Volume 35 Issue 1
Jan.  2023
Turn off MathJax
Article Contents
Huang Hairong, Zhang Liangqi, Liu Weiyuan, et al. Research progress of quantum electrodynamics cascade and dense positron production driven by interaction between extremely intense lasers and solid targets[J]. High Power Laser and Particle Beams, 2023, 35: 012004. doi: 10.11884/HPLPB202335.220208
Citation: Huang Hairong, Zhang Liangqi, Liu Weiyuan, et al. Research progress of quantum electrodynamics cascade and dense positron production driven by interaction between extremely intense lasers and solid targets[J]. High Power Laser and Particle Beams, 2023, 35: 012004. doi: 10.11884/HPLPB202335.220208

Research progress of quantum electrodynamics cascade and dense positron production driven by interaction between extremely intense lasers and solid targets

doi: 10.11884/HPLPB202335.220208
  • Received Date: 2022-06-28
  • Rev Recd Date: 2022-10-03
  • Available Online: 2022-10-11
  • Publish Date: 2023-01-15
  • With the advent of ultra-short ultra-intense laser pulses, the interaction between light and matter enters the nonlinear physics regime dominated by radiation damping and quantum electrodynamics (QED) effects. The strong-field QED effects contain a wealth of physical processes, including radiation damping effect, high-energy gamma radiation, electron-positron pairs generation, QED cascade, vacuum polarization, and so on. These effects are frontiers and hot topics in high energy density physics and strong field physics. Among them, QED cascade is an important mechanism, which can explain the formation of the ultra-dense radiation in the cosmos and the gamma-ray burst, and the resulting dense positron source has important application prospects in high-energy physics, nondestructive assay of materials, and cancer diagnosis. In this paper, the cascading process of QED and the theoretical model are introduced, then the QED cascade development in solid targets and the resulting nonlinear physical effects are discussed. Finally, the main research results of dense positron generation in solid targets are reviewed.
  • loading
  • [1]
    Blandford R D, Znajek R L. Electromagnetic extraction of energy from Kerr black holes[J]. Monthly Notices of the Royal Astronomical Society, 1997, 179(3): 433-456.
    [2]
    Michel F C. Theory of pulsar magnetospheres[J]. Reviews of Modern Physics, 1982, 54(1): 1-66. doi: 10.1103/RevModPhys.54.1
    [3]
    Piran T. The physics of gamma-ray bursts[J]. Reviews of Modern Physics, 2005, 76(4): 1143-1210. doi: 10.1103/RevModPhys.76.1143
    [4]
    Medin Z, Lai Dong. Pair cascades in the magnetospheres of strongly magnetized neutron stars[J]. Monthly Notices of the Royal Astronomical Society, 2010, 406(2): 1379-1404.
    [5]
    Danielson J R, Dubin D H E, Greaves R G, et al. Plasma and trap-based techniques for science with positrons[J]. Reviews of Modern Physics, 2015, 87(1): 247-306. doi: 10.1103/RevModPhys.87.247
    [6]
    Atcher R W, Friedman A M, Huizenga J R, et al. Manganese-52m, a new short-lived, generator-produced radionuclide: a potential tracer for positron tomography[J]. Journal of Nuclear Medicine, 1980, 21(6): 565-569.
    [7]
    Manus M P M, Hicks R J, Matthews J P, et al. Positron emission tomography is superior to computed tomography scanning for response-assessment after radical radiotherapy or chemoradiotherapy in patients with non-small-cell lung cancer[J]. Journal of Clinical Oncology, 2003, 21(7): 1285-1292. doi: 10.1200/JCO.2003.07.054
    [8]
    Gidley D W, Peng H G, Vallery R S. Positron annihilation as a method to characterize porous materials[J]. Annual Review of Materials Research, 2006, 36: 49-79. doi: 10.1146/annurev.matsci.36.111904.135144
    [9]
    Strickland D, Mourou G. Compression of amplified chirped optical pulses[J]. Optics Communications, 1985, 56(3): 219-221. doi: 10.1016/0030-4018(85)90120-8
    [10]
    Yoon J W, Kim Y G, Choi I W, et al. Realization of laser intensity over 1023 W/cm2[J]. Optica, 2021, 8(5): 630-635. doi: 10.1364/OPTICA.420520
    [11]
    Eli. Extreme light infrastructure[EB/OL]. https://eli-laser.eu/.
