Pan Yafeng, Liu Sheng, Zhang Xibo. An uneven dual-output pulse generator[J]. High Power Laser and Particle Beams, 2015, 27: 125004. doi: 10.11884/HPLPB201527.125004
Citation: Liang Jionghang, Wu Dong. Analysis of two-stream instability in warm dense region[J]. High Power Laser and Particle Beams, 2023, 35: 012011. doi: 10.11884/HPLPB202335.220209

Analysis of two-stream instability in warm dense region

doi: 10.11884/HPLPB202335.220209
  • Received Date: 2022-06-28
  • Rev Recd Date: 2022-12-06
  • Available Online: 2022-12-10
  • Publish Date: 2023-01-15
  • Warm dense matter is an important stage of material development in the process of inertial confinement fusion and the evolution of the universe. As the density increases, quantum effects gradually manifest, and the collective excitations in warm dense region show behavior different from the classical cases. Density-functional kinetic theory (DFKT) is a statistical model based on the time-dependent-density-functional theory and Wigner distribution function (phase-space quantum theory), which can effectively compensate for the neglect of quantum effects by classical plasma theory. Based on the DFKT, we found that properties such as Fermi-Dirac distribution, exchange-correlation effects, and quantum diffraction effects in the warm-dense characteristic parameters can inhibit the two-stream instabilities. DFKT is expected to provide a first-principle theoretical platform for the study of the transport properties of the warm dense systems from the perspective of plasmas.
  • [1]
    Kritcher A L, Döppner T, Fortmann C, et al. In-flight measurements of capsule shell adiabats in laser-driven implosions[J]. Physical Review Letters, 2011, 107: 015002. doi: 10.1103/PhysRevLett.107.015002
    [2]
    Gomez M R, Slutz S A, Sefkow A B, et al. Experimental demonstration of fusion-relevant conditions in magnetized liner inertial fusion[J]. Physical Review Letters, 2014, 113: 155003. doi: 10.1103/PhysRevLett.113.155003
    [3]
    Hausoel A, Karolak M, Şaşιoğlu E, et al. Local magnetic moments in iron and nickel at ambient and Earth’s core conditions[J]. Nature Communications, 2017, 8: 16062. doi: 10.1038/ncomms16062
    [4]
    Saumon D, Hubbard W B, Chabrier G, et al. The role of the molecular-metallic transition of hydrogen in the evolution of Jupiter, Saturn, and brown dwarfs[J]. Astrophysical Journal, 1992, 391(2): 827-831.
    [5]
    Roth M, Cowan T E, Key M H, et al. Fast ignition by intense laser-accelerated proton beams[J]. Physical Review Letters, 2001, 86(3): 436-439. doi: 10.1103/PhysRevLett.86.436
    [6]
    Lebedev S V, Ampleford D, Ciardi A, et al. Jet deflection via crosswinds: laboratory astrophysical studies[J]. The Astrophysical Journal, 2004, 616(2): 988-997. doi: 10.1086/423730
    [7]
    Drake R P. High-energy-density physics[M]. Cham: Springer, 2018.
    [8]
    Vladimirov S V, Tyshetskiy Y O. On description of a collisionless quantum plasma[J]. Physics-Uspekhi, 2011, 54(12): 1243-1256. doi: 10.3367/UFNe.0181.201112g.1313
    [9]
    Chen Liu. Waves and instabilities in plasmas[M]. Singapore: World Scientific, 1987.
    [10]
    Mangles S P D, Murphy C D, Najmudin Z, et al. Monoenergetic beams of relativistic electrons from intense laser-plasma interactions[J]. Nature, 2004, 431(7008): 535-538. doi: 10.1038/nature02939
    [11]
    Nakar E. Short-hard gamma-ray bursts[J]. Physics Reports, 2007, 442(1/6): 166-236.
