Citation: | Huang Hairong, Zhang Liangqi, Liu Weiyuan, et al. Research progress of quantum electrodynamics cascade and dense positron production driven by interaction between extremely intense lasers and solid targets[J]. High Power Laser and Particle Beams, 2023, 35: 012004. doi: 10.11884/HPLPB202335.220208 |
[1] |
Blandford R D, Znajek R L. Electromagnetic extraction of energy from Kerr black holes[J]. Monthly Notices of the Royal Astronomical Society, 1997, 179(3): 433-456.
|
[2] |
Michel F C. Theory of pulsar magnetospheres[J]. Reviews of Modern Physics, 1982, 54(1): 1-66. doi: 10.1103/RevModPhys.54.1
|
[3] |
Piran T. The physics of gamma-ray bursts[J]. Reviews of Modern Physics, 2005, 76(4): 1143-1210. doi: 10.1103/RevModPhys.76.1143
|
[4] |
Medin Z, Lai Dong. Pair cascades in the magnetospheres of strongly magnetized neutron stars[J]. Monthly Notices of the Royal Astronomical Society, 2010, 406(2): 1379-1404.
|
[5] |
Danielson J R, Dubin D H E, Greaves R G, et al. Plasma and trap-based techniques for science with positrons[J]. Reviews of Modern Physics, 2015, 87(1): 247-306. doi: 10.1103/RevModPhys.87.247
|
[6] |
Atcher R W, Friedman A M, Huizenga J R, et al. Manganese-52m, a new short-lived, generator-produced radionuclide: a potential tracer for positron tomography[J]. Journal of Nuclear Medicine, 1980, 21(6): 565-569.
|
[7] |
Manus M P M, Hicks R J, Matthews J P, et al. Positron emission tomography is superior to computed tomography scanning for response-assessment after radical radiotherapy or chemoradiotherapy in patients with non-small-cell lung cancer[J]. Journal of Clinical Oncology, 2003, 21(7): 1285-1292. doi: 10.1200/JCO.2003.07.054
|
[8] |
Gidley D W, Peng H G, Vallery R S. Positron annihilation as a method to characterize porous materials[J]. Annual Review of Materials Research, 2006, 36: 49-79. doi: 10.1146/annurev.matsci.36.111904.135144
|
[9] |
Strickland D, Mourou G. Compression of amplified chirped optical pulses[J]. Optics Communications, 1985, 56(3): 219-221. doi: 10.1016/0030-4018(85)90120-8
|
[10] |
Yoon J W, Kim Y G, Choi I W, et al. Realization of laser intensity over 1023 W/cm2[J]. Optica, 2021, 8(5): 630-635. doi: 10.1364/OPTICA.420520
|
[11] |
Eli. Extreme light infrastructure[EB/OL]. https://eli-laser.eu/.
|
[12] |
Exawatt center for extreme light studies[EB/OL]. https://xcels.iapras.ru/news.html.
|
[13] |
Papadopoulos D N, Ramirez P, Genevrier K, et al. High-contrast 10 fs OPCPA-based front end for multi-PW laser chains[J]. Optics Letters, 2017, 42(18): 3530-3533. doi: 10.1364/OL.42.003530
|
[14] |
Li Shuai, Wang Cheng, Liu Yanqi, et al. High-order dispersion control of 10-petawatt Ti: sapphire laser facility[J]. Optics Express, 2017, 25(15): 17488-17498. doi: 10.1364/OE.25.017488
|
[15] |
Ji Liangliang, Pukhov A, Kostyukov I Y, et al. Radiation-reaction trapping of electrons in extreme laser fields[J]. Physical Review Letters, 2014, 112: 145003. doi: 10.1103/PhysRevLett.112.145003
|
[16] |
Gonoskov A, Bashinov A, Gonoskov I, et al. Anomalous radiative trapping in laser fields of extreme intensity[J]. Physical Review Letters, 2014, 113: 014801. doi: 10.1103/PhysRevLett.113.014801
|
[17] |
Wistisen T N, Di Piazza A, Knudsen H V, et al. Experimental evidence of quantum radiation reaction in aligned crystals[J]. Nature Communications, 2018, 9: 795. doi: 10.1038/s41467-018-03165-4
|
[18] |
Cole J M, Behm K T, Gerstmayr E, et al. Experimental evidence of radiation reaction in the collision of a high-intensity laser pulse with a laser-wakefield accelerated electron beam[J]. Physical Review X, 2018, 8: 011020.
