Xu Le, Jiang Weihua. Study of fast rising pulsed power generator based on avalanche transistors[J]. High Power Laser and Particle Beams, 2016, 28: 015001. doi: 10.11884/HPLPB201628.015001
Citation: Huang Hairong, Zhang Liangqi, Liu Weiyuan, et al. Research progress of quantum electrodynamics cascade and dense positron production driven by interaction between extremely intense lasers and solid targets[J]. High Power Laser and Particle Beams, 2023, 35: 012004. doi: 10.11884/HPLPB202335.220208

Research progress of quantum electrodynamics cascade and dense positron production driven by interaction between extremely intense lasers and solid targets

doi: 10.11884/HPLPB202335.220208
  • Received Date: 2022-06-28
  • Rev Recd Date: 2022-10-03
  • Available Online: 2022-10-11
  • Publish Date: 2023-01-15
  • With the advent of ultra-short ultra-intense laser pulses, the interaction between light and matter enters the nonlinear physics regime dominated by radiation damping and quantum electrodynamics (QED) effects. The strong-field QED effects contain a wealth of physical processes, including radiation damping effect, high-energy gamma radiation, electron-positron pairs generation, QED cascade, vacuum polarization, and so on. These effects are frontiers and hot topics in high energy density physics and strong field physics. Among them, QED cascade is an important mechanism, which can explain the formation of the ultra-dense radiation in the cosmos and the gamma-ray burst, and the resulting dense positron source has important application prospects in high-energy physics, nondestructive assay of materials, and cancer diagnosis. In this paper, the cascading process of QED and the theoretical model are introduced, then the QED cascade development in solid targets and the resulting nonlinear physical effects are discussed. Finally, the main research results of dense positron generation in solid targets are reviewed.
  • [1]
    Blandford R D, Znajek R L. Electromagnetic extraction of energy from Kerr black holes[J]. Monthly Notices of the Royal Astronomical Society, 1997, 179(3): 433-456.
    [2]
    Michel F C. Theory of pulsar magnetospheres[J]. Reviews of Modern Physics, 1982, 54(1): 1-66. doi: 10.1103/RevModPhys.54.1
    [3]
    Piran T. The physics of gamma-ray bursts[J]. Reviews of Modern Physics, 2005, 76(4): 1143-1210. doi: 10.1103/RevModPhys.76.1143
    [4]
    Medin Z, Lai Dong. Pair cascades in the magnetospheres of strongly magnetized neutron stars[J]. Monthly Notices of the Royal Astronomical Society, 2010, 406(2): 1379-1404.
    [5]
    Danielson J R, Dubin D H E, Greaves R G, et al. Plasma and trap-based techniques for science with positrons[J]. Reviews of Modern Physics, 2015, 87(1): 247-306. doi: 10.1103/RevModPhys.87.247
    [6]
    Atcher R W, Friedman A M, Huizenga J R, et al. Manganese-52m, a new short-lived, generator-produced radionuclide: a potential tracer for positron tomography[J]. Journal of Nuclear Medicine, 1980, 21(6): 565-569.
    [7]
    Manus M P M, Hicks R J, Matthews J P, et al. Positron emission tomography is superior to computed tomography scanning for response-assessment after radical radiotherapy or chemoradiotherapy in patients with non-small-cell lung cancer[J]. Journal of Clinical Oncology, 2003, 21(7): 1285-1292. doi: 10.1200/JCO.2003.07.054
    [8]
    Gidley D W, Peng H G, Vallery R S. Positron annihilation as a method to characterize porous materials[J]. Annual Review of Materials Research, 2006, 36: 49-79. doi: 10.1146/annurev.matsci.36.111904.135144
    [9]
    Strickland D, Mourou G. Compression of amplified chirped optical pulses[J]. Optics Communications, 1985, 56(3): 219-221. doi: 10.1016/0030-4018(85)90120-8
    [10]
    Yoon J W, Kim Y G, Choi I W, et al. Realization of laser intensity over 1023 W/cm2[J]. Optica, 2021, 8(5): 630-635. doi: 10.1364/OPTICA.420520
    [11]
    Eli. Extreme light infrastructure[EB/OL]. https://eli-laser.eu/.
    [12]
    Exawatt center for extreme light studies[EB/OL]. https://xcels.iapras.ru/news.html.