    [12]
    康冬冬, 曾启昱, 张珅, 等. 激光产生温稠密物质的微观动力学过程及状态诊断[J]. 强激光与粒子束, 2020, 32:092006 doi: 10.11884/HPLPB202032.200121

    Kang Dongdong, Zeng Qiyu, Zhang Shen, et al. Dynamics and micro-structures in generation of warm dense matter using intense laser[J]. High Power Laser and Particle Beams, 2020, 32: 092006 doi: 10.11884/HPLPB202032.200121
    [13]
    Wu D, Yu W, Fritzsche S, et al. Particle-in-cell simulation method for macroscopic degenerate plasmas[J]. Physical Review E, 2020, 102: 033312.
    [14]
    Cai Hongbo, Yan Xinxin, Yao Peilin, et al. Hybrid fluid-particle modeling of shock-driven hydrodynamic instabilities in a plasma[J]. Matter and Radiation at Extremes, 2021, 6: 035901. doi: 10.1063/5.0042973
    [15]
    Zhang Shen, Wang Hongwei, Kang Wei, et al. Extended application of Kohn-Sham first-principles molecular dynamics method with plane wave approximation at high energy—From cold materials to hot dense plasmas[J]. Physics of Plasmas, 2016, 23: 042707. doi: 10.1063/1.4947212
    [16]
    Dai Jiayu, Hou Yong, Yuan Jianmin. Unified first principles description from warm dense matter to ideal ionized gas plasma: electron-ion collisions induced friction[J]. Physical Review Letters, 2010, 104: 245001. doi: 10.1103/PhysRevLett.104.245001
    [17]
    Dai Jiayu, Kang Dongdong, Zhao Zengxiu, et al. Dynamic ionic clusters with flowing electron bubbles from warm to hot dense iron along the Hugoniot curve[J]. Physical Review Letters, 2012, 109: 175701. doi: 10.1103/PhysRevLett.109.175701
    [18]
    Liu Yun, Liu Xing, Zhang Shen, et al. Molecular dynamics investigation of the stopping power of warm dense hydrogen for electrons[J]. Physical Review E, 2021, 103: 063215. doi: 10.1103/PhysRevE.103.063215
    [19]
    Wigner E. On the quantum correction for thermodynamic equilibrium[J]. Physical Review, 1932, 40(5): 749-759. doi: 10.1103/PhysRev.40.749
    [20]
    Bohm D, Gross E P. Theory of plasma oscillations. A. Origin of medium-like behavior[J]. Physical Review, 1949, 75(12): 1851-1864. doi: 10.1103/PhysRev.75.1851
    [21]
    Pines D, Bohm D. A collective description of electron interactions: II. Collective vs individual particle aspects of the interactions[J]. Physical Review, 1952, 85(2): 338-353. doi: 10.1103/PhysRev.85.338
    [22]
    Bohm D, Pines D. A collective description of electron interactions: III. Coulomb interactions in a degenerate electron gas[J]. Physical Review, 1953, 92(3): 609-625. doi: 10.1103/PhysRev.92.609
    [23]
    Klimontovich Y L, Silin V P. O Spektrakh sistem vzaimodeistvuyushchikh chastits[J]. Zhurnal Eksperimentalnoi I Teoreticheskoi Fiziki, 1952, 23(2): 151-160.
    [24]
    Lindhard J. On the properties of a gas of charged particles[J]. Dan. Vid. Selsk Mat. -Fys. Medd., 1954, 28: 8.
    [25]
    Bonitz M. Quantum kinetic theory[M]. Cham: Springer, 2016.
