Citation: | Liang Jionghang, Wu Dong. Analysis of two-stream instability in warm dense region[J]. High Power Laser and Particle Beams, 2023, 35: 012011. doi: 10.11884/HPLPB202335.220209 |
[1] |
Kritcher A L, Döppner T, Fortmann C, et al. In-flight measurements of capsule shell adiabats in laser-driven implosions[J]. Physical Review Letters, 2011, 107: 015002. doi: 10.1103/PhysRevLett.107.015002
|
[2] |
Gomez M R, Slutz S A, Sefkow A B, et al. Experimental demonstration of fusion-relevant conditions in magnetized liner inertial fusion[J]. Physical Review Letters, 2014, 113: 155003. doi: 10.1103/PhysRevLett.113.155003
|
[3] |
Hausoel A, Karolak M, Şaşιoğlu E, et al. Local magnetic moments in iron and nickel at ambient and Earth’s core conditions[J]. Nature Communications, 2017, 8: 16062. doi: 10.1038/ncomms16062
|
[4] |
Saumon D, Hubbard W B, Chabrier G, et al. The role of the molecular-metallic transition of hydrogen in the evolution of Jupiter, Saturn, and brown dwarfs[J]. Astrophysical Journal, 1992, 391(2): 827-831.
|
[5] |
Roth M, Cowan T E, Key M H, et al. Fast ignition by intense laser-accelerated proton beams[J]. Physical Review Letters, 2001, 86(3): 436-439. doi: 10.1103/PhysRevLett.86.436
|
[6] |
Lebedev S V, Ampleford D, Ciardi A, et al. Jet deflection via crosswinds: laboratory astrophysical studies[J]. The Astrophysical Journal, 2004, 616(2): 988-997. doi: 10.1086/423730
|
[7] |
Drake R P. High-energy-density physics[M]. Cham: Springer, 2018.
|
[8] |
Vladimirov S V, Tyshetskiy Y O. On description of a collisionless quantum plasma[J]. Physics-Uspekhi, 2011, 54(12): 1243-1256. doi: 10.3367/UFNe.0181.201112g.1313
|
[9] |
Chen Liu. Waves and instabilities in plasmas[M]. Singapore: World Scientific, 1987.
|
[10] |
Mangles S P D, Murphy C D, Najmudin Z, et al. Monoenergetic beams of relativistic electrons from intense laser-plasma interactions[J]. Nature, 2004, 431(7008): 535-538. doi: 10.1038/nature02939
|
[11] |
Nakar E. Short-hard gamma-ray bursts[J]. Physics Reports, 2007, 442(1/6): 166-236.
|
[12] |
康冬冬, 曾启昱, 张珅, 等. 激光产生温稠密物质的微观动力学过程及状态诊断[J]. 强激光与粒子束, 2020, 32:092006 doi: 10.11884/HPLPB202032.200121
Kang Dongdong, Zeng Qiyu, Zhang Shen, et al. Dynamics and micro-structures in generation of warm dense matter using intense laser[J]. High Power Laser and Particle Beams, 2020, 32: 092006 doi: 10.11884/HPLPB202032.200121
|
[13] |
Wu D, Yu W, Fritzsche S, et al. Particle-in-cell simulation method for macroscopic degenerate plasmas[J]. Physical Review E, 2020, 102: 033312.
|
[14] |
Cai Hongbo, Yan Xinxin, Yao Peilin, et al. Hybrid fluid-particle modeling of shock-driven hydrodynamic instabilities in a plasma[J]. Matter and Radiation at Extremes, 2021, 6: 035901. doi: 10.1063/5.0042973
|
[15] |
Zhang Shen, Wang Hongwei, Kang Wei, et al. Extended application of Kohn-Sham first-principles molecular dynamics method with plane wave approximation at high energy—From cold materials to hot dense plasmas[J]. Physics of Plasmas, 2016, 23: 042707. doi: 10.1063/1.4947212
|
[16] |
Dai Jiayu, Hou Yong, Yuan Jianmin. Unified first principles description from warm dense matter to ideal ionized gas plasma: electron-ion collisions induced friction[J]. Physical Review Letters, 2010, 104: 245001. doi: 10.1103/PhysRevLett.104.245001
|
[17] |
Dai Jiayu, Kang Dongdong, Zhao Zengxiu, et al. Dynamic ionic clusters with flowing electron bubbles from warm to hot dense iron along the Hugoniot curve[J]. Physical Review Letters, 2012, 109: 175701. doi: 10.1103/PhysRevLett.109.175701
|
[18] |
Liu Yun, Liu Xing, Zhang Shen, et al. Molecular dynamics investigation of the stopping power of warm dense hydrogen for electrons[J]. Physical Review E, 2021, 103: 063215. doi: 10.1103/PhysRevE.103.063215
|
[19] |
Wigner E. On the quantum correction for thermodynamic equilibrium[J]. Physical Review, 1932, 40(5): 749-759. doi: 10.1103/PhysRev.40.749
|
[20] |
Bohm D, Gross E P. Theory of plasma oscillations. A. Origin of medium-like behavior[J]. Physical Review, 1949, 75(12): 1851-1864. doi: 10.1103/PhysRev.75.1851
|
[21] |
Pines D, Bohm D. A collective description of electron interactions: II. Collective vs individual particle aspects of the interactions[J]. Physical Review, 1952, 85(2): 338-353. doi: 10.1103/PhysRev.85.338
|
[22] |
Bohm D, Pines D. A collective description of electron interactions: III. Coulomb interactions in a degenerate electron gas[J]. Physical Review, 1953, 92(3): 609-625. doi: 10.1103/PhysRev.92.609
|
[23] |
Klimontovich Y L, Silin V P. O Spektrakh sistem vzaimodeistvuyushchikh chastits[J]. Zhurnal Eksperimentalnoi I Teoreticheskoi Fiziki, 1952, 23(2): 151-160.