    [12]
    Exawatt center for extreme light studies[EB/OL]. https://xcels.iapras.ru/news.html.
    [13]
    Papadopoulos D N, Ramirez P, Genevrier K, et al. High-contrast 10 fs OPCPA-based front end for multi-PW laser chains[J]. Optics Letters, 2017, 42(18): 3530-3533. doi: 10.1364/OL.42.003530
    [14]
    Li Shuai, Wang Cheng, Liu Yanqi, et al. High-order dispersion control of 10-petawatt Ti: sapphire laser facility[J]. Optics Express, 2017, 25(15): 17488-17498. doi: 10.1364/OE.25.017488
    [15]
    Ji Liangliang, Pukhov A, Kostyukov I Y, et al. Radiation-reaction trapping of electrons in extreme laser fields[J]. Physical Review Letters, 2014, 112: 145003. doi: 10.1103/PhysRevLett.112.145003
    [16]
    Gonoskov A, Bashinov A, Gonoskov I, et al. Anomalous radiative trapping in laser fields of extreme intensity[J]. Physical Review Letters, 2014, 113: 014801. doi: 10.1103/PhysRevLett.113.014801
    [17]
    Wistisen T N, Di Piazza A, Knudsen H V, et al. Experimental evidence of quantum radiation reaction in aligned crystals[J]. Nature Communications, 2018, 9: 795. doi: 10.1038/s41467-018-03165-4
    [18]
    Cole J M, Behm K T, Gerstmayr E, et al. Experimental evidence of radiation reaction in the collision of a high-intensity laser pulse with a laser-wakefield accelerated electron beam[J]. Physical Review X, 2018, 8: 011020.
    [19]
    Compton A H. A quantum theory of the scattering of X-rays by light elements[J]. Physical Review, 1923, 21(5): 483-502. doi: 10.1103/PhysRev.21.483
    [20]
    Seipt D, Kämpfer B. Nonlinear Compton scattering of ultrashort intense laser pulses[J]. Physical Review A, 2011, 83: 022101. doi: 10.1103/PhysRevA.83.022101
    [21]
    Breit G, Wheeler J A. Collision of two light quanta[J]. Physical Review, 1934, 46(12): 1087-1091. doi: 10.1103/PhysRev.46.1087
    [22]
    Burke D L, Field R C, Horton-Smith G, et al. Positron production in multiphoton light-by-light scattering[J]. Physical Review Letters, 1997, 79(9): 1626-1629. doi: 10.1103/PhysRevLett.79.1626
    [23]
    吉亮亮, 耿学松, 伍艺通, 等. 超强激光驱动的辐射反作用力效应与极化粒子加速[J]. 物理学报, 2021, 70:085203 doi: 10.7498/aps.70.20210091

    Ji Liangliang, Geng Xuesong, Wu Yitong, et al. Laser-driven radiation-reaction effect and polarized particle acceleration[J]. Acta Physica Sinica, 2021, 70: 085203 doi: 10.7498/aps.70.20210091
    [24]
    Gonoskov A, Blackburn T G, Marklund M, et al. Charged particle motion and radiation in strong electromagnetic fields[J]. Reviews of Modern Physics, 2022, 94: 045001. doi: 10.1103/RevModPhys.94.045001
    [25]
    Akhiezer A I, Merenkov N P, Rekalo A P. Kinetic theory of electromagnetic showers in strong magnetic fields[J]. Yadernaya Fizika, 1995, 58(3): 491-500.