|
[19] |
Compton A H. A quantum theory of the scattering of X-rays by light elements[J]. Physical Review, 1923, 21(5): 483-502. doi: 10.1103/PhysRev.21.483
|
[20] |
Seipt D, Kämpfer B. Nonlinear Compton scattering of ultrashort intense laser pulses[J]. Physical Review A, 2011, 83: 022101. doi: 10.1103/PhysRevA.83.022101
|
[21] |
Breit G, Wheeler J A. Collision of two light quanta[J]. Physical Review, 1934, 46(12): 1087-1091. doi: 10.1103/PhysRev.46.1087
|
[22] |
Burke D L, Field R C, Horton-Smith G, et al. Positron production in multiphoton light-by-light scattering[J]. Physical Review Letters, 1997, 79(9): 1626-1629. doi: 10.1103/PhysRevLett.79.1626
|
[23] |
吉亮亮, 耿学松, 伍艺通, 等. 超强激光驱动的辐射反作用力效应与极化粒子加速[J]. 物理学报, 2021, 70:085203 doi: 10.7498/aps.70.20210091
Ji Liangliang, Geng Xuesong, Wu Yitong, et al. Laser-driven radiation-reaction effect and polarized particle acceleration[J]. Acta Physica Sinica, 2021, 70: 085203 doi: 10.7498/aps.70.20210091
|
[24] |
Gonoskov A, Blackburn T G, Marklund M, et al. Charged particle motion and radiation in strong electromagnetic fields[J]. Reviews of Modern Physics, 2022, 94: 045001. doi: 10.1103/RevModPhys.94.045001
|
[25] |
Akhiezer A I, Merenkov N P, Rekalo A P. Kinetic theory of electromagnetic showers in strong magnetic fields[J]. Yadernaya Fizika, 1995, 58(3): 491-500.
|
[26] |
Mironov A A, Narozhny N B, Fedotov A M. Collapse and revival of electromagnetic cascades in focused intense laser pulses[J]. Physics Letters A, 2014, 378(44): 3254-3257. doi: 10.1016/j.physleta.2014.09.058
|
[27] |
Mironov A A, Fedotov A M, Narozhnyi N B. Generation of quantum-electrodynamic cascades in oblique collisions of ultrarelativistic electrons with an intense laser field[J]. Quantum Electronics, 2016, 46(4): 305-309. doi: 10.1070/QEL16057
|
[28] |
Bell A R, Kirk J G. Possibility of prolific pair production with high-power lasers[J]. Physical Review Letters, 2008, 101: 200403. doi: 10.1103/PhysRevLett.101.200403
|
[29] |
Kirk J G, Bell A R, Arka I. Pair production in counter-propagating laser beams[J]. Plasma Physics and Controlled Fusion, 2009, 51: 085008. doi: 10.1088/0741-3335/51/8/085008
|
[30] |
Fedotov A M, Elkina N V, Gelfer E G, et al. Radiation friction versus ponderomotive effect[J]. Physical Review A, 2014, 90: 053847. doi: 10.1103/PhysRevA.90.053847
|
[31] |
Ritus V I. Quantum effects of the interaction of elementary particles with an intense electromagnetic field[J]. Journal of Soviet Laser Research, 1985, 6(5): 497-617. doi: 10.1007/BF01120220
|
[32] |
Bashmakov V F, Nerush E N, Kostyukov I Y, et al. Effect of laser polarization on quantum electrodynamical cascading[J]. Physics of Plasmas, 2014, 21: 013105. doi: 10.1063/1.4861863
|
[33] |
