Citation: | Wu Yitong, Ji Liangliang, Li Ruxin. Impact of laser parameters on attainable upper limit of laser intensity in non-ideal vacuum[J]. High Power Laser and Particle Beams, 2023, 35: 012001. doi: 10.11884/HPLPB202335.220215 |
[1] |
Tajima T, Dawson J M. Laser electron accelerator[J]. Physical Review Letters, 1979, 43(4): 267-270. doi: 10.1103/PhysRevLett.43.267
|
[2] |
Faure J, Glinec Y, Pukhov A, et al. A laser–plasma accelerator producing monoenergetic electron beams[J]. Nature, 2004, 431(7008): 541-544. doi: 10.1038/nature02963
|
[3] |
Geddes C G R, Toth C, Van Tilborg J, et al. High-quality electron beams from a laser wakefield accelerator using plasma-channel guiding[J]. Nature, 2004, 431(7008): 538-541. doi: 10.1038/nature02900
|
[4] |
Mangles S P D, Murphy C D, Najmudin Z, et al. Monoenergetic beams of relativistic electrons from intense laser–plasma interactions[J]. Nature, 2004, 431(7008): 535-538. doi: 10.1038/nature02939
|
[5] |
Clayton C E, Ralph J E, Albert F, et al. Self-guided laser wakefield acceleration beyond 1 GeV using ionization-induced injection[J]. Physical Review Letters, 2010, 105: 105003. doi: 10.1103/PhysRevLett.105.105003
|
[6] |
Gonsalves A J, Nakamura K, Daniels J, et al. Petawatt laser guiding and electron beam acceleration to 8 GeV in a laser-heated capillary discharge waveguide[J]. Physical Review Letters, 2019, 122: 084801. doi: 10.1103/PhysRevLett.122.084801
|
[7] |
陈民, 盛政明, 郑君, 等. 强激光与高密度气体相互作用中电子和离子加速的数值模拟[J]. 物理学报, 2006, 55(5):2381-2388 doi: 10.3321/j.issn:1000-3290.2006.05.044
Chen Min, Sheng Zhengming, Zheng Jun, et al. Numerical simulation of acceleration of electrons and ions in the interaction of intense laser pulses with dense gaseous targets[J]. Acta Physica Sinica, 2006, 55(5): 2381-2388 doi: 10.3321/j.issn:1000-3290.2006.05.044
|
[8] |
蒋康男, 冯珂, 柯林佟, 等. 高品质激光尾波场电子加速器[J]. 物理学报, 2021, 70:084103 doi: 10.7498/aps.70.20201993
Jiang Kangnan, Feng Ke, Ke Lintong, et al. High-quality laser wakefield electron accelerator[J]. Acta Physica Sinica, 2021, 70: 084103 doi: 10.7498/aps.70.20201993
|
[9] |
Higginson A, Gray R J, King M, et al. Near-100 MeV protons via a laser-driven transparency-enhanced hybrid acceleration scheme[J]. Nature Communications, 2018, 9: 724. doi: 10.1038/s41467-018-03063-9
|
[10] |
Hegelich B M, Albright B J, Cobble J, et al. Laser acceleration of quasi-monoenergetic MeV ion beams[J]. Nature, 2006, 439(7075): 441-444. doi: 10.1038/nature04400
|
[11] |
Wang Wentao, Feng Ke, Ke Lintong, et al. Free-electron lasing at 27 nanometres based on a laser wakefield accelerator[J]. Nature, 2021, 595(7868): 516-520. doi: 10.1038/s41586-021-03678-x
|
[12] |
Xu Tongjun, Shen Baifei, Xu Jiancai, et al. Ultrashort megaelectronvolt positron beam generation based on laser-accelerated electrons[J]. Physics of Plasmas, 2016, 23: 033109. doi: 10.1063/1.4943280
|
[13] |
Emma C, Van Tilborg J, Assmann R, et al. Free electron lasers driven by plasma accelerators: status and near-term prospects[J]. High Power Laser Science and Engineering, 2021, 9: e57. doi: 10.1017/hpl.2021.39
|
[14] |