|
[24] |
Lindhard J. On the properties of a gas of charged particles[J]. Dan. Vid. Selsk Mat. -Fys. Medd., 1954, 28: 8.
|
[25] |
Bonitz M. Quantum kinetic theory[M]. Cham: Springer, 2016.
|
[26] |
Haas F, Manfredi G, Feix M. Multistream model for quantum plasmas[J]. Physical Review E, 2000, 62(2): 2763-2772. doi: 10.1103/PhysRevE.62.2763
|
[27] |
Manfredi G, Haas F. Self-consistent fluid model for a quantum electron gas[J]. Physical Review B, 2001, 64: 075316. doi: 10.1103/PhysRevB.64.075316
|
[28] |
Manfredi G. Density functional theory for collisionless plasmas–equivalence of fluid and kinetic approaches[J]. Journal of Plasma Physics, 2020, 86: 825860201. doi: 10.1017/S0022377820000240
|
[29] |
Haas F. Kinetic theory derivation of exchange-correlation in quantum plasma hydrodynamics[J]. Plasma Physics and Controlled Fusion, 2019, 61: 044001. doi: 10.1088/1361-6587/aaffe1
|
[30] |
Brodin G, Ekman R, Zamanian J. Do hydrodynamic models based on time-independent density functional theory misestimate exchange effects? Comparison with kinetic theory for electrostatic waves[J]. Physics of Plasmas, 2019, 26: 092113. doi: 10.1063/1.5104339
|
[31] |
Liang Jionghang, Hu Tianxing, Wu D, et al. Kinetic studies of exchange-correlation effect on the collective excitations of warm dense plasmas[J]. Physical Review E, 2022, 105: 045206. doi: 10.1103/PhysRevE.105.045206
|
[32] |
Son S. Two-stream instabilitie4, 378(34): 2505-2508.
|
[33] |
Liang Jionghang, Hu Tianxing, Wu D, et al. Kinetic study of quantum two-stream instability by Wigner approach[J]. Physical Review E, 2021, 103: 033207. doi: 10.1103/PhysRevE.103.033207
|
[34] |
Dornheim T, Groth S, Bonitz M. The uniform electron gas at warm dense matter conditions[J]. Physics Reports, 2018, 744: 1-86. doi: 10.1016/j.physrep.2018.04.001
|
[35] |
Wigner E. On the interaction of electrons in metals[J]. Physical Review, 1934, 46(11): 1002-1011. doi: 10.1103/PhysRev.46.1002
|
[36] |
van Leeuwen R. Mapping from densities to potentials in time-dependent density-functional theory[J]. Physical Review Letters, 1999, 82(19): 3863-3866. doi: 10.1103/PhysRevLett.82.3863
|
[37] |
Ullrich C A. Time-dependent density-functional theory: concepts and applications[M]. Oxford: Oxford University Press, 2012.
|
[38] |
Moyal J E. Quantum mechanics as a statistical theory[J]. Mathematical Proceedings of the Cambridge Philosophical Society, 1949, 45(1): 99-124. doi: 10.1017/S0305004100000487
|
[39] |
Royer A. Wigner function as the expectation value of a parity operator[J]. Physical Review A, 1977, 15(2): 449-450. doi: 10.1103/PhysRevA.15.449
|
[40] |
Hu Tianxing, Liang Jionghang, Sheng Zhengmao, et al. Kinetic investigations of nonlinear electrostatic excitations in quantum plasmas[J]. Physical Review E, 2022, 105: 065203. doi: 10.1103/PhysRevE.105.065203
|
[41] |
Xu Buxing, Rajagopal A K. Current-density-functional theory for time-dependent systems[J]. Physical Review A, 1985, 31(4): 2682-2684. doi: 10.1103/PhysRevA.31.2682
|
[42] |
Dhara A K, Ghosh S K. Density-functional theory for time-dependent systems[J]. Physical Review A, 1987, 35(1): 442-444. doi: 10.1103/PhysRevA.35.442
|
[43] |
Ghosh S K, Dhara A K. Density-functional theory of many-electron systems subjected to time-dependent electric and magnetic fields[J]. Physical Review A, 1988, 38(3): 1149-1158. doi: 10.1103/PhysRevA.38.1149
|