Grismayer T, Vranic M, Martins J L, et al. Seeded QED cascades in counter propagating laser pulses[J]. Physical Review E, 2017, 95: 023210. doi: 10.1103/PhysRevE.95.023210
|
[34] |
Erber T. High-energy electromagnetic conversion processes in intense magnetic fields[J]. Reviews of Modern Physics, 1966, 38(4): 626-659. doi: 10.1103/RevModPhys.38.626
|
[35] |
Grismayer T, Vranic M, Martins J L, et al. Laser absorption via quantum electrodynamics cascades in counter propagating laser pulses[J]. Physics of Plasmas, 2016, 23: 056706. doi: 10.1063/1.4950841
|
[36] |
Luo Wen, Liu Weiyuan, Yuan Tao, et al. QED cascade saturation in extreme high fields[J]. Scientific Reports, 2018, 8: 8400. doi: 10.1038/s41598-018-26785-8
|
[37] |
Slade-Lowther C, Del Sorbo D, Ridgers C P. Identifying the electron-positron cascade regimes in high-intensity laser-matter interactions[J]. New Journal of Physics, 2019, 21: 013028. doi: 10.1088/1367-2630/aafa39
|
[38] |
Tang Suo, Bake M A, Wang Hongyu, et al. QED cascade induced by a high-energy γ photon in a strong laser field[J]. Physical Review A, 2014, 89: 022105. doi: 10.1103/PhysRevA.89.022105
|
[39] |
Elkina N V, Fedotov A M, Kostyukov I Y, et al. QED cascades induced by circularly polarized laser fields[J]. Physical Review Accelerators and Beams, 2011, 14: 054401. doi: 10.1103/PhysRevSTAB.14.054401
|
[40] |
Narozhny N B, Fedotov A M. Creation of electron-positron plasma with superstrong laser field[J]. The European Physical Journal Special Topics, 2014, 223(6): 1083-1092. doi: 10.1140/epjst/e2014-02159-1
|
[41] |
Nerush E N, Kostyukov I Y, Fedotov A M, et al. Laser field absorption in self-generated electron-positron pair plasma[J]. Physical Review Letters, 2011, 106: 035001. doi: 10.1103/PhysRevLett.106.035001
|
[42] |
Vranic M, Grismayer T, Fonseca R A, et al. Electron-positron cascades in multiple-laser optical traps[J]. Plasma Physics and Controlled Fusion, 2017, 59: 014040. doi: 10.1088/0741-3335/59/1/014040
|
[43] |
Jirka M, Klimo O, Vranic M, et al. QED cascade with 10 PW-class lasers[J]. Scientific Reports, 2017, 7: 15302. doi: 10.1038/s41598-017-15747-1
|
[44] |
Sampath A, Tamburini M. Towards realistic simulations of QED cascades: non-ideal laser and electron seeding effects[J]. Physics of Plasmas, 2018, 25: 083104. doi: 10.1063/1.5022640
|
[45] |
Zhidkov A, Koga J, Sasaki A, et al. Radiation damping effects on the interaction of ultraintense laser pulses with an overdense plasma[J]. Physical Review Letters, 2002, 88: 185002. doi: 10.1103/PhysRevLett.88.185002
|
[46] |
Ji Liangliang, Pukhov A, Nerush E N, et al. Near QED regime of laser interaction with overdense plasmas[J]. The European Physical Journal Special Topics, 2014, 223(6): 1069-1082. doi: 10.1140/epjst/e2014-02158-2
|
[47] |