    [26]
    Haas F, Manfredi G, Feix M. Multistream model for quantum plasmas[J]. Physical Review E, 2000, 62(2): 2763-2772. doi: 10.1103/PhysRevE.62.2763
    [27]
    Manfredi G, Haas F. Self-consistent fluid model for a quantum electron gas[J]. Physical Review B, 2001, 64: 075316. doi: 10.1103/PhysRevB.64.075316
    [28]
    Manfredi G. Density functional theory for collisionless plasmas–equivalence of fluid and kinetic approaches[J]. Journal of Plasma Physics, 2020, 86: 825860201. doi: 10.1017/S0022377820000240
    [29]
    Haas F. Kinetic theory derivation of exchange-correlation in quantum plasma hydrodynamics[J]. Plasma Physics and Controlled Fusion, 2019, 61: 044001. doi: 10.1088/1361-6587/aaffe1
    [30]
    Brodin G, Ekman R, Zamanian J. Do hydrodynamic models based on time-independent density functional theory misestimate exchange effects? Comparison with kinetic theory for electrostatic waves[J]. Physics of Plasmas, 2019, 26: 092113. doi: 10.1063/1.5104339
    [31]
    Liang Jionghang, Hu Tianxing, Wu D, et al. Kinetic studies of exchange-correlation effect on the collective excitations of warm dense plasmas[J]. Physical Review E, 2022, 105: 045206. doi: 10.1103/PhysRevE.105.045206
    [32]
    Son S. Two-stream instabilitie4, 378(34): 2505-2508.
    [33]
    Liang Jionghang, Hu Tianxing, Wu D, et al. Kinetic study of quantum two-stream instability by Wigner approach[J]. Physical Review E, 2021, 103: 033207. doi: 10.1103/PhysRevE.103.033207
    [34]
    Dornheim T, Groth S, Bonitz M. The uniform electron gas at warm dense matter conditions[J]. Physics Reports, 2018, 744: 1-86. doi: 10.1016/j.physrep.2018.04.001
    [35]
    Wigner E. On the interaction of electrons in metals[J]. Physical Review, 1934, 46(11): 1002-1011. doi: 10.1103/PhysRev.46.1002
    [36]
    van Leeuwen R. Mapping from densities to potentials in time-dependent density-functional theory[J]. Physical Review Letters, 1999, 82(19): 3863-3866. doi: 10.1103/PhysRevLett.82.3863
    [37]
    Ullrich C A. Time-dependent density-functional theory: concepts and applications[M]. Oxford: Oxford University Press, 2012.
    [38]
    Moyal J E. Quantum mechanics as a statistical theory[J]. Mathematical Proceedings of the Cambridge Philosophical Society, 1949, 45(1): 99-124. doi: 10.1017/S0305004100000487
    [39]
    Royer A. Wigner function as the expectation value of a parity operator[J]. Physical Review A, 1977, 15(2): 449-450. doi: 10.1103/PhysRevA.15.449
    [40]
    Hu Tianxing, Liang Jionghang, Sheng Zhengmao, et al. Kinetic investigations of nonlinear electrostatic excitations in quantum plasmas[J]. Physical Review E, 2022, 105: 065203. doi: 10.1103/PhysRevE.105.065203
    [41]
    Xu Buxing, Rajagopal A K. Current-density-functional theory for time-dependent systems[J]. Physical Review A, 1985, 31(4): 2682-2684. doi: 10.1103/PhysRevA.31.2682
    [42]
    Dhara A K, Ghosh S K. Density-functional theory for time-dependent systems[J]. Physical Review A, 1987, 35(1): 442-444. doi: 10.1103/PhysRevA.35.442
    [43]
    Ghosh S K, Dhara A K. Density-functional theory of many-electron systems subjected to time-dependent electric and magnetic fields[J]. Physical Review A, 1988, 38(3): 1149-1158. doi: 10.1103/PhysRevA.38.1149
  • Relative Articles

    [1]Hao Yuxin, Zhou Hao, Qiu Song, Xu Che, Liu Qingxiang. Integrated voltage-isolated 30 kV all solid-state stacked Blumlein pulse generator[J]. High Power Laser and Particle Beams, 2024, 36(11): 115021. doi: 10.11884/HPLPB202436.240234
