Processing math: 100%
Li Haibo, Shen Li, Zhai Jun, et al. Nanosecond grade edge chopper power supply system of high current proton accelerator[J]. High Power Laser and Particle Beams, 2017, 29: 085001. doi: 10.11884/HPLPB201729.170086
Citation: Liang Jionghang, Wu Dong. Analysis of two-stream instability in warm dense region[J]. High Power Laser and Particle Beams, 2023, 35: 012011. doi: 10.11884/HPLPB202335.220209

Analysis of two-stream instability in warm dense region

doi: 10.11884/HPLPB202335.220209
  • Received Date: 2022-06-28
  • Rev Recd Date: 2022-12-06
  • Available Online: 2022-12-10
  • Publish Date: 2023-01-15
  • Warm dense matter is an important stage of material development in the process of inertial confinement fusion and the evolution of the universe. As the density increases, quantum effects gradually manifest, and the collective excitations in warm dense region show behavior different from the classical cases. Density-functional kinetic theory (DFKT) is a statistical model based on the time-dependent-density-functional theory and Wigner distribution function (phase-space quantum theory), which can effectively compensate for the neglect of quantum effects by classical plasma theory. Based on the DFKT, we found that properties such as Fermi-Dirac distribution, exchange-correlation effects, and quantum diffraction effects in the warm-dense characteristic parameters can inhibit the two-stream instabilities. DFKT is expected to provide a first-principle theoretical platform for the study of the transport properties of the warm dense systems from the perspective of plasmas.
  • [1]
    Kritcher A L, Döppner T, Fortmann C, et al. In-flight measurements of capsule shell adiabats in laser-driven implosions[J]. Physical Review Letters, 2011, 107: 015002. doi: 10.1103/PhysRevLett.107.015002
    [2]
    Gomez M R, Slutz S A, Sefkow A B, et al. Experimental demonstration of fusion-relevant conditions in magnetized liner inertial fusion[J]. Physical Review Letters, 2014, 113: 155003. doi: 10.1103/PhysRevLett.113.155003
    [3]
    Hausoel A, Karolak M, Şaşιoğlu E, et al. Local magnetic moments in iron and nickel at ambient and Earth’s core conditions[J]. Nature Communications, 2017, 8: 16062. doi: 10.1038/ncomms16062
    [4]
    Saumon D, Hubbard W B, Chabrier G, et al. The role of the molecular-metallic transition of hydrogen in the evolution of Jupiter, Saturn, and brown dwarfs[J]. Astrophysical Journal, 1992, 391(2): 827-831.
    [5]
    Roth M, Cowan T E, Key M H, et al. Fast ignition by intense laser-accelerated proton beams[J]. Physical Review Letters, 2001, 86(3): 436-439. doi: 10.1103/PhysRevLett.86.436
    [6]
    Lebedev S V, Ampleford D, Ciardi A, et al. Jet deflection via crosswinds: laboratory astrophysical studies[J]. The Astrophysical Journal, 2004, 616(2): 988-997. doi: 10.1086/423730
    [7]
    Drake R P. High-energy-density physics[M]. Cham: Springer, 2018.
    [8]
    Vladimirov S V, Tyshetskiy Y O. On description of a collisionless quantum plasma[J]. Physics-Uspekhi, 2011, 54(12): 1243-1256. doi: 10.3367/UFNe.0181.201112g.1313
    [9]
    Chen Liu. Waves and instabilities in plasmas[M]. Singapore: World Scientific, 1987.
    [10]
    Mangles S P D, Murphy C D, Najmudin Z, et al. Monoenergetic beams of relativistic electrons from intense laser-plasma interactions[J]. Nature, 2004, 431(7008): 535-538. doi: 10.1038/nature02939
    [11]
    Nakar E. Short-hard gamma-ray bursts[J]. Physics Reports, 2007, 442(1/6): 166-236.
    [12]
    康冬冬, 曾启昱, 张珅, 等. 激光产生温稠密物质的微观动力学过程及状态诊断[J]. 强激光与粒子束, 2020, 32:092006 doi: 10.11884/HPLPB202032.200121