    [26]
    Mironov A A, Narozhny N B, Fedotov A M. Collapse and revival of electromagnetic cascades in focused intense laser pulses[J]. Physics Letters A, 2014, 378(44): 3254-3257. doi: 10.1016/j.physleta.2014.09.058
    [27]
    Mironov A A, Fedotov A M, Narozhnyi N B. Generation of quantum-electrodynamic cascades in oblique collisions of ultrarelativistic electrons with an intense laser field[J]. Quantum Electronics, 2016, 46(4): 305-309. doi: 10.1070/QEL16057
    [28]
    Bell A R, Kirk J G. Possibility of prolific pair production with high-power lasers[J]. Physical Review Letters, 2008, 101: 200403. doi: 10.1103/PhysRevLett.101.200403
    [29]
    Kirk J G, Bell A R, Arka I. Pair production in counter-propagating laser beams[J]. Plasma Physics and Controlled Fusion, 2009, 51: 085008. doi: 10.1088/0741-3335/51/8/085008
    [30]
    Fedotov A M, Elkina N V, Gelfer E G, et al. Radiation friction versus ponderomotive effect[J]. Physical Review A, 2014, 90: 053847. doi: 10.1103/PhysRevA.90.053847
    [31]
    Ritus V I. Quantum effects of the interaction of elementary particles with an intense electromagnetic field[J]. Journal of Soviet Laser Research, 1985, 6(5): 497-617. doi: 10.1007/BF01120220
    [32]
    Bashmakov V F, Nerush E N, Kostyukov I Y, et al. Effect of laser polarization on quantum electrodynamical cascading[J]. Physics of Plasmas, 2014, 21: 013105. doi: 10.1063/1.4861863
    [33]
    Grismayer T, Vranic M, Martins J L, et al. Seeded QED cascades in counter propagating laser pulses[J]. Physical Review E, 2017, 95: 023210. doi: 10.1103/PhysRevE.95.023210
    [34]
    Erber T. High-energy electromagnetic conversion processes in intense magnetic fields[J]. Reviews of Modern Physics, 1966, 38(4): 626-659. doi: 10.1103/RevModPhys.38.626
    [35]
    Grismayer T, Vranic M, Martins J L, et al. Laser absorption via quantum electrodynamics cascades in counter propagating laser pulses[J]. Physics of Plasmas, 2016, 23: 056706. doi: 10.1063/1.4950841
    [36]
    Luo Wen, Liu Weiyuan, Yuan Tao, et al. QED cascade saturation in extreme high fields[J]. Scientific Reports, 2018, 8: 8400. doi: 10.1038/s41598-018-26785-8
    [37]
    Slade-Lowther C, Del Sorbo D, Ridgers C P. Identifying the electron-positron cascade regimes in high-intensity laser-matter interactions[J]. New Journal of Physics, 2019, 21: 013028. doi: 10.1088/1367-2630/aafa39
    [38]
    Tang Suo, Bake M A, Wang Hongyu, et al. QED cascade induced by a high-energy γ photon in a strong laser field[J]. Physical Review A, 2014, 89: 022105. doi: 10.1103/PhysRevA.89.022105
    [39]
    Elkina N V, Fedotov A M, Kostyukov I Y, et al. QED cascades induced by circularly polarized laser fields[J]. Physical Review Accelerators and Beams, 2011, 14: 054401. doi: 10.1103/PhysRevSTAB.14.054401
    [40]
    Narozhny N B, Fedotov A M. Creation of electron-positron plasma with superstrong laser field[J]. The European Physical Journal Special Topics, 2014, 223(6): 1083-1092. doi: 10.1140/epjst/e2014-02159-1
    [41]
    Nerush E N, Kostyukov I Y, Fedotov A M, et al. Laser field absorption in self-generated electron-positron pair plasma[J]. Physical Review Letters, 2011, 106: 035001. doi: 10.1103/PhysRevLett.106.035001
    [42]
    Vranic M, Grismayer T, Fonseca R A, et al. Electron-positron cascades in multiple-laser optical traps[J]. Plasma Physics and Controlled Fusion, 2017, 59: 014040. doi: 10.1088/0741-3335/59/1/014040
    [43]
    Jirka M, Klimo O, Vranic M, et al. QED cascade with 10 PW-class lasers[J]. Scientific Reports, 2017, 7: 15302. doi: 10.1038/s41598-017-15747-1