Baumann C, Pukhov A. Influence of e−e+ creation on the radiative trapping in ultraintense fields of colliding laser pulses[J]. Physical Review E, 2016, 94: 063204. doi: 10.1103/PhysRevE.94.063204
|
[48] |
Seipt D, Ridgers C P, Del Sorbo D, et al. Polarized QED cascades[J]. New Journal of Physics, 2021, 23: 053025. doi: 10.1088/1367-2630/abf584
|
[49] |
Yu Jiye, Yuan Tao, Liu Weiyuan, et al. QED effects induced harmonics generation in extreme intense laser foil interaction[J]. Plasma Physics and Controlled Fusion, 2018, 60: 044011. doi: 10.1088/1361-6587/aaae35
|
[50] |
Yuan Tao, Yu Jiye, Liu Weiyuan, et al. Spatiotemporal distributions of pair production and cascade in solid targets irradiated by ultra-relativistic lasers with different polarizations[J]. Plasma Physics and Controlled Fusion, 2018, 60: 065003. doi: 10.1088/1361-6587/aab3ba
|
[51] |
Chen Hui, Wilks S C, Bonlie J D, et al. Relativistic positron creation using ultraintense short pulse lasers[J]. Physical Review Letters, 2009, 102: 105001. doi: 10.1103/PhysRevLett.102.105001
|
[52] |
Chen Hui, Wilks S C, Meyerhofer D D, et al. Relativistic quasimonoenergetic positron jets from intense laser-solid interactions[J]. Physical Review Letters, 2010, 105: 015003. doi: 10.1103/PhysRevLett.105.015003
|
[53] |
Chen Hui, Fiuza F, Link A, et al. Scaling the yield of laser-driven electron-positron jets to laboratory astrophysical applications[J]. Physical Review Letters, 2015, 114: 215001. doi: 10.1103/PhysRevLett.114.215001
|
[54] |
Sarri G, Schumaker W, Di Piazza A, et al. Table-top laser-based source of femtosecond, collimated, ultrarelativistic positron beams[J]. Physical Review Letters, 2013, 110: 255002. doi: 10.1103/PhysRevLett.110.255002
|
[55] |
Xu Tongjun, Shen Baifei, Xu Jiancai, et al. Ultrashort megaelectronvolt positron beam generation based on laser-accelerated electrons[J]. Physics of Plasmas, 2016, 23: 033109. doi: 10.1063/1.4943280
|
[56] |
闫永宏, 吴玉迟, 董克攻, 等. 激光固体靶相互作用产生正电子的模拟研究[J]. 强激光与粒子束, 2015, 27:112006 doi: 10.11884/HPLPB201527.112006
Yan Yonghong, Wu Yuchi, Dong Kegong, et al. Simulation study of positron production from laser-solid interactions[J]. High Power Laser and Particle Beams, 2015, 27: 112006 doi: 10.11884/HPLPB201527.112006
|
[57] |
Liang E P, Wilks S C, Tabak M. Pair production by ultraintense lasers[J]. Physical Review Letters, 1998, 81(22): 4887-4890. doi: 10.1103/PhysRevLett.81.4887
|
[58] |
Shen Baifei, Meyer-Ter-Vehn J. Pair and γ-photon production from a thin foil confined by two laser pulses[J]. Physical Review E, 2001, 65: 016405. doi: 10.1103/PhysRevE.65.016405
|
[59] |
Bethe H, Heitler W. On the stopping of fast particles and on the creation of positive electrons[J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 1934, 146(856): 83-112.
|
[60] |
Heitler W. The quantum theory of radiation[M]. Oxford: Clarendon Press, 1954.