    Kang Dongdong, Zeng Qiyu, Zhang Shen, et al. Dynamics and micro-structures in generation of warm dense matter using intense laser[J]. High Power Laser and Particle Beams, 2020, 32: 092006 doi: 10.11884/HPLPB202032.200121
    [13]
    Wu D, Yu W, Fritzsche S, et al. Particle-in-cell simulation method for macroscopic degenerate plasmas[J]. Physical Review E, 2020, 102: 033312.
    [14]
    Cai Hongbo, Yan Xinxin, Yao Peilin, et al. Hybrid fluid-particle modeling of shock-driven hydrodynamic instabilities in a plasma[J]. Matter and Radiation at Extremes, 2021, 6: 035901. doi: 10.1063/5.0042973
    [15]
    Zhang Shen, Wang Hongwei, Kang Wei, et al. Extended application of Kohn-Sham first-principles molecular dynamics method with plane wave approximation at high energy—From cold materials to hot dense plasmas[J]. Physics of Plasmas, 2016, 23: 042707. doi: 10.1063/1.4947212
    [16]
    Dai Jiayu, Hou Yong, Yuan Jianmin. Unified first principles description from warm dense matter to ideal ionized gas plasma: electron-ion collisions induced friction[J]. Physical Review Letters, 2010, 104: 245001. doi: 10.1103/PhysRevLett.104.245001
    [17]
    Dai Jiayu, Kang Dongdong, Zhao Zengxiu, et al. Dynamic ionic clusters with flowing electron bubbles from warm to hot dense iron along the Hugoniot curve[J]. Physical Review Letters, 2012, 109: 175701. doi: 10.1103/PhysRevLett.109.175701
    [18]
    Liu Yun, Liu Xing, Zhang Shen, et al. Molecular dynamics investigation of the stopping power of warm dense hydrogen for electrons[J]. Physical Review E, 2021, 103: 063215. doi: 10.1103/PhysRevE.103.063215
    [19]
    Wigner E. On the quantum correction for thermodynamic equilibrium[J]. Physical Review, 1932, 40(5): 749-759. doi: 10.1103/PhysRev.40.749
    [20]
    Bohm D, Gross E P. Theory of plasma oscillations. A. Origin of medium-like behavior[J]. Physical Review, 1949, 75(12): 1851-1864. doi: 10.1103/PhysRev.75.1851
    [21]
    Pines D, Bohm D. A collective description of electron interactions: II. Collective vs individual particle aspects of the interactions[J]. Physical Review, 1952, 85(2): 338-353. doi: 10.1103/PhysRev.85.338
    [22]
    Bohm D, Pines D. A collective description of electron interactions: III. Coulomb interactions in a degenerate electron gas[J]. Physical Review, 1953, 92(3): 609-625. doi: 10.1103/PhysRev.92.609
    [23]
    Klimontovich Y L, Silin V P. O Spektrakh sistem vzaimodeistvuyushchikh chastits[J]. Zhurnal Eksperimentalnoi I Teoreticheskoi Fiziki, 1952, 23(2): 151-160.
    [24]
    Lindhard J. On the properties of a gas of charged particles[J]. Dan. Vid. Selsk Mat. -Fys. Medd., 1954, 28: 8.
    [25]
    Bonitz M. Quantum kinetic theory[M]. Cham: Springer, 2016.
    [26]
    Haas F, Manfredi G, Feix M. Multistream model for quantum plasmas[J]. Physical Review E, 2000, 62(2): 2763-2772. doi: 10.1103/PhysRevE.62.2763
    [27]
    Manfredi G, Haas F. Self-consistent fluid model for a quantum electron gas[J]. Physical Review B, 2001, 64: 075316. doi: 10.1103/PhysRevB.64.075316