    [44]
    Sampath A, Tamburini M. Towards realistic simulations of QED cascades: non-ideal laser and electron seeding effects[J]. Physics of Plasmas, 2018, 25: 083104. doi: 10.1063/1.5022640
    [45]
    Zhidkov A, Koga J, Sasaki A, et al. Radiation damping effects on the interaction of ultraintense laser pulses with an overdense plasma[J]. Physical Review Letters, 2002, 88: 185002. doi: 10.1103/PhysRevLett.88.185002
    [46]
    Ji Liangliang, Pukhov A, Nerush E N, et al. Near QED regime of laser interaction with overdense plasmas[J]. The European Physical Journal Special Topics, 2014, 223(6): 1069-1082. doi: 10.1140/epjst/e2014-02158-2
    [47]
    Baumann C, Pukhov A. Influence of ee+ creation on the radiative trapping in ultraintense fields of colliding laser pulses[J]. Physical Review E, 2016, 94: 063204. doi: 10.1103/PhysRevE.94.063204
    [48]
    Seipt D, Ridgers C P, Del Sorbo D, et al. Polarized QED cascades[J]. New Journal of Physics, 2021, 23: 053025. doi: 10.1088/1367-2630/abf584
    [49]
    Yu Jiye, Yuan Tao, Liu Weiyuan, et al. QED effects induced harmonics generation in extreme intense laser foil interaction[J]. Plasma Physics and Controlled Fusion, 2018, 60: 044011. doi: 10.1088/1361-6587/aaae35
    [50]
    Yuan Tao, Yu Jiye, Liu Weiyuan, et al. Spatiotemporal distributions of pair production and cascade in solid targets irradiated by ultra-relativistic lasers with different polarizations[J]. Plasma Physics and Controlled Fusion, 2018, 60: 065003. doi: 10.1088/1361-6587/aab3ba
    [51]
    Chen Hui, Wilks S C, Bonlie J D, et al. Relativistic positron creation using ultraintense short pulse lasers[J]. Physical Review Letters, 2009, 102: 105001. doi: 10.1103/PhysRevLett.102.105001
    [52]
    Chen Hui, Wilks S C, Meyerhofer D D, et al. Relativistic quasimonoenergetic positron jets from intense laser-solid interactions[J]. Physical Review Letters, 2010, 105: 015003. doi: 10.1103/PhysRevLett.105.015003
    [53]
    Chen Hui, Fiuza F, Link A, et al. Scaling the yield of laser-driven electron-positron jets to laboratory astrophysical applications[J]. Physical Review Letters, 2015, 114: 215001. doi: 10.1103/PhysRevLett.114.215001
    [54]
    Sarri G, Schumaker W, Di Piazza A, et al. Table-top laser-based source of femtosecond, collimated, ultrarelativistic positron beams[J]. Physical Review Letters, 2013, 110: 255002. doi: 10.1103/PhysRevLett.110.255002
    [55]
    Xu Tongjun, Shen Baifei, Xu Jiancai, et al. Ultrashort megaelectronvolt positron beam generation based on laser-accelerated electrons[J]. Physics of Plasmas, 2016, 23: 033109. doi: 10.1063/1.4943280
    [56]
    闫永宏, 吴玉迟, 董克攻, 等. 激光固体靶相互作用产生正电子的模拟研究[J]. 强激光与粒子束, 2015, 27:112006 doi: 10.11884/HPLPB201527.112006

    Yan Yonghong, Wu Yuchi, Dong Kegong, et al. Simulation study of positron production from laser-solid interactions[J]. High Power Laser and Particle Beams, 2015, 27: 112006 doi: 10.11884/HPLPB201527.112006
    [57]
    Liang E P, Wilks S C, Tabak M. Pair production by ultraintense lasers[J]. Physical Review Letters, 1998, 81(22): 4887-4890. doi: 10.1103/PhysRevLett.81.4887
    [58]
    Shen Baifei, Meyer-Ter-Vehn J. Pair and γ-photon production from a thin foil confined by two laser pulses[J]. Physical Review E, 2001, 65: 016405. doi: 10.1103/PhysRevE.65.016405
    [59]
    Bethe H, Heitler W. On the stopping of fast particles and on the creation of positive electrons[J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 1934, 146(856): 83-112.
    [60]
    Heitler W. The quantum theory of radiation[M]. Oxford: Clarendon Press, 1954.