|
[61] |
Ridgers C P, Brady C S, Duclous R, et al. Dense electron-positron plasmas and ultraintense γ rays from laser-irradiated solids[J]. Physical Review Letters, 2012, 108: 165006. doi: 10.1103/PhysRevLett.108.165006
|
[62] |
Gu Yanjun, Jirka M, Klimo O, et al. Gamma photons and electron-positron pairs from ultra-intense laser-matter interaction: a comparative study of proposed configurations[J]. Matter and Radiation at Extremes, 2019, 4: 064403. doi: 10.1063/1.5098978
|
[63] |
Chang Hengxin, Qiao Bin, Xu Z, et al. Generation of overdense and high-energy electron-positron-pair plasmas by irradiation of a thin foil with two ultraintense lasers[J]. Physical Review E, 2015, 92: 053107. doi: 10.1103/PhysRevE.92.053107
|
[64] |
Luo Wen, Zhu Yibo, Zhuo Hongbin, et al. Dense electron-positron plasmas and gamma-ray bursts generation by counter-propagating quantum electrodynamics-strong laser interaction with solid targets[J]. Physics of Plasmas, 2015, 22: 063112. doi: 10.1063/1.4923265
|
[65] |
Zhu Xinglong, Yu Tongpu, Sheng Zhengmin, et al. Dense GeV electron-positron pairs generated by lasers in near-critical-density plasmas[J]. Nature Communications, 2016, 7: 13686. doi: 10.1038/ncomms13686
|
[66] |
Zhu Xinglong, Chen Min, Yu Tongpu, et al. Collimated GeV attosecond electron-positron bunches from a plasma channel driven by 10 PW lasers[J]. Matter and Radiation at Extremes, 2019, 4: 014401. doi: 10.1063/1.5083914
|
[67] |
Zhao Jie, Hu Yanting, Lu Yu, et al. All-optical quasi-monoenergetic GeV positron bunch generation by twisted laser fields[J]. Communications Physics, 2022, 5: 15. doi: 10.1038/s42005-021-00797-9
|
[68] |
Chen Yueyue, He Peilun, Shaisultanov R, et al. Polarized positron beams via intense two-color laser pulses[J]. Physical Review Letters, 2019, 123: 174801. doi: 10.1103/PhysRevLett.123.174801
|
[69] |
Wan Feng, Shaisultanov R, Li Yanfei, et al. Ultrarelativistic polarized positron jets via collision of electron and ultraintense laser beams[J]. Physics Letters B, 2020, 800: 135120. doi: 10.1016/j.physletb.2019.135120
|
[70] |
Liu Weiyuan, Xue Kun, Wan Feng, et al. Trapping and acceleration of spin-polarized positrons from γ photon splitting in wakefields[J]. Physical Review Research, 2022, 4: L022028. doi: 10.1103/PhysRevResearch.4.L022028
|
[71] |
Ridgers C P, Brady C S, Duclous R, et al. Dense electron-positron plasmas and bursts of gamma-rays from laser-generated quantum electrodynamic plasmas[J]. Physics of Plasmas, 2013, 20: 056701. doi: 10.1063/1.4801513
|
[72] |
Mercuri-Baron A, Grech M, Niel F, et al. Impact of the laser spatio-temporal shape on Breit–Wheeler pair production[J]. New Journal of Physics, 2021, 23: 085006. doi: 10.1088/1367-2630/ac1975
|
[73] |
Vincenti H, Monchocé S, Kahaly S, et al. Optical properties of relativistic plasma mirrors[J]. Nature Communications, 2014, 5: 3403. doi: 10.1038/ncomms4403
|
[74] |
Yuan Tao, Chen Min, Yu Jiye, et al. Target transverse size and laser polarization effects on pair production during ultra-relativistic-intense laser interaction with solid targets[J]. Physics of Plasmas, 2017, 24: 063104. doi: 10.1063/1.4985306
|
[75] |
Del Sorbo D, Blackman D R, Capdessus R, et al. Efficient ion acceleration and dense electron-positron plasma creation in ultra-high intensity laser-solid interactions[J]. New Journal of Physics, 2018, 20: 033014. doi: 10.1088/1367-2630/aaae61
|
[76] |
Ji Liangliang, Snyder J C, Shen Baifei. Single-pulse laser-electron collision within a micro-channel plasma target[J]. Plasma Physics and Controlled Fusion, 2019, 61: 065019. doi: 10.1088/1361-6587/ab1692