    [28]
    Manfredi G. Density functional theory for collisionless plasmas–equivalence of fluid and kinetic approaches[J]. Journal of Plasma Physics, 2020, 86: 825860201. doi: 10.1017/S0022377820000240
    [29]
    Haas F. Kinetic theory derivation of exchange-correlation in quantum plasma hydrodynamics[J]. Plasma Physics and Controlled Fusion, 2019, 61: 044001. doi: 10.1088/1361-6587/aaffe1
    [30]
    Brodin G, Ekman R, Zamanian J. Do hydrodynamic models based on time-independent density functional theory misestimate exchange effects? Comparison with kinetic theory for electrostatic waves[J]. Physics of Plasmas, 2019, 26: 092113. doi: 10.1063/1.5104339
    [31]
    Liang Jionghang, Hu Tianxing, Wu D, et al. Kinetic studies of exchange-correlation effect on the collective excitations of warm dense plasmas[J]. Physical Review E, 2022, 105: 045206. doi: 10.1103/PhysRevE.105.045206
    [32]
    Son S. Two-stream instabilitie4, 378(34): 2505-2508.
    [33]
    Liang Jionghang, Hu Tianxing, Wu D, et al. Kinetic study of quantum two-stream instability by Wigner approach[J]. Physical Review E, 2021, 103: 033207. doi: 10.1103/PhysRevE.103.033207
    [34]
    Dornheim T, Groth S, Bonitz M. The uniform electron gas at warm dense matter conditions[J]. Physics Reports, 2018, 744: 1-86. doi: 10.1016/j.physrep.2018.04.001
    [35]
    Wigner E. On the interaction of electrons in metals[J]. Physical Review, 1934, 46(11): 1002-1011. doi: 10.1103/PhysRev.46.1002
    [36]
    van Leeuwen R. Mapping from densities to potentials in time-dependent density-functional theory[J]. Physical Review Letters, 1999, 82(19): 3863-3866. doi: 10.1103/PhysRevLett.82.3863
    [37]
    Ullrich C A. Time-dependent density-functional theory: concepts and applications[M]. Oxford: Oxford University Press, 2012.
    [38]
    Moyal J E. Quantum mechanics as a statistical theory[J]. Mathematical Proceedings of the Cambridge Philosophical Society, 1949, 45(1): 99-124. doi: 10.1017/S0305004100000487
    [39]
    Royer A. Wigner function as the expectation value of a parity operator[J]. Physical Review A, 1977, 15(2): 449-450. doi: 10.1103/PhysRevA.15.449
    [40]
    Hu Tianxing, Liang Jionghang, Sheng Zhengmao, et al. Kinetic investigations of nonlinear electrostatic excitations in quantum plasmas[J]. Physical Review E, 2022, 105: 065203. doi: 10.1103/PhysRevE.105.065203
    [41]
    Xu Buxing, Rajagopal A K. Current-density-functional theory for time-dependent systems[J]. Physical Review A, 1985, 31(4): 2682-2684. doi: 10.1103/PhysRevA.31.2682
    [42]
    Dhara A K, Ghosh S K. Density-functional theory for time-dependent systems[J]. Physical Review A, 1987, 35(1): 442-444. doi: 10.1103/PhysRevA.35.442
    [43]
    Ghosh S K, Dhara A K. Density-functional theory of many-electron systems subjected to time-dependent electric and magnetic fields[J]. Physical Review A, 1988, 38(3): 1149-1158. doi: 10.1103/PhysRevA.38.1149
  • Relative Articles