    [13]
    Papadopoulos D N, Ramirez P, Genevrier K, et al. High-contrast 10 fs OPCPA-based front end for multi-PW laser chains[J]. Optics Letters, 2017, 42(18): 3530-3533. doi: 10.1364/OL.42.003530
    [14]
    Li Shuai, Wang Cheng, Liu Yanqi, et al. High-order dispersion control of 10-petawatt Ti: sapphire laser facility[J]. Optics Express, 2017, 25(15): 17488-17498. doi: 10.1364/OE.25.017488
    [15]
    Ji Liangliang, Pukhov A, Kostyukov I Y, et al. Radiation-reaction trapping of electrons in extreme laser fields[J]. Physical Review Letters, 2014, 112: 145003. doi: 10.1103/PhysRevLett.112.145003
    [16]
    Gonoskov A, Bashinov A, Gonoskov I, et al. Anomalous radiative trapping in laser fields of extreme intensity[J]. Physical Review Letters, 2014, 113: 014801. doi: 10.1103/PhysRevLett.113.014801
    [17]
    Wistisen T N, Di Piazza A, Knudsen H V, et al. Experimental evidence of quantum radiation reaction in aligned crystals[J]. Nature Communications, 2018, 9: 795. doi: 10.1038/s41467-018-03165-4
    [18]
    Cole J M, Behm K T, Gerstmayr E, et al. Experimental evidence of radiation reaction in the collision of a high-intensity laser pulse with a laser-wakefield accelerated electron beam[J]. Physical Review X, 2018, 8: 011020.
    [19]
    Compton A H. A quantum theory of the scattering of X-rays by light elements[J]. Physical Review, 1923, 21(5): 483-502. doi: 10.1103/PhysRev.21.483
    [20]
    Seipt D, Kämpfer B. Nonlinear Compton scattering of ultrashort intense laser pulses[J]. Physical Review A, 2011, 83: 022101. doi: 10.1103/PhysRevA.83.022101
    [21]
    Breit G, Wheeler J A. Collision of two light quanta[J]. Physical Review, 1934, 46(12): 1087-1091. doi: 10.1103/PhysRev.46.1087
    [22]
    Burke D L, Field R C, Horton-Smith G, et al. Positron production in multiphoton light-by-light scattering[J]. Physical Review Letters, 1997, 79(9): 1626-1629. doi: 10.1103/PhysRevLett.79.1626
    [23]
    吉亮亮, 耿学松, 伍艺通, 等. 超强激光驱动的辐射反作用力效应与极化粒子加速[J]. 物理学报, 2021, 70:085203 doi: 10.7498/aps.70.20210091

    Ji Liangliang, Geng Xuesong, Wu Yitong, et al. Laser-driven radiation-reaction effect and polarized particle acceleration[J]. Acta Physica Sinica, 2021, 70: 085203 doi: 10.7498/aps.70.20210091
    [24]
    Gonoskov A, Blackburn T G, Marklund M, et al. Charged particle motion and radiation in strong electromagnetic fields[J]. Reviews of Modern Physics, 2022, 94: 045001. doi: 10.1103/RevModPhys.94.045001
    [25]
    Akhiezer A I, Merenkov N P, Rekalo A P. Kinetic theory of electromagnetic showers in strong magnetic fields[J]. Yadernaya Fizika, 1995, 58(3): 491-500.
