimeng, Deng Zhigang, et al. Effects of involved laser photons on radiation and electron-positron pair production in one coherence interval in ultra intense lasers[J]. Scientific Reports, 2018, 8: 16862. doi: 10.1038/s41598-018-35312-8
    [39]
    Zhang Bo, Zhang Zhimeng, Deng Zhigang, et al. Quantum mechanisms of electron and positron acceleration through nonlinear Compton scatterings and nonlinear Breit-Wheeler processes in coherent photon dominated regime[J]. Scientific Reports, 2019, 9: 18876. doi: 10.1038/s41598-019-55472-5
    [40]
    Li Yanfei, Shaisultanov R, Hatsagortsyan K Z, et al. Ultrarelativistic electron-beam polarization in single-shot interaction with an ultraintense laser pulse[J]. Physical Review Letters, 2019, 122: 154801. doi: 10.1103/PhysRevLett.122.154801
    [41]
    Li Yanfei, Shaisultanov R, Chen Y Y, et al. Polarized ultrashort brilliant multi-GeV γ rays via single-shot laser-electron interaction[J]. Physical Review Letters, 2020, 124: 014801. doi: 10.1103/PhysRevLett.124.014801
    [42]
    Li Yanfei, Chen Yueyue, Wang Weimin, et al. Production of highly polarized positron beams via helicity transfer from polarized electrons in a strong laser field[J]. Physical Review Letters, 2020, 125: 044802. doi: 10.1103/PhysRevLett.125.044802
    [43]
    McMaster W H. Matrix representation of polarization[J]. Reviews of Modern Physics, 1961, 33(1): 8-27. doi: 10.1103/RevModPhys.33.8
    [44]
    Baier V N, Katkov V M, Strakhovenko V M. Quantum radiation theory in inhomogeneous external fields[J]. Nuclear Physics B, 1989, 328(2): 387-405. doi: 10.1016/0550-3213(89)90334-9
    [45]
    Dinu V, Harvey C, Ilderton A, et al. Quantum radiation reaction: from interference to incoherence[J]. Physical Review Letters, 2016, 116: 044801. doi: 10.1103/PhysRevLett.116.044801
    [46]
    Di Piazza A, Tamburini M, Meuren S, et al. Implementing nonlinear Compton scattering beyond the local-constant-field approximation[J]. Physical Review A, 2018, 98: 012134. doi: 10.1103/PhysRevA.98.012134
  • Relative Articles