|
[77] |
Liu Jianxun, Ma Yanyun, Zhao Jun, et al. High-flux low-divergence positron beam generation from ultra-intense laser irradiated a tapered hollow target[J]. Physics of Plasmas, 2015, 22: 103102. doi: 10.1063/1.4932997
|
[78] |
Kulcsár G, Almawlawi D, Budnik F W, et al. Intense picosecond X-ray pulses from laser plasmas by use of nanostructured “velvet” targets[J]. Physical Review Letters, 2000, 84(22): 5149-5152. doi: 10.1103/PhysRevLett.84.5149
|
[79] |
Lécz Z, Andreev A. Attosecond bunches of gamma photons and positrons generated in nanostructure targets[J]. Physical Review E, 2019, 99: 013202. doi: 10.1103/PhysRevE.99.013202
|
[80] |
Lécz Z, Andreev A. Bright synchrotron radiation from nano-forest targets[J]. Physics of Plasmas, 2017, 24: 033113. doi: 10.1063/1.4978573
|
[81] |
Phuoc K T, Corde S, Thaury C, et al. All-optical Compton gamma-ray source[J]. Nature Photonics, 2012, 6(5): 308-311. doi: 10.1038/nphoton.2012.82
|
[82] |
Zhang Liangqi, Wu Shaodong, Huang Hairong, et al. Brilliant attosecond γ-ray emission and high-yield positron production from intense laser-irradiated nano-micro array[J]. Physics of Plasmas, 2021, 28: 023110. doi: 10.1063/5.0030909
|
[83] |
Li Hanzhen, Yu Tongpu, Liu Jinjin, et al. Ultra-bright γ-ray emission and dense positron production from two laser-driven colliding foils[J]. Scientific Reports, 2017, 7: 17312. doi: 10.1038/s41598-017-17605-6
|
[84] |
Li Hanzhen, Yu Tongpu, Hu Lixiang, et al. Ultra-bright γ-ray flashes and dense attosecond positron bunches from two counter-propagating laser pulses irradiating a micro-wire target[J]. Optics Express, 2017, 25(18): 21583-21593. doi: 10.1364/OE.25.021583
|
[85] |
Liu Weiyuan, Luo Wen, Yuan Tao, et al. Enhanced pair plasma generation in the relativistic transparency regime[J]. Physics of Plasmas, 2017, 24: 103130. doi: 10.1063/1.5001457
|
[86] |
Liu Weiyuan, Luo Wen, Yuan Tao, et al. Dense pair plasma generation and its modulation dynamics in counter-propagating laser field[J]. Chinese Physics B, 2018, 27: 105202. doi: 10.1088/1674-1056/27/10/105202
|
[87] |
Jirka M, Klimo O, Bulanov S V, et al. Electron dynamics and γ and e−e+ production by colliding laser pulses[J]. Physical Review E, 2016, 93: 023207. doi: 10.1103/PhysRevE.93.023207
|
[88] |
Liu Jianxun, Ma Yanyun, Yu Tongpu, et al. Dense pair plasma generation by two laser pulses colliding in a cylinder channel[J]. Chinese Physics B, 2017, 26: 035202. doi: 10.1088/1674-1056/26/3/035202
|
[89] |
Zhang Peng, Ridgers C P, Thomas A G R. The effect of nonlinear quantum electrodynamics on relativistic transparency and laser absorption in ultra-relativistic plasmas[J]. New Journal of Physics, 2015, 17: 043051. doi: 10.1088/1367-2630/17/4/043051
|
[90] |
Song Huaihang, Wang Weimin, Li Yanfei, et al. Spin and polarization effects on the nonlinear Breit–Wheeler pair production in laser-plasma interaction[J]. New Journal of Physics, 2021, 23: 075005. doi: 10.1088/1367-2630/ac0dec
|
[91] |
Luo Wen, Wu Shaodong, Liu Weiyuan, et al. Enhanced electron-positron pair production by two obliquely incident lasers interacting with a solid target[J]. Plasma Physics and Controlled Fusion, 2018, 60: 095006. doi: 10.1088/1361-6587/aad211
|
[92] |
Vshivkov V, Naumova N, Pegoraro F, et al. Nonlinear interaction of ultra-intense laser pulses with a thin foil[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1998, 410(3): 493-498.
|