    [1]Ma Liehua, Chen Shuang, Li Hongtao, Peng Xusheng, Zhang Botao, Li Bo, Wang Cheng, Ai Jie. Engineering reliability design and improvement for pulsed neutron scintillation detector[J]. High Power Laser and Particle Beams, 2023, 35(11): 119002. doi: 10.11884/HPLPB202335.230130
    [2]Huang Zhanchang, Zhang Chengjun, Chen Jinchuan, Yang Jianlun, Li Linbo, You Haibo, Wang Dongming, You Wenhao, He Chao, Yang Gaozhao, Zhao Xueshui, Xie Hongwei. Reliability experimental study of optical streak camera[J]. High Power Laser and Particle Beams, 2022, 34(2): 022001. doi: 10.11884/HPLPB202234.210382
    [3]Ma Chenggang, Li Hongtao, Deng Minghai, Cao Ningxiang, Mo Tengfu, Wang Xiao, Zhang Zhiqiang. Experimental research on reliability of 1 MV X-ray system for radiography[J]. High Power Laser and Particle Beams, 2020, 32(2): 025018. doi: 10.11884/HPLPB202032.190378
    [4]Ma Qiaosheng, Zhang Yunjian, Li Zhenghong, Wu Yang. Design of high power terahertz backward wave oscillator[J]. High Power Laser and Particle Beams, 2016, 28(09): 093004. doi: 10.11884/HPLPB201628.160002
    [5]Yang Shi, Ren Shuqing, Lai Dingguo, Zhang Yuying, Yang Li, Yao Weibo, Zhang Yongmin. High power high voltage constant current capacitor charging power supply[J]. High Power Laser and Particle Beams, 2015, 27(09): 095006. doi: 10.11884/HPLPB201527.095006
    [6]Cao Fei, Cheng Jian, Pan Zeyue, Chen Yuanyuan. Precision voltage-controlled constant current source for atomic oxygen ground simulation equipment[J]. High Power Laser and Particle Beams, 2015, 27(08): 082002. doi: 10.11884/HPLPB201527.082002
    [7]Zhou Songqing, Guan Xiaowei, Zhang Shiqiang, Qu Pubo, Sun Yanhong, He Minbo. Application of GO methodology to reliability analysis in solid-state laser system[J]. High Power Laser and Particle Beams, 2014, 26(02): 021005. doi: 10.3788/HPLPB201426.021005
    [8]Zhao Juan, Li Bo, Yu Zhiguo, Cao Ningxiang, Huang Lei, Li Xiqin, Huang Bin, Wang Wei, Li Yawei. Design of sampling resistor of high power constant-current source[J]. High Power Laser and Particle Beams, 2012, 24(04): 925-928. doi: 10.3788/HPLPB20122404.0925
    [9]jia zhanqiang, cai jinyan, liang yuying, han chunhui. Reliability assessment of metallized film pulse capacitor[J]. High Power Laser and Particle Beams, 2011, 23(01): 0- .
    [10]liu hongwei, yuan jianqiang, liu jinfeng, li hongtao, xie weiping, jiang weihua. Experimental investigation on lifetime of high power GaAs photoconductive semiconductor switch[J]. High Power Laser and Particle Beams, 2010, 22(04): 0- .
    [11]yuan jianqiang, li hongtao, liu hongwei, liu jinfeng, xie weiping, wang xinxin, jiang weihua. Study on high-power photoconductive semiconductor switches[J]. High Power Laser and Particle Beams, 2010, 22(04): 0- .
    [12]zhao juan, cao kefeng, cao ningxiang, huang bin, yu zhiguo, li xiqin, li bo, huang lei, wang wei, zhu lijun. Development of HL80 low ripple high current computer-controlling constant current source[J]. High Power Laser and Particle Beams, 2010, 22(04): 0- .
    [13]cao ronggang, zou jun, yuan jiansheng. Measurement and analysis of EMF around pulsed power supplies[J]. High Power Laser and Particle Beams, 2009, 21(09): 0- .
    [14]meng fan-jiang, guo li-hong, yang gui-long, li dian-jun. Suppression of electromagnetic interference in high power TEA CO2 laser system[J]. High Power Laser and Particle Beams, 2008, 20(02): 0- .
    [15]chen guang-yu, yang dong, zhang xiao-min, he shao-bo, zheng wan-guo, you yong. Reliability analysis of Xe-flashlamps of disk amplifier subsystems for laser facility[J]. High Power Laser and Particle Beams, 2007, 19(07): 0- .
    [16]zhao feng-li, liu jin-tong, zhou yao-xiang. Development of high power waveguide valve for BEPCⅡ-Linac[J]. High Power Laser and Particle Beams, 2006, 18(02): 0- .
    [17]zhao jian-yin, sun quan, zhou jing-lun, he shao-bo, wei xiao-feng. Failure analysis of metallized film pulse capacitors based on accelerated degradation data[J]. High Power Laser and Particle Beams, 2006, 18(09): 0- .
    [18]zhao jian-yin, liu fang, sun quan, zhou jing-lun, wei xiao-feng, he shao-bo. Reliability assessment of metallized film capacitors using degradation failure model[J]. High Power Laser and Particle Beams, 2005, 17(07): 0- .
    [19]weng ling-wen, niu zhong-xia, lin jing-yu, zhou dong-fang, hou de-ting. Application of BLT equation to electromagnetic interaction of high power microwave[J]. High Power Laser and Particle Beams, 2005, 17(08): 0- .
    [20]fu si-zu, huang xiu-guang, wu jiang, ma min xun, he ju-hua, ye jun-jian, gu yuan. Planarity and stability of shock driven directly by multi-beam laserfrom “Shenguang-II” laser facility[J]. High Power Laser and Particle Beams, 2003, 15(06): 0- .
  • Cited by

    Periodical cited type(4)

    1. 李胜铭,于艺旋,王义普,吴振宇. 赛教融合的数控开关恒流源设计. 实验室科学. 2020(04): 74-79 .
    2. 程俊平,周长林,余道杰,徐志坚,张栋耀. 基于供电网络传导耦合的FPGA电磁敏感特性分析. 强激光与粒子束. 2019(02): 64-70 . 本站查看
    3. 赵娟,曹宁翔,黄斌,李波,张信,黄宇鹏,李洪涛. 神龙-Ⅲ直线感应加速器高稳定度恒流源控制系统. 强激光与粒子束. 2019(04): 89-93 . 本站查看
    4. 李佳戈,苏宗文,任海萍. 医疗器械电磁兼容试验中工作模式的确定. 中国医疗设备. 2019(09): 17-19+23 .

    Other cited types(3)

  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)

    Article views (730) PDF downloads(89) Cited by(7)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return