    [1]Xie Xiangyu, Wang Peng, Deng Ying, Zhou Kainan, Feng Guoying. Ray tracing model of digital holography with single element interference[J]. High Power Laser and Particle Beams, 2023, 35(5): 059002. doi: 10.11884/HPLPB202335.220396
    [2]Yang Zuhua, Zhou Weimin, Li Pengfei, Zhang Qiangqiang, Wei Lai, Chen Yong, Fan Quanping, Wu Yinzhong, Cao Leifeng. Optical simulation software X-LAB and its applications[J]. High Power Laser and Particle Beams, 2018, 30(11): 112002. doi: 10.11884/HPLPB201830.180207
    [3]Wu Deyong, Lü Wenqiang, Wei Bin, Gao Songxin. Beam reshape of high power laser diode stack[J]. High Power Laser and Particle Beams, 2014, 26(10): 101001. doi: 10.11884/HPLPB201426.101001
    [4]Liu Hong, Wang Weisheng, Zheng Jian. Design of fly-eye lens for laser display[J]. High Power Laser and Particle Beams, 2014, 26(08): 089002. doi: 10.11884/HPLPB201426.089002
    [5]Wang Kai, Xie Duan, Lin Wei, Liu Yuanqiong, Li Jun, Qi Xiaobo, Tang Yongjian, Lei Haile. In situ characterization technique of fuel ice layer for ICF cryotargets[J]. High Power Laser and Particle Beams, 2013, 25(12): 3230-3234. doi: 3230
    [6]Wang Kai, Lin Wei, Xie Duan, Liu Yuanqiong, Ma Kunquan, Li Jun, Tang Yongjian, Lei Haile. Simulation on control of infrared volumetric heating rates in fuel layering[J]. High Power Laser and Particle Beams, 2013, 25(08): 2007-2010. doi: 10.3788/HPLPB20132508.2007
    [7]Jiang Zhixiong, Wei Jifeng, Zhou Wenchao. Application of ray tracing method to design of high-energy-laser calorimeter[J]. High Power Laser and Particle Beams, 2013, 25(S0): 1-4.
    [8]Zheng Weitao, Wu Fengtie, Zhang Qian’an, Cheng Zhiming. Influence of relative parameters on quality of long distance diffraction-free beam[J]. High Power Laser and Particle Beams, 2012, 24(10): 2331-2334. doi: 10.3788/HPLPB20122410.2331
    [9]Zhang Qian’an, Wu Fengtie, Zheng Weitao. 无衍射贝塞尔光束非球面透镜设计[J]. High Power Laser and Particle Beams, 2012, 24(06): 1315-1318. doi: 10.3788/HPLPB20122406.1315
    [10]li shijie, chen qiang, wu gaofeng, li lianghong, xian linhan. Discrete phase calculation of computer generated hologram for off-axis aspheric surface test[J]. High Power Laser and Particle Beams, 2011, 23(12): 2-3.
    [11]chen lin, jing feng, deng qinghua, duan wentao, chen yuanbin, ding lei, liu jianguo, luo yiming, liu yong, yang min, he shaobo. Pump coupling optimization for high-power diode array pumped solid-state laser[J]. High Power Laser and Particle Beams, 2011, 23(06): 0- .
    [12]dong jianjun, cao zhurong, yuan yongteng, zhan xiayu, liu shenye, ding yongkun. Testing experiment of KBA X-ray microscope in laser prototype facility using Ni-grids[J]. High Power Laser and Particle Beams, 2010, 22(01): 0- .
    [13]yang jiujuan, wu jianhong, li chaoming. Novel aberration-free beam sampling grating with optical path compensation[J]. High Power Laser and Particle Beams, 2009, 21(09): 0- .
    [14]liu lan-qin, peng han-sheng, wei xiao-feng, zhu qi-hua. Dispersions analysis of stretcher-compressor in chirped pulse amplification system[J]. High Power Laser and Particle Beams, 2008, 20(11): 0- .
    [15]ye fan, guo cun, li zheng-hong, yang jian-lun, xu rong-kun, qin yi, xue fei-biao. Performance of a cylindrical curved convex crystal spectrograph for wire array Z-pinch experiments[J]. High Power Laser and Particle Beams, 2008, 20(03): 0- .
    [16]pan ning-ning, wang zhan-shan, gu chun-shi, qin shu-ji, . Image quality with Kirkpatrick-Baez microscope in hard X-ray[J]. High Power Laser and Particle Beams, 2006, 18(01): 0- .
    [17]zhang wei, wu jian-hong, li chao-ming. Effect of wavefront aberration of grating on pulse compression[J]. High Power Laser and Particle Beams, 2005, 17(03): 0- .
    [18]yang chun-lin, zhang rong-zhu, yang li-ming, xu qiao. Focusing characteristics and diffraction efficiency of the holographic lens in ICF driver system[J]. High Power Laser and Particle Beams, 2003, 15(03): 0- .
    [19]shi zhi-quan, wei xiao-feng, ma chi, su jing-qin. Beam position stability analysis in the large solid state laser system[J]. High Power Laser and Particle Beams, 2000, 12(08): 0- .
  • Cited by

    Periodical cited type(1)

    1. 包云皓,陈建业,邵双全. 数据中心高效液冷技术研究现状. 制冷与空调. 2023(10): 58-69 .

