Volume 35 Issue 1
Jan.  2023
Turn off MathJax
Article Contents
Liang Jionghang, Wu Dong. Analysis of two-stream instability in warm dense region[J]. High Power Laser and Particle Beams, 2023, 35: 012011. doi: 10.11884/HPLPB202335.220209
Citation: Liang Jionghang, Wu Dong. Analysis of two-stream instability in warm dense region[J]. High Power Laser and Particle Beams, 2023, 35: 012011. doi: 10.11884/HPLPB202335.220209

Analysis of two-stream instability in warm dense region

doi: 10.11884/HPLPB202335.220209
  • Received Date: 2022-06-28
  • Rev Recd Date: 2022-12-06
  • Available Online: 2022-12-10
  • Publish Date: 2023-01-15
  • Warm dense matter is an important stage of material development in the process of inertial confinement fusion and the evolution of the universe. As the density increases, quantum effects gradually manifest, and the collective excitations in warm dense region show behavior different from the classical cases. Density-functional kinetic theory (DFKT) is a statistical model based on the time-dependent-density-functional theory and Wigner distribution function (phase-space quantum theory), which can effectively compensate for the neglect of quantum effects by classical plasma theory. Based on the DFKT, we found that properties such as Fermi-Dirac distribution, exchange-correlation effects, and quantum diffraction effects in the warm-dense characteristic parameters can inhibit the two-stream instabilities. DFKT is expected to provide a first-principle theoretical platform for the study of the transport properties of the warm dense systems from the perspective of plasmas.
  • loading
  • [1]
    Kritcher A L, Döppner T, Fortmann C, et al. In-flight measurements of capsule shell adiabats in laser-driven implosions[J]. Physical Review Letters, 2011, 107: 015002. doi: 10.1103/PhysRevLett.107.015002
    [2]
    Gomez M R, Slutz S A, Sefkow A B, et al. Experimental demonstration of fusion-relevant conditions in magnetized liner inertial fusion[J]. Physical Review Letters, 2014, 113: 155003. doi: 10.1103/PhysRevLett.113.155003
    [3]
    Hausoel A, Karolak M, Şaşιoğlu E, et al. Local magnetic moments in iron and nickel at ambient and Earth’s core conditions[J]. Nature Communications, 2017, 8: 16062. doi: 10.1038/ncomms16062
    [4]
    Saumon D, Hubbard W B, Chabrier G, et al. The role of the molecular-metallic transition of hydrogen in the evolution of Jupiter, Saturn, and brown dwarfs[J]. Astrophysical Journal, 1992, 391(2): 827-831.
    [5]
    Roth M, Cowan T E, Key M H, et al. Fast ignition by intense laser-accelerated proton beams[J]. Physical Review Letters, 2001, 86(3): 436-439. doi: 10.1103/PhysRevLett.86.436
    [6]
    Lebedev S V, Ampleford D, Ciardi A, et al. Jet deflection via crosswinds: laboratory astrophysical studies[J]. The Astrophysical Journal, 2004, 616(2): 988-997. doi: 10.1086/423730
    [7]
    Drake R P. High-energy-density physics[M]. Cham: Springer, 2018.
    [8]
    Vladimirov S V, Tyshetskiy Y O. On description of a collisionless quantum plasma[J]. Physics-Uspekhi, 2011, 54(12): 1243-1256. doi: 10.3367/UFNe.0181.201112g.1313
    [9]
    Chen Liu. Waves and instabilities in plasmas[M]. Singapore: World Scientific, 1987.
    [10]
    Mangles S P D, Murphy C D, Najmudin Z, et al. Monoenergetic beams of relativistic electrons from intense laser-plasma interactions[J]. Nature, 2004, 431(7008): 535-538. doi: 10.1038/nature02939
    [11]
    Nakar E. Short-hard gamma-ray bursts[J]. Physics Reports, 2007, 442(1/6): 166-236.
    [12]
    康冬冬, 曾启昱, 张珅, 等. 激光产生温稠密物质的微观动力学过程及状态诊断[J]. 强激光与粒子束, 2020, 32:092006 doi: 10.11884/HPLPB202032.200121