Phuoc K T, Corde S, Thaury C, et al. All-optical Compton gamma-ray source[J]. Nature Photonics, 2012, 6(5): 308-311. doi: 10.1038/nphoton.2012.82
|
[15] |
Clark E L, Grigoriadis A, Petrakis S, et al. High-intensity laser-driven secondary radiation sources using the ZEUS 45 TW laser system at the Institute of Plasma Physics and Lasers of the Hellenic Mediterranean University Research Centre[J]. High Power Laser Science and Engineering, 2021, 9: e53. doi: 10.1017/hpl.2021.38
|
[16] |
Nie Zan, Pai C H, Zhang Jie, et al. Photon deceleration in plasma wakes generates single-cycle relativistic tunable infrared pulses[J]. Nature Communications, 2020, 11: 2787. doi: 10.1038/s41467-020-16541-w
|
[17] |
Zhang Meng, Chu Yuxi, Zhao Jun, et al. Efficient generation of third harmonics in Yb-doped femtosecond fiber laser via spatial and temporal walk-off compensation[J]. Chinese Optics Letters, 2021, 19: 031402. doi: 10.3788/COL202119.031402
|
[18] |
Betti R, Hurricane O A. Inertial-confinement fusion with lasers[J]. Nature Physics, 2016, 12(5): 435-448. doi: 10.1038/nphys3736
|
[19] |
Tabak M, Hinkel D, Atzeni S, et al. Fast ignition: overview and background[J]. Fusion Science and Technology, 2006, 49(3): 254-277. doi: 10.13182/FST49-3-254
|
[20] |
Mima K. 惯性聚变能研究现状[J]. 罗山, 译. 激光与光电子学进展, 2004, 41(1):3-11
Mima K. Research status of inertial fusion energy[J]. Luo Shan, Ttranslated. Laser & Optoelectronics Progress., 2004, 41(1): 3-11
|
[21] |
Cristoforetti G, Hüller S, Koester P, et al. Observation and modelling of stimulated Raman scattering driven by an optically smoothed laser beam in experimental conditions relevant for Shock Ignition[J]. High Power Laser Science and Engineering, 2021, 9: e60. doi: 10.1017/hpl.2021.48
|
[22] |
Zhang F, Cai Hongbo, Zhou Weimin, et al. Enhanced energy coupling for indirect-drive fast-ignition fusion targets[J]. Nature Physics, 2020, 16(7): 810-814. doi: 10.1038/s41567-020-0878-9
|
[23] |
Takabe H, Kuramitsu Y. Recent progress of laboratory astrophysics with intense lasers[J]. High Power Laser Science and Engineering, 2021, 9: e49. doi: 10.1017/hpl.2021.35
|
[24] |
Casner A, Caillaud T, Darbon S, et al. LMJ/PETAL laser facility: overview and opportunities for laboratory astrophysics[J]. High Energy Density Physics, 2015, 17: 2-11. doi: 10.1016/j.hedp.2014.11.009
|
[25] |
张杰, 赵刚. 实验室天体物理学简介[J]. 物理, 2000, 29(7):393-396 doi: 10.3321/j.issn:0379-4148.2000.07.003
Zhang Jie, Zhao Gang. Introduction to laboratory astrophysics[J]. Physics, 2000, 29(7): 393-396 doi: 10.3321/j.issn:0379-4148.2000.07.003
|
[26] |
Ji Liangliang, Pukhov A, Kostyukov I Y, et al. Radiation-reaction trapping of electrons in extreme laser fields[J]. Physical Review Letters, 2014, 112: 145003. doi: 10.1103/PhysRevLett.112.145003
|
[27] |
Poder K, Tamburini M, Sarri G, et al. Experimental signatures of the quantum nature of radiation reaction in the field of an ultraintense laser[J]. Physical Review X, 2018, 8: 031004.
|
[28] |
Cole J M, Behm K T, Gerstmayr E, et al. Experimental evidence of radiation reaction in the collision of a high-intensity laser pulse with a laser-wakefield accelerated electron beam[J]. Physical Review X, 2018, 8: 011020.