    [2]Chen Peng, Mao Daichun, Chen Siyu, Chen Nuo, Zhang Yilong. Design of short-arc xenon flashlamp power supply based on flyback topology and RC isolation trigger network[J]. High Power Laser and Particle Beams, 2021, 33(3): 035002. doi: 10.11884/HPLPB202133.200316
    [3]Cai Zhengping, Wu Zhiyong. Development of high stability CW klystron modulator[J]. High Power Laser and Particle Beams, 2019, 31(4): 040023. doi: 10.11884/HPLPB201931.180287
    [4]Shao Ruoyan, Liu Jianjun, Wu Ruihua, Liang Hairong, Li Haibing. Pulsed xenon lamp power supply[J]. High Power Laser and Particle Beams, 2019, 31(2): 021001. doi: 10.11884/HPLPB201931.180331
    [5]Shi Jingwei, Zhao Juan, Feng Rongxin. Driving circuit for IGBTs with long pulse duration based on narrow pulses broadening[J]. High Power Laser and Particle Beams, 2019, 31(11): 115002. doi: 10.11884/HPLPB201931.190206
    [6]Zhu Xiaoguang, Zhang Zhengquan, Liu Qingxiang, Liu Meng, Wang Qingfeng. High speed IGBT gate driving circuit applied to pulsed power system[J]. High Power Laser and Particle Beams, 2018, 30(1): 015001. doi: 10.11884/HPLPB201830.170330
    [7]Liu Meng, Wang Qingfeng, Liu Qingxiang. Heat-dissipation analysis of IGBT module in switching power supply[J]. High Power Laser and Particle Beams, 2016, 28(07): 073001. doi: 10.11884/HPLPB201628.073001
    [8]Ren Qinghua, Wang Yingqiao, Yao Lieying. Control strategy for high power H-bridge quick response power supply based on IGBT[J]. High Power Laser and Particle Beams, 2016, 28(09): 095002. doi: 10.11884/HPLPB201628.151077
    [9]Li Bing, Luo Yong, Zhu Yanjie, Wang Li. Design of the solid-state high voltage pulse Marx modulator for gyro-TWT[J]. High Power Laser and Particle Beams, 2015, 27(01): 015004. doi: 10.11884/HPLPB201527.015004
    [10]Yang Zefeng, Mo Yongpeng, Jia Shenli, Liu Jianjun, Li Haibing, Yao Xueling, Li Xingwen. Experimental study on influence of cut current tail on xenon flashlamp work performance[J]. High Power Laser and Particle Beams, 2014, 26(09): 092004. doi: 10.11884/HPLPB201426.092004
    [11]Liu Jianjun, Li Haibing, Guo Xiangchao, Wu Ruihua, Shao Ruoyan, Liang Hairong, Lin Wenzheng, Hu Lili. Thermal damage mechanism of xenon lamp silica envelope during high-power discharge[J]. High Power Laser and Particle Beams, 2014, 26(08): 082004. doi: 10.11884/HPLPB201426.082004
    [12]Li Xiqin, Zhao Juan, Wu Hongguang, Liu Yuntao, Ding Mingjun. Design of xenon flash lamp supply adopting integrally triggering and pre-ionization[J]. High Power Laser and Particle Beams, 2014, 26(07): 075004. doi: 10.11884/HPLPB201426.075004
    [13]Jia Shenli, Li Xingwen, Li Rui, Liu JianJun, Li Haibing. Characteristics of plasma channel in high power pulsed xenon flashlamps[J]. High Power Laser and Particle Beams, 2012, 24(01): 248-252.
    [14]Zhang Chu, Lin Dejiang, Shen Hongbin, Xu Chunmei, Chen Xiaohan. Effect of capacitor loss on discharging characteristics of xenon flash lamp[J]. High Power Laser and Particle Beams, 2012, 24(10): 2474-2478. doi: 10.3788/HPLPB20122410.2474
    [15]Hao Qingsong, Ding ZHenjie, Fan Juping, Yu Jianguo, Yuan Xuelin, Pan Yafeng, Hu Long, Fang Xu, Wang Gang, Su Jiancang. Design of primary unit of high repetition frequency pulsed power generator[J]. High Power Laser and Particle Beams, 2012, 24(10): 2479-2482. doi: 10.3788/HPLPB20122410.2479
    [16]liu hongwei, li hongtao, wang chuanwei, zhao yue, liu jinfeng, yuan jianqiang, zhou liangji. Repetitive linear transformer driver based on IGBTs[J]. High Power Laser and Particle Beams, 2011, 23(08): 0- .