    Other cited types(0)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-04051015202530
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 19.5 %FULLTEXT: 19.5 %META: 78.0 %META: 78.0 %PDF: 2.5 %PDF: 2.5 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 4.1 %其他: 4.1 %Brondby Strand: 0.1 %Brondby Strand: 0.1 %China: 0.9 %China: 0.9 %Germany: 0.4 %Germany: 0.4 %India: 0.1 %India: 0.1 %Poland: 0.1 %Poland: 0.1 %United States: 0.4 %United States: 0.4 %三明: 0.2 %三明: 0.2 %上海: 1.1 %上海: 1.1 %东莞: 0.1 %东莞: 0.1 %中卫: 0.5 %中卫: 0.5 %中山: 0.1 %中山: 0.1 %临汾: 0.1 %临汾: 0.1 %丹东: 0.1 %丹东: 0.1 %乐山: 0.1 %乐山: 0.1 %兰州: 0.1 %兰州: 0.1 %北京: 15.5 %北京: 15.5 %十堰: 0.1 %十堰: 0.1 %南京: 0.2 %南京: 0.2 %南宁: 0.1 %南宁: 0.1 %南平: 0.1 %南平: 0.1 %南阳: 0.1 %南阳: 0.1 %台州: 0.1 %台州: 0.1 %合肥: 0.3 %合肥: 0.3 %呼和浩特: 0.1 %呼和浩特: 0.1 %咸阳: 0.1 %咸阳: 0.1 %哈尔滨: 0.1 %哈尔滨: 0.1 %哥伦布: 0.1 %哥伦布: 0.1 %商丘: 0.1 %商丘: 0.1 %喀什: 0.1 %喀什: 0.1 %大连: 0.2 %大连: 0.2 %天津: 0.4 %天津: 0.4 %太原: 0.1 %太原: 0.1 %宁波: 0.1 %宁波: 0.1 %安康: 0.1 %安康: 0.1 %宜昌: 0.1 %宜昌: 0.1 %宣城: 0.1 %宣城: 0.1 %岳阳: 0.1 %岳阳: 0.1 %常州: 0.1 %常州: 0.1 %平顶山: 0.1 %平顶山: 0.1 %广州: 1.0 %广州: 1.0 %庆阳: 0.1 %庆阳: 0.1 %廊坊: 0.1 %廊坊: 0.1 %张家口: 1.2 %张家口: 1.2 %怒江: 0.1 %怒江: 0.1 %成都: 0.4 %成都: 0.4 %扬州: 0.5 %扬州: 0.5 %新乡: 0.1 %新乡: 0.1 %昆明: 0.2 %昆明: 0.2 %昌吉: 0.1 %昌吉: 0.1 %晋城: 0.1 %晋城: 0.1 %普洱: 0.1 %普洱: 0.1 %杭州: 0.9 %杭州: 0.9 %柏林: 0.1 %柏林: 0.1 %柳州: 0.1 %柳州: 0.1 %桃园: 0.1 %桃园: 0.1 %武汉: 0.2 %武汉: 0.2 %泉州: 0.1 %泉州: 0.1 %海口: 0.1 %海口: 0.1 %深圳: 1.2 %深圳: 1.2 %温州: 0.5 %温州: 0.5 %湖州: 0.4 %湖州: 0.4 %漯河: 1.2 %漯河: 1.2 %潍坊: 0.1 %潍坊: 0.1 %烟台: 0.1 %烟台: 0.1 %珠海: 0.1 %珠海: 0.1 %瑟普赖斯: 0.2 %瑟普赖斯: 0.2 %百色: 0.1 %百色: 0.1 %益阳: 0.1 %益阳: 0.1 %石家庄: 0.1 %石家庄: 0.1 %福州: 0.2 %福州: 0.2 %秦皇岛: 0.1 %秦皇岛: 0.1 %绵阳: 0.1 %绵阳: 0.1 %芒廷维尤: 11.0 %芒廷维尤: 11.0 %芝加哥: 0.1 %芝加哥: 0.1 %苏州: 0.7 %苏州: 0.7 %荆门: 0.1 %荆门: 0.1 %蚌埠: 0.1 %蚌埠: 0.1 %衡阳: 0.1 %衡阳: 0.1 %衢州: 0.3 %衢州: 0.3 %西双版纳: 0.1 %西双版纳: 0.1 %西宁: 47.2 %西宁: 47.2 %西安: 0.4 %西安: 0.4 %资阳: 0.1 %资阳: 0.1 %赤峰: 0.1 %赤峰: 0.1 %运城: 0.3 %运城: 0.3 %连云港: 0.1 %连云港: 0.1 %邯郸: 0.2 %邯郸: 0.2 %郑州: 0.9 %郑州: 0.9 %重庆: 0.4 %重庆: 0.4 %镇江: 0.1 %镇江: 0.1 %长春: 0.3 %长春: 0.3 %长沙: 0.3 %长沙: 0.3 %长治: 0.1 %长治: 0.1 %阳泉: 0.1 %阳泉: 0.1 %青岛: 0.1 %青岛: 0.1 %驻马店: 0.1 %驻马店: 0.1 %鸡西: 0.1 %鸡西: 0.1 %黄冈: 0.1 %黄冈: 0.1 %其他Brondby StrandChinaGermanyIndiaPolandUnited States三明上海东莞中卫中山临汾丹东乐山兰州北京十堰南京南宁南平南阳台州合肥呼和浩特咸阳哈尔滨哥伦布商丘喀什大连天津太原宁波安康宜昌宣城岳阳常州平顶山广州庆阳廊坊张家口怒江成都扬州新乡昆明昌吉晋城普洱杭州柏林柳州桃园武汉泉州海口深圳温州湖州漯河潍坊烟台珠海瑟普赖斯百色益阳石家庄福州秦皇岛绵阳芒廷维尤芝加哥苏州荆门蚌埠衡阳衢州西双版纳西宁西安资阳赤峰运城连云港邯郸郑州重庆镇江长春长沙长治阳泉青岛驻马店鸡西黄冈

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)

    Article views (935) PDF downloads(111) Cited by(1)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return