    [26]
    Mironov A A, Narozhny N B, Fedotov A M. Collapse and revival of electromagnetic cascades in focused intense laser pulses[J]. Physics Letters A, 2014, 378(44): 3254-3257. doi: 10.1016/j.physleta.2014.09.058
    [27]
    Mironov A A, Fedotov A M, Narozhnyi N B. Generation of quantum-electrodynamic cascades in oblique collisions of ultrarelativistic electrons with an intense laser field[J]. Quantum Electronics, 2016, 46(4): 305-309. doi: 10.1070/QEL16057
    [28]
    Bell A R, Kirk J G. Possibility of prolific pair production with high-power lasers[J]. Physical Review Letters, 2008, 101: 200403. doi: 10.1103/PhysRevLett.101.200403
    [29]
    Kirk J G, Bell A R, Arka I. Pair production in counter-propagating laser beams[J]. Plasma Physics and Controlled Fusion, 2009, 51: 085008. doi: 10.1088/0741-3335/51/8/085008
    [30]
    Fedotov A M, Elkina N V, Gelfer E G, et al. Radiation friction versus ponderomotive effect[J]. Physical Review A, 2014, 90: 053847. doi: 10.1103/PhysRevA.90.053847
    [31]
    Ritus V I. Quantum effects of the interaction of elementary particles with an intense electromagnetic field[J]. Journal of Soviet Laser Research, 1985, 6(5): 497-617. doi: 10.1007/BF01120220
    [32]
    Bashmakov V F, Nerush E N, Kostyukov I Y, et al. Effect of laser polarization on quantum electrodynamical cascading[J]. Physics of Plasmas, 2014, 21: 013105. doi: 10.1063/1.4861863
    [33]
    Grismayer T, Vranic M, Martins J L, et al. Seeded QED cascades in counter propagating laser pulses[J]. Physical Review E, 2017, 95: 023210. doi: 10.1103/PhysRevE.95.023210
    [34]
    Erber T. High-energy electromagnetic conversion processes in intense magnetic fields[J]. Reviews of Modern Physics, 1966, 38(4): 626-659. doi: 10.1103/RevModPhys.38.626
    [35]
    Grismayer T, Vranic M, Martins J L, et al. Laser absorption via quantum electrodynamics cascades in counter propagating laser pulses[J]. Physics of Plasmas, 2016, 23: 056706. doi: 10.1063/1.4950841
    [36]
    Luo Wen, Liu Weiyuan, Yuan Tao, et al. QED cascade saturation in extreme high fields[J]. Scientific Reports, 2018, 8: 8400. doi: 10.1038/s41598-018-26785-8
    [37]
    Slade-Lowther C, Del Sorbo D, Ridgers C P. Identifying the electron-positron cascade regimes in high-intensity laser-matter interactions[J]. New Journal of Physics, 2019, 21: 013028. doi: 10.1088/1367-2630/aafa39
    [38]
    Tang Suo, Bake M A, Wang Hongyu, et al. QED cascade induced by a high-energy γ photon in a strong laser field[J]. Physical Review A, 2014, 89: 022105. doi: 10.1103/PhysRevA.89.022105
    [39]
    Elkina N V, Fedotov A M, Kostyukov I Y, et al. QED cascades induced by circularly polarized laser fields[J]. Physical Review Accelerators and Beams, 2011, 14: 054401. doi: 10.1103/PhysRevSTAB.14.054401
    [40]
    Narozhny N B, Fedotov A M. Creation of electron-positron plasma with superstrong laser field[J]. The European Physical Journal Special Topics, 2014, 223(6): 1083-1092. doi: 10.1140/epjst/e2014-02159-1
    [41]
    Nerush E N, Kostyukov I Y, Fedotov A M, et al. Laser field absorption in self-generated electron-positron pair plasma[J]. Physical Review Letters, 2011, 106: 035001. doi: 10.1103/PhysRevLett.106.035001
    [42]
    Vranic M, Grismayer T, Fonseca R A, et al. Electron-positron cascades in multiple-laser optical traps[J]. Plasma Physics and Controlled Fusion, 2017, 59: 014040. doi: 10.1088/0741-3335/59/1/014040
    [43]
    Jirka M, Klimo O, Vranic M, et al. QED cascade with 10 PW-class lasers[J]. Scientific Reports, 2017, 7: 15302. doi: 10.1038/s41598-017-15747-1
    [44]
    Sampath A, Tamburini M. Towards realistic simulations of QED cascades: non-ideal laser and electron seeding effects[J]. Physics of Plasmas, 2018, 25: 083104. doi: 10.1063/1.5022640
    [45]
    Zhidkov A, Koga J, Sasaki A, et al. Radiation damping effects on the interaction of ultraintense laser pulses with an overdense plasma[J]. Physical Review Letters, 2002, 88: 185002. doi: 10.1103/PhysRevLett.88.185002