    [17]cong yan, wei baowen, xu zhe, wang xianwu, ren hongwen, wen lianghua, yi xiaoping. High reliability low level RF control system for HIRFL-CSRe[J]. High Power Laser and Particle Beams, 2010, 22(11): 0- .
    [18]ma yongbo, peng shuming, long xinggui, fu xuemei, cao qingwei, yang benfu, yan dengyun. Influencing factors of life of high power linear xenon-filled flash lamp[J]. High Power Laser and Particle Beams, 2010, 22(10): 0- .
    [19]wang dongdong, qiu jian, liu kefu. All solid-state pulsed power generator with semiconductor and magnetic switches[J]. High Power Laser and Particle Beams, 2010, 22(04): 0- .
    [20]gan kong yin, tang bao yin, wang xiao feng, wang lang ping, wang shong yan, chu paul k, wu hong chen. Research on IGBT solid state switch[J]. High Power Laser and Particle Beams, 2002, 14(06): 0- .
  • Cited by

    Periodical cited type(12)

    1. 袁五辉,刘海波. 基于IGBT与CMOS双回路调节氙灯驱动电路的设计. 中国战略新兴产业. 2025(05): 117-119 .
    2. 刘凌宇,张志祥,王利,潘峰,刘强,谢静,张攀政. 高功率脉冲氙灯放电可靠性提升. 中国激光. 2025(02): 19-26 .
    3. 李贺龙,徐健,杨之青,宋家豪,吴周宇,汤义辉,赵爽,丁立健. 大功率高能脉冲激光电源设计. 强激光与粒子束. 2024(05): 60-65 . 本站查看
    4. 赖厚川,邹加壮,阳佳峰,王率军,雷晗. 吊舱式一体化灯抽运固体激光器高效脉冲电源的设计. 激光技术. 2024(06): 900-905 .
    5. 陈奇,洪峰,邵栋伟,胡翔宇. 高可靠脉冲氙灯电源设计. 电气传动. 2023(07): 19-22 .
    6. 任亚辉,林菊平,李轶国,童勇. 钛酸锂电池在脉冲高能激光系统中的适用性研究. 强激光与粒子束. 2023(10): 148-153 . 本站查看
    7. 任亚辉,林菊平,童勇,张强,刘攀,夏春燕,王国帅. 高能脉冲氙灯驱动电路特性分析. 激光技术. 2022(03): 397-401 .
    8. 相亮. 可自动吹扫校准紫外二氧化硫在线分析仪的应用. 硫酸工业. 2020(12): 51-53 .
    9. 邵若燕,刘建军,吴睿骅,梁海荣,李海兵. 脉冲氙灯电源研究. 强激光与粒子束. 2019(02): 16-20 . 本站查看
    10. 李波,赵娟,李洪涛,叶超,谭巍巍,黄斌,鲁向阳,黄宇鹏,张信,欧阳艳晶,康传会,齐卓筠. 一种新型等离子体磁控溅射镀膜电源设计. 强激光与粒子束. 2019(04): 123-127 . 本站查看
    11. 赖其涛. 光伏组件测试仪氙灯电源控制系统设计. 电子制作. 2018(09): 13-14+12 .