    Kang Dongdong, Zeng Qiyu, Zhang Shen, et al. Dynamics and micro-structures in generation of warm dense matter using intense laser[J]. High Power Laser and Particle Beams, 2020, 32: 092006 doi: 10.11884/HPLPB202032.200121
    [13]
    Wu D, Yu W, Fritzsche S, et al. Particle-in-cell simulation method for macroscopic degenerate plasmas[J]. Physical Review E, 2020, 102: 033312.
    [14]
    Cai Hongbo, Yan Xinxin, Yao Peilin, et al. Hybrid fluid-particle modeling of shock-driven hydrodynamic instabilities in a plasma[J]. Matter and Radiation at Extremes, 2021, 6: 035901. doi: 10.1063/5.0042973
    [15]
    Zhang Shen, Wang Hongwei, Kang Wei, et al. Extended application of Kohn-Sham first-principles molecular dynamics method with plane wave approximation at high energy—From cold materials to hot dense plasmas[J]. Physics of Plasmas, 2016, 23: 042707. doi: 10.1063/1.4947212
    [16]
    Dai Jiayu, Hou Yong, Yuan Jianmin. Unified first principles description from warm dense matter to ideal ionized gas plasma: electron-ion collisions induced friction[J]. Physical Review Letters, 2010, 104: 245001. doi: 10.1103/PhysRevLett.104.245001
    [17]
    Dai Jiayu, Kang Dongdong, Zhao Zengxiu, et al. Dynamic ionic clusters with flowing electron bubbles from warm to hot dense iron along the Hugoniot curve[J]. Physical Review Letters, 2012, 109: 175701. doi: 10.1103/PhysRevLett.109.175701
    [18]
    Liu Yun, Liu Xing, Zhang Shen, et al. Molecular dynamics investigation of the stopping power of warm dense hydrogen for electrons[J]. Physical Review E, 2021, 103: 063215. doi: 10.1103/PhysRevE.103.063215
    [19]
    Wigner E. On the quantum correction for thermodynamic equilibrium[J]. Physical Review, 1932, 40(5): 749-759. doi: 10.1103/PhysRev.40.749
    [20]
    Bohm D, Gross E P. Theory of plasma oscillations. A. Origin of medium-like behavior[J]. Physical Review, 1949, 75(12): 1851-1864. doi: 10.1103/PhysRev.75.1851
    [21]
    Pines D, Bohm D. A collective description of electron interactions: II. Collective vs individual particle aspects of the interactions[J]. Physical Review, 1952, 85(2): 338-353. doi: 10.1103/PhysRev.85.338
    [22]
    Bohm D, Pines D. A collective description of electron interactions: III. Coulomb interactions in a degenerate electron gas[J]. Physical Review, 1953, 92(3): 609-625. doi: 10.1103/PhysRev.92.609
    [23]
    Klimontovich Y L, Silin V P. O Spektrakh sistem vzaimodeistvuyushchikh chastits[J]. Zhurnal Eksperimentalnoi I Teoreticheskoi Fiziki, 1952, 23(2): 151-160.
    [24]
    Lindhard J. On the properties of a gas of charged particles[J]. Dan. Vid. Selsk Mat. -Fys. Medd., 1954, 28: 8.
    [25]
    Bonitz M. Quantum kinetic theory[M]. Cham: Springer, 2016.
    [26]
    Haas F, Manfredi G, Feix M. Multistream model for quantum plasmas[J]. Physical Review E, 2000, 62(2): 2763-2772. doi: 10.1103/PhysRevE.62.2763
    [27]
    Manfredi G, Haas F. Self-consistent fluid model for a quantum electron gas[J]. Physical Review B, 2001, 64: 075316. doi: 10.1103/PhysRevB.64.075316
    [28]
    Manfredi G. Density functional theory for collisionless plasmas–equivalence of fluid and kinetic approaches[J]. Journal of Plasma Physics, 2020, 86: 825860201. doi: 10.1017/S0022377820000240
    [29]
    Haas F. Kinetic theory derivation of exchange-correlation in quantum plasma hydrodynamics[J]. Plasma Physics and Controlled Fusion, 2019, 61: 044001. doi: 10.1088/1361-6587/aaffe1
    [30]
    Brodin G, Ekman R, Zamanian J. Do hydrodynamic models based on time-independent density functional theory misestimate exchange effects? Comparison with kinetic theory for electrostatic waves[J]. Physics of Plasmas, 2019, 26: 092113. doi: 10.1063/1.5104339
    [31]
    Liang Jionghang, Hu Tianxing, Wu D, et al. Kinetic studies of exchange-correlation effect on the collective excitations of warm dense plasmas[J]. Physical Review E, 2022, 105: 045206. doi: 10.1103/PhysRevE.105.045206
    [32]
    Son S. Two-stream instabilitie4, 378(34): 2505-2508.
    [33]
    Liang Jionghang, Hu Tianxing, Wu D, et al. Kinetic study of quantum two-stream instability by Wigner approach[J]. Physical Review E, 2021, 103: 033207. doi: 10.1103/PhysRevE.103.033207
    [34]
    Dornheim T, Groth S, Bonitz M. The uniform electron gas at warm dense matter conditions[J]. Physics Reports, 2018, 744: 1-86. doi: 10.1016/j.physrep.2018.04.001
    [35]
    Wigner E. On the interaction of electrons in metals[J]. Physical Review, 1934, 46(11): 1002-1011. doi: 10.1103/PhysRev.46.1002
    [36]
    van Leeuwen R. Mapping from densities to potentials in time-dependent density-functional theory[J]. Physical Review Letters, 1999, 82(19): 3863-3866. doi: 10.1103/PhysRevLett.82.3863
    [37]
    Ullrich C A. Time-dependent density-functional theory: concepts and applications[M]. Oxford: Oxford University Press, 2012.
    [38]
    Moyal J E. Quantum mechanics as a statistical theory[J]. Mathematical Proceedings of the Cambridge Philosophical Society, 1949, 45(1): 99-124. doi: 10.1017/S0305004100000487
    [39]
    Royer A. Wigner function as the expectation value of a parity operator[J]. Physical Review A, 1977, 15(2): 449-450. doi: 10.1103/PhysRevA.15.449
    [40]
    Hu Tianxing, Liang Jionghang, Sheng Zhengmao, et al. Kinetic investigations of nonlinear electrostatic excitations in quantum plasmas[J]. Physical Review E, 2022, 105: 065203. doi: 10.1103/PhysRevE.105.065203
    [41]
    Xu Buxing, Rajagopal A K. Current-density-functional theory for time-dependent systems[J]. Physical Review A, 1985, 31(4): 2682-2684. doi: 10.1103/PhysRevA.31.2682
    [42]
    Dhara A K, Ghosh S K. Density-functional theory for time-dependent systems[J]. Physical Review A, 1987, 35(1): 442-444. doi: 10.1103/PhysRevA.35.442
    [43]
    Ghosh S K, Dhara A K. Density-functional theory of many-electron systems subjected to time-dependent electric and magnetic fields[J]. Physical Review A, 1988, 38(3): 1149-1158. doi: 10.1103/PhysRevA.38.1149
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)

    Article views (642) PDF downloads(83) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return