    [46]
    Ji Liangliang, Pukhov A, Nerush E N, et al. Near QED regime of laser interaction with overdense plasmas[J]. The European Physical Journal Special Topics, 2014, 223(6): 1069-1082. doi: 10.1140/epjst/e2014-02158-2
    [47]
    Baumann C, Pukhov A. Influence of ee+ creation on the radiative trapping in ultraintense fields of colliding laser pulses[J]. Physical Review E, 2016, 94: 063204. doi: 10.1103/PhysRevE.94.063204
    [48]
    Seipt D, Ridgers C P, Del Sorbo D, et al. Polarized QED cascades[J]. New Journal of Physics, 2021, 23: 053025. doi: 10.1088/1367-2630/abf584
    [49]
    Yu Jiye, Yuan Tao, Liu Weiyuan, et al. QED effects induced harmonics generation in extreme intense laser foil interaction[J]. Plasma Physics and Controlled Fusion, 2018, 60: 044011. doi: 10.1088/1361-6587/aaae35
    [50]
    Yuan Tao, Yu Jiye, Liu Weiyuan, et al. Spatiotemporal distributions of pair production and cascade in solid targets irradiated by ultra-relativistic lasers with different polarizations[J]. Plasma Physics and Controlled Fusion, 2018, 60: 065003. doi: 10.1088/1361-6587/aab3ba
    [51]
    Chen Hui, Wilks S C, Bonlie J D, et al. Relativistic positron creation using ultraintense short pulse lasers[J]. Physical Review Letters, 2009, 102: 105001. doi: 10.1103/PhysRevLett.102.105001
    [52]
    Chen Hui, Wilks S C, Meyerhofer D D, et al. Relativistic quasimonoenergetic positron jets from intense laser-solid interactions[J]. Physical Review Letters, 2010, 105: 015003. doi: 10.1103/PhysRevLett.105.015003
    [53]
    Chen Hui, Fiuza F, Link A, et al. Scaling the yield of laser-driven electron-positron jets to laboratory astrophysical applications[J]. Physical Review Letters, 2015, 114: 215001. doi: 10.1103/PhysRevLett.114.215001
    [54]
    Sarri G, Schumaker W, Di Piazza A, et al. Table-top laser-based source of femtosecond, collimated, ultrarelativistic positron beams[J]. Physical Review Letters, 2013, 110: 255002. doi: 10.1103/PhysRevLett.110.255002
    [55]
    Xu Tongjun, Shen Baifei, Xu Jiancai, et al. Ultrashort megaelectronvolt positron beam generation based on laser-accelerated electrons[J]. Physics of Plasmas, 2016, 23: 033109. doi: 10.1063/1.4943280
    [56]
    闫永宏, 吴玉迟, 董克攻, 等. 激光固体靶相互作用产生正电子的模拟研究[J]. 强激光与粒子束, 2015, 27:112006 doi: 10.11884/HPLPB201527.112006

    Yan Yonghong, Wu Yuchi, Dong Kegong, et al. Simulation study of positron production from laser-solid interactions[J]. High Power Laser and Particle Beams, 2015, 27: 112006 doi: 10.11884/HPLPB201527.112006
    [57]
    Liang E P, Wilks S C, Tabak M. Pair production by ultraintense lasers[J]. Physical Review Letters, 1998, 81(22): 4887-4890. doi: 10.1103/PhysRevLett.81.4887
    [58]
    Shen Baifei, Meyer-Ter-Vehn J. Pair and γ-photon production from a thin foil confined by two laser pulses[J]. Physical Review E, 2001, 65: 016405. doi: 10.1103/PhysRevE.65.016405
    [59]
    Bethe H, Heitler W. On the stopping of fast particles and on the creation of positive electrons[J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 1934, 146(856): 83-112.
    [60]
    Heitler W. The quantum theory of radiation[M]. Oxford: Clarendon Press, 1954.
    [61]
    Ridgers C P, Brady C S, Duclous R, et al. Dense electron-positron plasmas and ultraintense γ rays from laser-irradiated solids[J]. Physical Review Letters, 2012, 108: 165006. doi: 10.1103/PhysRevLett.108.165006
    [62]
    Gu Yanjun, Jirka M, Klimo O, et al. Gamma photons and electron-positron pairs from ultra-intense laser-matter interaction: a comparative study of proposed configurations[J]. Matter and Radiation at Extremes, 2019, 4: 064403. doi: 10.1063/1.5098978
    [63]
    Chang Hengxin, Qiao Bin, Xu Z, et al. Generation of overdense and high-energy electron-positron-pair plasmas by irradiation of a thin foil with two ultraintense lasers[J]. Physical Review E, 2015, 92: 053107. doi: 10.1103/PhysRevE.92.053107