    [61]
    Ridgers C P, Brady C S, Duclous R, et al. Dense electron-positron plasmas and ultraintense γ rays from laser-irradiated solids[J]. Physical Review Letters, 2012, 108: 165006. doi: 10.1103/PhysRevLett.108.165006
    [62]
    Gu Yanjun, Jirka M, Klimo O, et al. Gamma photons and electron-positron pairs from ultra-intense laser-matter interaction: a comparative study of proposed configurations[J]. Matter and Radiation at Extremes, 2019, 4: 064403. doi: 10.1063/1.5098978
    [63]
    Chang Hengxin, Qiao Bin, Xu Z, et al. Generation of overdense and high-energy electron-positron-pair plasmas by irradiation of a thin foil with two ultraintense lasers[J]. Physical Review E, 2015, 92: 053107. doi: 10.1103/PhysRevE.92.053107
    [64]
    Luo Wen, Zhu Yibo, Zhuo Hongbin, et al. Dense electron-positron plasmas and gamma-ray bursts generation by counter-propagating quantum electrodynamics-strong laser interaction with solid targets[J]. Physics of Plasmas, 2015, 22: 063112. doi: 10.1063/1.4923265
    [65]
    Zhu Xinglong, Yu Tongpu, Sheng Zhengmin, et al. Dense GeV electron-positron pairs generated by lasers in near-critical-density plasmas[J]. Nature Communications, 2016, 7: 13686. doi: 10.1038/ncomms13686
    [66]
    Zhu Xinglong, Chen Min, Yu Tongpu, et al. Collimated GeV attosecond electron-positron bunches from a plasma channel driven by 10 PW lasers[J]. Matter and Radiation at Extremes, 2019, 4: 014401. doi: 10.1063/1.5083914
    [67]
    Zhao Jie, Hu Yanting, Lu Yu, et al. All-optical quasi-monoenergetic GeV positron bunch generation by twisted laser fields[J]. Communications Physics, 2022, 5: 15. doi: 10.1038/s42005-021-00797-9
    [68]
    Chen Yueyue, He Peilun, Shaisultanov R, et al. Polarized positron beams via intense two-color laser pulses[J]. Physical Review Letters, 2019, 123: 174801. doi: 10.1103/PhysRevLett.123.174801
    [69]
    Wan Feng, Shaisultanov R, Li Yanfei, et al. Ultrarelativistic polarized positron jets via collision of electron and ultraintense laser beams[J]. Physics Letters B, 2020, 800: 135120. doi: 10.1016/j.physletb.2019.135120
    [70]
    Liu Weiyuan, Xue Kun, Wan Feng, et al. Trapping and acceleration of spin-polarized positrons from γ photon splitting in wakefields[J]. Physical Review Research, 2022, 4: L022028. doi: 10.1103/PhysRevResearch.4.L022028
    [71]
    Ridgers C P, Brady C S, Duclous R, et al. Dense electron-positron plasmas and bursts of gamma-rays from laser-generated quantum electrodynamic plasmas[J]. Physics of Plasmas, 2013, 20: 056701. doi: 10.1063/1.4801513
    [72]
    Mercuri-Baron A, Grech M, Niel F, et al. Impact of the laser spatio-temporal shape on Breit–Wheeler pair production[J]. New Journal of Physics, 2021, 23: 085006. doi: 10.1088/1367-2630/ac1975
    [73]
    Vincenti H, Monchocé S, Kahaly S, et al. Optical properties of relativistic plasma mirrors[J]. Nature Communications, 2014, 5: 3403. doi: 10.1038/ncomms4403
    [74]
    Yuan Tao, Chen Min, Yu Jiye, et al. Target transverse size and laser polarization effects on pair production during ultra-relativistic-intense laser interaction with solid targets[J]. Physics of Plasmas, 2017, 24: 063104. doi: 10.1063/1.4985306
    [75]
    Del Sorbo D, Blackman D R, Capdessus R, et al. Efficient ion acceleration and dense electron-positron plasma creation in ultra-high intensity laser-solid interactions[J]. New Journal of Physics, 2018, 20: 033014. doi: 10.1088/1367-2630/aaae61
    [76]
    Ji Liangliang, Snyder J C, Shen Baifei. Single-pulse laser-electron collision within a micro-channel plasma target[J]. Plasma Physics and Controlled Fusion, 2019, 61: 065019. doi: 10.1088/1361-6587/ab1692