    12. 李波,李博婷,叶超,谭巍巍,黄斌,赵娟,鲁向阳,黄宇鹏,张信,齐卓筠,康传会. 双极性脉冲磁控溅射电源设计. 强激光与粒子束. 2018(04): 114-119 . 本站查看

    Other cited types(4)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-040102030405060
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 19.4 %FULLTEXT: 19.4 %META: 74.4 %META: 74.4 %PDF: 6.3 %PDF: 6.3 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 3.9 %其他: 3.9 %其他: 0.4 %其他: 0.4 %Australia: 0.1 %Australia: 0.1 %China: 0.6 %China: 0.6 %Davis: 0.1 %Davis: 0.1 %European Union: 0.1 %European Union: 0.1 %India: 0.2 %India: 0.2 %Rochester: 0.1 %Rochester: 0.1 %Seattle: 0.1 %Seattle: 0.1 %United States: 0.1 %United States: 0.1 %[]: 0.2 %[]: 0.2 %上海: 0.9 %上海: 0.9 %东京: 0.1 %东京: 0.1 %中山: 0.1 %中山: 0.1 %临汾: 0.1 %临汾: 0.1 %丹东: 0.1 %丹东: 0.1 %乐山: 0.1 %乐山: 0.1 %伊斯坦布尔: 0.3 %伊斯坦布尔: 0.3 %六安: 0.1 %六安: 0.1 %内江: 0.1 %内江: 0.1 %加利福尼亚州: 0.1 %加利福尼亚州: 0.1 %北京: 19.2 %北京: 19.2 %南京: 0.6 %南京: 0.6 %台州: 0.4 %台州: 0.4 %吉安: 0.3 %吉安: 0.3 %哥伦布: 0.1 %哥伦布: 0.1 %嘉兴: 0.1 %嘉兴: 0.1 %天津: 0.1 %天津: 0.1 %宣城: 0.1 %宣城: 0.1 %常州: 0.1 %常州: 0.1 %广州: 0.1 %广州: 0.1 %库比蒂诺: 0.1 %库比蒂诺: 0.1 %张家口: 1.4 %张家口: 1.4 %成都: 0.8 %成都: 0.8 %无锡: 0.5 %无锡: 0.5 %晋城: 0.1 %晋城: 0.1 %普洱: 0.1 %普洱: 0.1 %杭州: 1.6 %杭州: 1.6 %桂林: 0.1 %桂林: 0.1 %桃园: 0.1 %桃园: 0.1 %武汉: 0.1 %武汉: 0.1 %深圳: 0.6 %深圳: 0.6 %湖州: 0.2 %湖州: 0.2 %漯河: 0.1 %漯河: 0.1 %烟台: 0.1 %烟台: 0.1 %益阳: 0.1 %益阳: 0.1 %秦皇岛: 0.1 %秦皇岛: 0.1 %芒廷维尤: 17.1 %芒廷维尤: 17.1 %芝加哥: 0.2 %芝加哥: 0.2 %苏州: 1.4 %苏州: 1.4 %衡水: 0.4 %衡水: 0.4 %衢州: 0.9 %衢州: 0.9 %西宁: 43.9 %西宁: 43.9 %西安: 0.5 %西安: 0.5 %贵阳: 0.1 %贵阳: 0.1 %运城: 0.3 %运城: 0.3 %都伯林: 0.2 %都伯林: 0.2 %重庆: 0.1 %重庆: 0.1 %长沙: 0.1 %长沙: 0.1 %长治: 0.1 %长治: 0.1 %阳泉: 0.1 %阳泉: 0.1 %其他其他AustraliaChinaDavisEuropean UnionIndiaRochesterSeattleUnited States[]上海东京中山临汾丹东乐山伊斯坦布尔六安内江加利福尼亚州北京南京台州吉安哥伦布嘉兴天津宣城常州广州库比蒂诺张家口成都无锡晋城普洱杭州桂林桃园武汉深圳湖州漯河烟台益阳秦皇岛芒廷维尤芝加哥苏州衡水衢州西宁西安贵阳运城都伯林重庆长沙长治阳泉

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)

    Article views (723) PDF downloads(88) Cited by(16)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return