    [64]
    Luo Wen, Zhu Yibo, Zhuo Hongbin, et al. Dense electron-positron plasmas and gamma-ray bursts generation by counter-propagating quantum electrodynamics-strong laser interaction with solid targets[J]. Physics of Plasmas, 2015, 22: 063112. doi: 10.1063/1.4923265
    [65]
    Zhu Xinglong, Yu Tongpu, Sheng Zhengmin, et al. Dense GeV electron-positron pairs generated by lasers in near-critical-density plasmas[J]. Nature Communications, 2016, 7: 13686. doi: 10.1038/ncomms13686
    [66]
    Zhu Xinglong, Chen Min, Yu Tongpu, et al. Collimated GeV attosecond electron-positron bunches from a plasma channel driven by 10 PW lasers[J]. Matter and Radiation at Extremes, 2019, 4: 014401. doi: 10.1063/1.5083914
    [67]
    Zhao Jie, Hu Yanting, Lu Yu, et al. All-optical quasi-monoenergetic GeV positron bunch generation by twisted laser fields[J]. Communications Physics, 2022, 5: 15. doi: 10.1038/s42005-021-00797-9
    [68]
    Chen Yueyue, He Peilun, Shaisultanov R, et al. Polarized positron beams via intense two-color laser pulses[J]. Physical Review Letters, 2019, 123: 174801. doi: 10.1103/PhysRevLett.123.174801
    [69]
    Wan Feng, Shaisultanov R, Li Yanfei, et al. Ultrarelativistic polarized positron jets via collision of electron and ultraintense laser beams[J]. Physics Letters B, 2020, 800: 135120. doi: 10.1016/j.physletb.2019.135120
    [70]
    Liu Weiyuan, Xue Kun, Wan Feng, et al. Trapping and acceleration of spin-polarized positrons from γ photon splitting in wakefields[J]. Physical Review Research, 2022, 4: L022028. doi: 10.1103/PhysRevResearch.4.L022028
    [71]
    Ridgers C P, Brady C S, Duclous R, et al. Dense electron-positron plasmas and bursts of gamma-rays from laser-generated quantum electrodynamic plasmas[J]. Physics of Plasmas, 2013, 20: 056701. doi: 10.1063/1.4801513
    [72]
    Mercuri-Baron A, Grech M, Niel F, et al. Impact of the laser spatio-temporal shape on Breit–Wheeler pair production[J]. New Journal of Physics, 2021, 23: 085006. doi: 10.1088/1367-2630/ac1975
    [73]
    Vincenti H, Monchocé S, Kahaly S, et al. Optical properties of relativistic plasma mirrors[J]. Nature Communications, 2014, 5: 3403. doi: 10.1038/ncomms4403
    [74]
    Yuan Tao, Chen Min, Yu Jiye, et al. Target transverse size and laser polarization effects on pair production during ultra-relativistic-intense laser interaction with solid targets[J]. Physics of Plasmas, 2017, 24: 063104. doi: 10.1063/1.4985306
    [75]
    Del Sorbo D, Blackman D R, Capdessus R, et al. Efficient ion acceleration and dense electron-positron plasma creation in ultra-high intensity laser-solid interactions[J]. New Journal of Physics, 2018, 20: 033014. doi: 10.1088/1367-2630/aaae61
    [76]
    Ji Liangliang, Snyder J C, Shen Baifei. Single-pulse laser-electron collision within a micro-channel plasma target[J]. Plasma Physics and Controlled Fusion, 2019, 61: 065019. doi: 10.1088/1361-6587/ab1692
    [77]
    Liu Jianxun, Ma Yanyun, Zhao Jun, et al. High-flux low-divergence positron beam generation from ultra-intense laser irradiated a tapered hollow target[J]. Physics of Plasmas, 2015, 22: 103102. doi: 10.1063/1.4932997
    [78]
    Kulcsár G, Almawlawi D, Budnik F W, et al. Intense picosecond X-ray pulses from laser plasmas by use of nanostructured “velvet” targets[J]. Physical Review Letters, 2000, 84(22): 5149-5152. doi: 10.1103/PhysRevLett.84.5149
    [79]
    Lécz Z, Andreev A. Attosecond bunches of gamma photons and positrons generated in nanostructure targets[J]. Physical Review E, 2019, 99: 013202. doi: 10.1103/PhysRevE.99.013202
    [80]
    Lécz Z, Andreev A. Bright synchrotron radiation from nano-forest targets[J]. Physics of Plasmas, 2017, 24: 033113. doi: 10.1063/1.4978573
    [81]
    Phuoc K T, Corde S, Thaury C, et al. All-optical Compton gamma-ray source[J]. Nature Photonics, 2012, 6(5): 308-311. doi: 10.1038/nphoton.2012.82
    [82]