|
[29] |
Zhu Xinglong, Yu Tongpu, Sheng Zhengming, et al. Dense GeV electron–positron pairs generated by lasers in near-critical-density plasmas[J]. Nature Communications, 2016, 7: 13686. doi: 10.1038/ncomms13686
|
[30] |
Zhu Xinglong, Chen Min, Weng Suming, et al. Extremely brilliant GeV γ-rays from a two-stage laser-plasma accelerator[J]. Science Advances, 2020, 6: eaaz7240. doi: 10.1126/sciadv.aaz7240
|
[31] |
Zhu Xinglong, Chen Min, Yu Tongpu, et al. Collimated GeV attosecond electron–positron bunches from a plasma channel driven by 10 PW lasers[J]. Matter and Radiation at Extremes, 2019, 4: 014401. doi: 10.1063/1.5083914
|
[32] |
Strickland D, Mourou G. Compression of amplified chirped optical pulses[J]. Optics Communications, 1985, 55(6): 447-449. doi: 10.1016/0030-4018(85)90151-8
|
[33] |
Yoon J W, Kim Y G, Choi I W, et al. Realization of laser intensity over 1023 W/cm2[J]. Optica, 2021, 8(5): 630-635. doi: 10.1364/OPTICA.420520
|
[34] |
Bahk S W, Rousseau P, Planchon T A, et al. Characterization of focal field formed by a large numerical aperture paraboloidal mirror and generation of ultra-high intensity (1022 W/cm2)[J]. Applied Physics B, 2005, 80(7): 823-832. doi: 10.1007/s00340-005-1803-8
|
[35] |
Bahk S W, Rousseau P, Planchon T A, et al. Generation and characterization of the highest laser intensities (1022 W/cm2)[J]. Optics Letters, 2004, 29(24): 2837-2839. doi: 10.1364/OL.29.002837
|
[36] |
Guo Zhen, Yu Lianghong, Wang Jianye, et al. Improvement of the focusing ability by double deformable mirrors for 10-PW-level Ti: sapphire chirped pulse amplification laser system[J]. Optics Express, 2018, 26(20): 26776-26786. doi: 10.1364/OE.26.026776
|
[37] |
Danson C N, Haefner C, Bromage J, et al. Petawatt and exawatt class lasers worldwide[J]. High Power Laser Science and Engineering, 2019, 7: e54. doi: 10.1017/hpl.2019.36
|
[38] |
冷雨欣. 上海超强超短激光实验装置[J]. 中国激光, 2019, 46:0100001 doi: 10.3788/CJL201946.0100001
Leng Yuxin. Shanghai superintense ultrafast laser facility[J]. Chinese Journal of Lasers, 2019, 46: 0100001 doi: 10.3788/CJL201946.0100001
|
[39] |
Zhang Zongxin, Wu Fenxiang, Hu Jiabing, et al. The 1 PW/0.1Hz laser beamline in SULF facility[J]. High Power Laser Science and Engineering, 2020, 8: e4. doi: 10.1017/hpl.2020.3
|
[40] |
Peng Yujie, Xu Yi, Yu Lianghong, et al. Overview and status of station of extreme light toward 100 PW[J]. Reza Kenkyu, 2021, 49(2): 93-96.
|
[41] |
Cartlidge E. Physicists are planning to build lasers so powerful they could rip apart empty space[J/OL]. Science, (2018-01-25). https://www.science.org/content/article/physicists-are-planning-build-lasers-so-powerful-they-could-rip-apart-empty-space.
|
[42] |
Zamfir V, Tanaka K, Ur C. Extreme light infrastructure nuclear physics (ELI-NP)[J]. Europhysics News, 2019, 50(2): 23-25. doi: 10.1051/epn/2019204
|
[43] |
Grittani G, Lazzarini C, Lorenz S, et al. ELI-ELBA: fundamental science investigations with high power lasers at ELI-Beamlines[C]//OSA High-brightness Sources and Light-driven Interactions Congress 2020. Optical Society of America, 2020: JM3A. 20.
|
[44] |
Papadopoulos D N, Zou J P, Le Blanc C, et al. The Apollon 10 PW laser: experimental and theoretical investigation of the temporal characteristics[J]. High Power Laser Science and Engineering, 2016, 4: e34. doi: 10.1017/hpl.2016.34
|
[45] |
Musgrave I, Galimberti M, Boyle A, et al. Review of laser diagnostics at the Vulcan laser facility[J]. High Power Laser Science and Engineering, 2015, 3: e26. doi: 10.1017/hpl.2015.27
|
[46] |
American Association for the Advancement of Science. So much more to know…[J]. Science, 2005, 309(5731): 78-102.
|
[47] |
Bell A R, Kirk J G. Possibility of prolific pair production with high-power lasers[J]. Physical Review Letters, 2008, 101: 200403. doi: 10.1103/PhysRevLett.101.200403
|
[48] |
Kirk J G, Bell A R, Arka I. Pair production in counter-propagating laser beams[J]. Plasma Physics and Controlled Fusion, 2009, 51: 085008. doi: 10.1088/0741-3335/51/8/085008
|
[49] |
Fedotov A M, Narozhny N B, Mourou G, et al. Limitations on the attainable intensity of high power lasers[J]. Physical Review Letters, 2010, 105: 080402. doi: 10.1103/PhysRevLett.105.080402
|
[50] |
Schwinger J. Particles, sources, and fields Vol. 3[M]. Reading: Advanced Book Program, 1998.