    [77]
    Liu Jianxun, Ma Yanyun, Zhao Jun, et al. High-flux low-divergence positron beam generation from ultra-intense laser irradiated a tapered hollow target[J]. Physics of Plasmas, 2015, 22: 103102. doi: 10.1063/1.4932997
    [78]
    Kulcsár G, Almawlawi D, Budnik F W, et al. Intense picosecond X-ray pulses from laser plasmas by use of nanostructured “velvet” targets[J]. Physical Review Letters, 2000, 84(22): 5149-5152. doi: 10.1103/PhysRevLett.84.5149
    [79]
    Lécz Z, Andreev A. Attosecond bunches of gamma photons and positrons generated in nanostructure targets[J]. Physical Review E, 2019, 99: 013202. doi: 10.1103/PhysRevE.99.013202
    [80]
    Lécz Z, Andreev A. Bright synchrotron radiation from nano-forest targets[J]. Physics of Plasmas, 2017, 24: 033113. doi: 10.1063/1.4978573
    [81]
    Phuoc K T, Corde S, Thaury C, et al. All-optical Compton gamma-ray source[J]. Nature Photonics, 2012, 6(5): 308-311. doi: 10.1038/nphoton.2012.82
    [82]
    Zhang Liangqi, Wu Shaodong, Huang Hairong, et al. Brilliant attosecond γ-ray emission and high-yield positron production from intense laser-irradiated nano-micro array[J]. Physics of Plasmas, 2021, 28: 023110. doi: 10.1063/5.0030909
    [83]
    Li Hanzhen, Yu Tongpu, Liu Jinjin, et al. Ultra-bright γ-ray emission and dense positron production from two laser-driven colliding foils[J]. Scientific Reports, 2017, 7: 17312. doi: 10.1038/s41598-017-17605-6
    [84]
    Li Hanzhen, Yu Tongpu, Hu Lixiang, et al. Ultra-bright γ-ray flashes and dense attosecond positron bunches from two counter-propagating laser pulses irradiating a micro-wire target[J]. Optics Express, 2017, 25(18): 21583-21593. doi: 10.1364/OE.25.021583
    [85]
    Liu Weiyuan, Luo Wen, Yuan Tao, et al. Enhanced pair plasma generation in the relativistic transparency regime[J]. Physics of Plasmas, 2017, 24: 103130. doi: 10.1063/1.5001457
    [86]
    Liu Weiyuan, Luo Wen, Yuan Tao, et al. Dense pair plasma generation and its modulation dynamics in counter-propagating laser field[J]. Chinese Physics B, 2018, 27: 105202. doi: 10.1088/1674-1056/27/10/105202
    [87]
    Jirka M, Klimo O, Bulanov S V, et al. Electron dynamics and γ and ee+ production by colliding laser pulses[J]. Physical Review E, 2016, 93: 023207. doi: 10.1103/PhysRevE.93.023207
    [88]
    Liu Jianxun, Ma Yanyun, Yu Tongpu, et al. Dense pair plasma generation by two laser pulses colliding in a cylinder channel[J]. Chinese Physics B, 2017, 26: 035202. doi: 10.1088/1674-1056/26/3/035202
    [89]
    Zhang Peng, Ridgers C P, Thomas A G R. The effect of nonlinear quantum electrodynamics on relativistic transparency and laser absorption in ultra-relativistic plasmas[J]. New Journal of Physics, 2015, 17: 043051. doi: 10.1088/1367-2630/17/4/043051
    [90]
    Song Huaihang, Wang Weimin, Li Yanfei, et al. Spin and polarization effects on the nonlinear Breit–Wheeler pair production in laser-plasma interaction[J]. New Journal of Physics, 2021, 23: 075005. doi: 10.1088/1367-2630/ac0dec
    [91]
    Luo Wen, Wu Shaodong, Liu Weiyuan, et al. Enhanced electron-positron pair production by two obliquely incident lasers interacting with a solid target[J]. Plasma Physics and Controlled Fusion, 2018, 60: 095006. doi: 10.1088/1361-6587/aad211
    [92]
    Vshivkov V, Naumova N, Pegoraro F, et al. Nonlinear interaction of ultra-intense laser pulses with a thin foil[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1998, 410(3): 493-498.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)

    Article views (850) PDF downloads(142) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return