    Zhang Liangqi, Wu Shaodong, Huang Hairong, et al. Brilliant attosecond γ-ray emission and high-yield positron production from intense laser-irradiated nano-micro array[J]. Physics of Plasmas, 2021, 28: 023110. doi: 10.1063/5.0030909
    [83]
    Li Hanzhen, Yu Tongpu, Liu Jinjin, et al. Ultra-bright γ-ray emission and dense positron production from two laser-driven colliding foils[J]. Scientific Reports, 2017, 7: 17312. doi: 10.1038/s41598-017-17605-6
    [84]
    Li Hanzhen, Yu Tongpu, Hu Lixiang, et al. Ultra-bright γ-ray flashes and dense attosecond positron bunches from two counter-propagating laser pulses irradiating a micro-wire target[J]. Optics Express, 2017, 25(18): 21583-21593. doi: 10.1364/OE.25.021583
    [85]
    Liu Weiyuan, Luo Wen, Yuan Tao, et al. Enhanced pair plasma generation in the relativistic transparency regime[J]. Physics of Plasmas, 2017, 24: 103130. doi: 10.1063/1.5001457
    [86]
    Liu Weiyuan, Luo Wen, Yuan Tao, et al. Dense pair plasma generation and its modulation dynamics in counter-propagating laser field[J]. Chinese Physics B, 2018, 27: 105202. doi: 10.1088/1674-1056/27/10/105202
    [87]
    Jirka M, Klimo O, Bulanov S V, et al. Electron dynamics and γ and ee+ production by colliding laser pulses[J]. Physical Review E, 2016, 93: 023207. doi: 10.1103/PhysRevE.93.023207
    [88]
    Liu Jianxun, Ma Yanyun, Yu Tongpu, et al. Dense pair plasma generation by two laser pulses colliding in a cylinder channel[J]. Chinese Physics B, 2017, 26: 035202. doi: 10.1088/1674-1056/26/3/035202
    [89]
    Zhang Peng, Ridgers C P, Thomas A G R. The effect of nonlinear quantum electrodynamics on relativistic transparency and laser absorption in ultra-relativistic plasmas[J]. New Journal of Physics, 2015, 17: 043051. doi: 10.1088/1367-2630/17/4/043051
    [90]
    Song Huaihang, Wang Weimin, Li Yanfei, et al. Spin and polarization effects on the nonlinear Breit–Wheeler pair production in laser-plasma interaction[J]. New Journal of Physics, 2021, 23: 075005. doi: 10.1088/1367-2630/ac0dec
    [91]
    Luo Wen, Wu Shaodong, Liu Weiyuan, et al. Enhanced electron-positron pair production by two obliquely incident lasers interacting with a solid target[J]. Plasma Physics and Controlled Fusion, 2018, 60: 095006. doi: 10.1088/1361-6587/aad211
    [92]
    Vshivkov V, Naumova N, Pegoraro F, et al. Nonlinear interaction of ultra-intense laser pulses with a thin foil[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1998, 410(3): 493-498.
  • Relative Articles

    [1]Ge Xiaolu, Wang Benyi, Guo Liping, Man Zhongsheng. Behavior of phase singularities for laser beam propagating through uplink and downlink atmospheric turbulence paths[J]. High Power Laser and Particle Beams, 2018, 30(12): 121001. doi: 10.11884/HPLPB201830.180228
    [2]Chen Xiaowen, Li Xiaoqing, Li Binzhong, Tang Mingyue. Turbulence distance of partially coherent flat-topped beams in non-Kolmogorov turbulence[J]. High Power Laser and Particle Beams, 2015, 27(01): 011004. doi: 10.11884/HPLPB201527.011004
    [3]Zhou Guoquan, Chu Xiuxiang. Far-field divergent properties of linearly polarized Gaussian beam diffracted at circular aperture[J]. High Power Laser and Particle Beams, 2012, 24(09): 2047-2052. doi: 10.3788/HPLPB20122409.2047
    [4]zhao yang, li dehua, zhou wei, ma jianjun, yao xiangjun, tian youliang. Diffractive properties of terahertz zone plates with Gaussian beam incidence[J]. High Power Laser and Particle Beams, 2011, 23(08): 0- .
    [5]ma zairu. Analytical solution of carrier-envelope phase drift of linearly chirped pulsed Gaussian beam[J]. High Power Laser and Particle Beams, 2011, 23(04): 0- .
    [6]wang jiabin, liu yongxin, pu jixiong. Measuring scintillation index of laser beams propagating in turbulent atmosphere[J]. High Power Laser and Particle Beams, 2011, 23(04): 0- .
    [7]li jinsong, gao xiumin, zhang shuqin. Gradient force pattern of Gaussian beam adjusted by an annular phase plate[J]. High Power Laser and Particle Beams, 2009, 21(02): 0- .