|
[51] |
Fedotov A M. Electron-positron pair creation by a strong tightly focused laser field[J]. Laser Physics, 2009, 19(2): 214-221. doi: 10.1134/S1054660X09020108
|
[52] |
Bulanov S S, Narozhny N B, Mur V D, et al. Electron-positron pair production by electromagnetic pulses[J]. Journal of Experimental and Theoretical Physics, 2006, 102(1): 9-23. doi: 10.1134/S106377610601002X
|
[53] |
Wu Yitong, Ji Liangliang, Li Ruxin. On the upper limit of laser intensity attainable in nonideal vacuum[J]. Photonics Research, 2021, 9(4): 541-547. doi: 10.1364/PRJ.416555
|
[54] |
Bashmakov V F, Nerush E N, Kostyukov I Y, et al. Effect of laser polarization on quantum electrodynamical cascading[J]. Physics of Plasmas, 2014, 21: 013105. doi: 10.1063/1.4861863
|
[55] |
Tamburini M, Di Piazza A, Keitel C H. Laser-pulse-shape control of seeded QED cascades[J]. Scientific Reports, 2017, 7: 5694. doi: 10.1038/s41598-017-05891-z
|
[56] |
Sampath A, Tamburini M. Towards realistic simulations of QED cascades: non-ideal laser and electron seeding effects[J]. Physics of Plasmas, 2018, 25: 083104. doi: 10.1063/1.5022640
|
[57] |
Luo Wen, Liu Weiyuan, Yuan Tao, et al. QED cascade saturation in extreme high fields[J]. Scientific Reports, 2018, 8: 8400. doi: 10.1038/s41598-018-26785-8
|
[58] |
Elkina N V, Fedotov A M, Kostyukov I Y, et al. QED cascades induced by circularly polarized laser fields[J]. Physical Review Accelerators and Beams, 2011, 14: 054401. doi: 10.1103/PhysRevSTAB.14.054401
|
[59] |
Bulanov S S, Schroeder C B, Esarey E, et al. Electromagnetic cascade in high-energy electron, positron, and photon interactions with intense laser pulses[J]. Physical Review A, 2013, 87: 062110. doi: 10.1103/PhysRevA.87.062110
|
[60] |
Grismayer T, Vranic M, Martins J L, et al. Seeded QED cascades in counterpropagating laser pulses[J]. Physical Review E, 2017, 95: 023210. doi: 10.1103/PhysRevE.95.023210
|
[61] |
Jirka M, Klimo O, Vranic M, et al. QED cascade with 10 PW-class lasers[J]. Scientific Reports, 2017, 7: 15302. doi: 10.1038/s41598-017-15747-1
|
[62] |
Samsonov A S, Kostyukov I Y, Nerush E N. Hydrodynamical model of QED cascade expansion in an extremely strong laser pulse[J]. Matter and Radiation at Extremes, 2021, 6: 034401. doi: 10.1063/5.0035347
|
[63] |
Hartemann F V, Kerman A K. Classical theory of nonlinear Compton scattering[J]. Physical Review Letters, 1996, 76(4): 624-627. doi: 10.1103/PhysRevLett.76.624
|
[64] |
Breit G, Wheeler J A. Collision of two light quanta[J]. Physical Review Journals Archive, 1934, 46(12): 1087-1091.
|
[65] |
Reiss H R. Absorption of light by light[J]. Journal of Mathematical Physics, 1962, 3(1): 59-67. doi: 10.1063/1.1703787
|
[66] |
Nikishov A I, Ritus V I. Quantum processes in the field of a plane electromagnetic wave and in a constant field. I[J]. Soviet Physics JETP, 1964, 19(2): 529-541.
|
[67] |
Baier V N, Katkov V M, Fadin V S. Radiation of relativistic electrons; Izluchenie relyativistskikh elektronov[M]. Moscow: Atomizdat, 1973.
|
[68] |
Ritus V I. Quantum effects of the interaction of elementary particles with an intense electromagnetic field[J]. Journal of Soviet Laser Research, 1985, 6(5): 497-617. doi: 10.1007/BF01120220
|
[69] |
Pukhov A. Three-dimensional electromagnetic relativistic particle-in-cell code VLPL (Virtual Laser Plasma Lab)[J]. Journal of Plasma Physics, 1999, 61(3): 425-433. doi: 10.1017/S0022377899007515
|
[70] |
Pukhov A. Particle-in-cell codes for plasma-based particle acceleration[C]//Proceedings of the 2014 CAS-CERN Accelerator School: Plasma Wake Acceleration. 2016.
|
[71] |
Sokolov I V, Naumova N M, Nees J A. Numerical modeling of radiation-dominated and quantum-electrodynamically strong regimes of laser-plasma interaction[J]. Physics of Plasmas, 2011, 18: 093109. doi: 10.1063/1.3638138
|
[72] |
Zot'ev D B. Critical remarks on Sokolov's equation of the dynamics of a radiating electron[J]. Physics of Plasmas, 2016, 23: 093302. doi: 10.1063/1.4962692
|
[73] |
Wallin E, Gonoskov A, Marklund M. Effects of high energy photon emissions in laser generated ultra-relativistic plasmas: real-time synchrotron simulations[J]. Physics of Plasmas, 2015, 22: 033117. doi: 10.1063/1.4916491
|