    [8]dong hongcheng, tao chunxian, zhao yuanan, huang jianbing, shao jianda. Combination characteristics analysis of Gaussian beams[J]. High Power Laser and Particle Beams, 2009, 21(02): 0- .
    [9]shen xue-ju, shen hong-bin, zhou sheng-guo, wang long. Propagation properties of Gaussian beam passing through a misaligned optical system with misaligned narrow slot aperture[J]. High Power Laser and Particle Beams, 2008, 20(09): 0- .
    [10]meng xiang-long, zhao bao-yin, nie yi-you, lu bai-da. Parameter changes of Gaussian beams after passing through astigmatic lens[J]. High Power Laser and Particle Beams, 2007, 19(01): 0- .
    [11]gao chong, ma jing, tan li-ying. Angle-of-arrival fluctuation of light beam propagation in strong turbulence regime[J]. High Power Laser and Particle Beams, 2006, 18(06): 0- .
    [12]mei hai-ping, wu xiao-qing, rao rui-zhong. Measurement and analysis of temperature power spectrum scaling exponent in non-Kolmogorov turbulent atmosphere[J]. High Power Laser and Particle Beams, 2006, 18(09): 0- .
    [13]zhou tie-zhong, deng luo-gen. Gaussian beam Z-scan diffraction theory model for the strong nonlinear absorption materials[J]. High Power Laser and Particle Beams, 2004, 16(06): 0- .
    [14]he kun-na, deng luo-gen. Far-field diffraction patterns formation of gaussian beam transmitted through thin nonlinear medium[J]. High Power Laser and Particle Beams, 2003, 15(10): 0- .
    [15]zhou nan-run, tao xiang-yang, lü bai-da. Focusing properties of Gaussian beams through a compound optical system[J]. High Power Laser and Particle Beams, 2002, 14(04): 0- .
    [16]ji xiao-ling, lü bai-da. Focusing properties of Gaussian beams passing through a bifocal lens[J]. High Power Laser and Particle Beams, 2001, 13(06): 0- .
    [17]wang xi-qing, liang guo-dong, lü bai-da. Approximate close-form expression for Gaussian beams passing through an ABCD optical system with hard-edge aperture[J]. High Power Laser and Particle Beams, 2001, 13(04): 0- .
  • Cited by

    Periodical cited type(4)

    1. 李思瑶,丁洲林,侯春雨,王玮君,马佳欣,于永吉. 完美涡旋光束在大气湍流传输中的螺旋相位谱分析. 光学学报. 2024(06): 42-49 .
    2. 汪航,汪玉琴,张蓉竹. 完美涡旋光束在大气湍流中的斜程传输特性. 强激光与粒子束. 2023(10): 44-50 . 本站查看
    3. 卜洋,杨志,赵丽娟,徐志钮. 大气湍流对基于轨道角动量的自由空间光通信影响及解决方案综述. 半导体光电. 2022(06): 1099-1108 .
    4. 蔡敏,荣嵘. 基于数学模型的低衍射光束结构参数优化方法. 激光杂志. 2020(11): 15-19 .

    Other cited types(10)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-04051015202530
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 15.1 %FULLTEXT: 15.1 %META: 77.0 %META: 77.0 %PDF: 7.9 %PDF: 7.9 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 4.4 %其他: 4.4 %其他: 0.6 %其他: 0.6 %China: 0.3 %China: 0.3 %European Union: 0.1 %European Union: 0.1 %India: 0.1 %India: 0.1 %Japan: 0.4 %Japan: 0.4 %Kadoma: 0.1 %Kadoma: 0.1 %Seattle: 0.1 %Seattle: 0.1 %Williamsport: 0.1 %Williamsport: 0.1 %[]: 0.4 %[]: 0.4 %上海: 2.2 %上海: 2.2 %东京: 0.1 %东京: 0.1 %中山: 0.1 %中山: 0.1 %临汾: 0.1 %临汾: 0.1 %丹东: 0.1 %丹东: 0.1 %佛山: 0.1 %佛山: 0.1 %包头: 0.1 %包头: 0.1 %北京: 16.3 %北京: 16.3 %十堰: 0.1 %十堰: 0.1 %南京: 0.7 %南京: 0.7 %南充: 0.1 %南充: 0.1 %南通: 0.1 %南通: 0.1 %厦门: 0.1 %厦门: 0.1 %台州: 0.3 %台州: 0.3 %合肥: 0.4 %合肥: 0.4 %咸阳: 0.6 %咸阳: 0.6 %商洛: 0.1 %商洛: 0.1 %大连: 0.1 %大连: 0.1 %天津: 0.4 %天津: 0.4 %安康: 0.2 %安康: 0.2 %宝鸡: 0.1 %宝鸡: 0.1 %宣城: 0.4 %宣城: 0.4 %巴音郭楞: 0.1 %巴音郭楞: 0.1 %常州: 0.1 %常州: 0.1 %广州: 0.5 %广州: 0.5 %廊坊: 0.1 %廊坊: 0.1 %弗吉尼亚州: 0.2 %弗吉尼亚州: 0.2 %张家口: 0.4 %张家口: 0.4 %惠州: 0.3 %惠州: 0.3 %成都: 1.7 %成都: 1.7 %扬州: 0.4 %扬州: 0.4 %旧金山: 0.2 %旧金山: 0.2 %昆明: 0.3 %昆明: 0.3 %普洱: 0.1 %普洱: 0.1 %朝阳: 0.1 %朝阳: 0.1 %杭州: 1.2 %杭州: 1.2 %林奇堡: 0.1 %林奇堡: 0.1 %格罗宁根: 0.3 %格罗宁根: 0.3 %桂林: 0.4 %桂林: 0.4 %桃园: 0.1 %桃园: 0.1 %榆林: 0.1 %榆林: 0.1 %武汉: 0.2 %武汉: 0.2 %池州: 0.1 %池州: 0.1 %沈阳: 0.5 %沈阳: 0.5 %泉州: 0.3 %泉州: 0.3 %洛阳: 0.2 %洛阳: 0.2 %济南: 0.5 %济南: 0.5 %深圳: 0.6 %深圳: 0.6 %温州: 0.1 %温州: 0.1 %湖州: 0.1 %湖州: 0.1 %湘西: 0.1 %湘西: 0.1 %漯河: 0.6 %漯河: 0.6 %漳州: 0.1 %漳州: 0.1 %濮阳: 0.1 %濮阳: 0.1 %爱知: 0.1 %爱知: 0.1 %眉山: 0.1 %眉山: 0.1 %石家庄: 0.4 %石家庄: 0.4 %福州: 0.1 %福州: 0.1 %秦皇岛: 0.1 %秦皇岛: 0.1 %绵阳: 0.9 %绵阳: 0.9 %舟山: 0.1 %舟山: 0.1 %芒廷维尤: 14.2 %芒廷维尤: 14.2 %芝加哥: 0.4 %芝加哥: 0.4 %苏州: 0.4 %苏州: 0.4 %荆门: 0.1 %荆门: 0.1 %蚌埠: 0.1 %蚌埠: 0.1 %衡阳: 0.1 %衡阳: 0.1 %西宁: 37.2 %西宁: 37.2 %西安: 3.4 %西安: 3.4 %贵阳: 0.1 %贵阳: 0.1 %运城: 0.3 %运城: 0.3 %连云港: 0.1 %连云港: 0.1 %邯郸: 0.1 %邯郸: 0.1 %郑州: 0.7 %郑州: 0.7 %鄂州: 0.1 %鄂州: 0.1 %重庆: 0.5 %重庆: 0.5 %长沙: 0.8 %长沙: 0.8 %长治: 0.1 %长治: 0.1 %青岛: 0.3 %青岛: 0.3 %香港特别行政区: 0.3 %香港特别行政区: 0.3 %黄冈: 0.1 %黄冈: 0.1 %龙岩: 0.1 %龙岩: 0.1 %其他其他ChinaEuropean UnionIndiaJapanKadomaSeattleWilliamsport[]上海东京中山临汾丹东佛山包头北京十堰南京南充南通厦门台州合肥咸阳商洛大连天津安康宝鸡宣城巴音郭楞常州广州廊坊弗吉尼亚州张家口惠州成都扬州旧金山昆明普洱朝阳杭州林奇堡格罗宁根桂林桃园榆林武汉池州沈阳泉州洛阳济南深圳温州湖州湘西漯河漳州濮阳爱知眉山石家庄福州秦皇岛绵阳舟山芒廷维尤芝加哥苏州荆门蚌埠衡阳西宁西安贵阳运城连云港邯郸郑州鄂州重庆长沙长治青岛香港特别行政区黄冈龙岩

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)

    Article views (988) PDF downloads(148) Cited by(14)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return