Citation: | Lu Yu, Zhang Hao, Zhang Liangqi, et al. Research progress of X/γ photon emission in laser-plasma interaction[J]. High Power Laser and Particle Beams, 2023, 35: 012006. doi: 10.11884/HPLPB202335.220222 |
[1] |
Einstein A. Strahlungs-Emission und -Absorption nach der Quantentheorie[J]. Verhandlungen der Deutschen Physikalischen Gesellschaft, 1916, 18: 318-323.
|
[2] |
Li Wenqi, Gan Zebiao, Yu Lianghong, et al. 339 J high-energy Ti: sapphire chirped-pulse amplifier for 10 PW laser facility[J]. Optics Letters, 2018, 43(22): 5681-5684. doi: 10.1364/OL.43.005681
|
[3] |
Lureau F, Matras G, Chalus O, et al. High-energy hybrid femtosecond laser system demonstrating 2×10 PW capability[J]. High Power Laser Science and Engineering, 2020, 8: e43. doi: 10.1017/hpl.2020.41
|
[4] |
Blackburn T G, Ridgers C P, Kirk J G, et al. Quantum radiation reaction in laser–electron-beam collisions[J]. Physical Review Letters, 2014, 112: 015001. doi: 10.1103/PhysRevLett.112.015001
|
[5] |
Schwinger J. On gauge invariance and vacuum polarization[J]. Physical Review, 1951, 82(5): 664-679. doi: 10.1103/PhysRev.82.664
|
[6] |
Ridgers C P, Brady C S, Duclous R, et al. Dense electron-positron plasmas and ultraintense γ rays from laser-irradiated solids[J]. Physical Review Letters, 2012, 108: 165006. doi: 10.1103/PhysRevLett.108.165006
|
[7] |
Bell A R, Kirk J G. Possibility of prolific pair production with high-power lasers[J]. Physical Review Letters, 2008, 101: 200403. doi: 10.1103/PhysRevLett.101.200403
|
[8] |
Martin J L, Migus A, Mourou G A, et al. Ultrafast phenomena VIII[M]. Berlin: Springer, 1993.
|
[9] |
Kuraev E A, Bystritskiy Y M, Tomasi-Gustafsson E. Bremsstrahlung and pair production processes at low energies: multidifferential cross section and polarization phenomena[J]. Physical Review C, 2010, 81: 055208. doi: 10.1103/PhysRevC.81.055208
|
[10] |
Galy J, Maučec M, Hamilton D J, et al. Bremsstrahlung production with high-intensity laser matter interactions and applications[J]. New Journal of Physics, 2007, 9: 23. doi: 10.1088/1367-2630/9/2/023
|
[11] |
Yan Wenchao, Fruhling C, Golovin G, et al. High-order multiphoton Thomson scattering[J]. Nature Photonics, 2017, 11(8): 514-520. doi: 10.1038/nphoton.2017.100
|
[12] |
Sarri G, Corvan D J, Schumaker W, et al. Ultrahigh brilliance multi-MeV γ-ray beams from nonlinear relativistic Thomson scattering[J]. Physical Review Letters, 2014, 113: 224801. doi: 10.1103/PhysRevLett.113.224801
|
[13] |
Henderson A, Liang E, Riley N, et al. Ultra-intense gamma-rays created using the Texas Petawatt Laser[J]. High Energy Density Physics, 2014, 12: 46-56. doi: 10.1016/j.hedp.2014.06.004
|
[14] |
Cipiccia S, Islam M R, Ersfeld B, et al. Gamma-rays from harmonically resonant betatron oscillations in a plasma wake[J]. Nature Physics, 2011, 7(11): 867-871. doi: 10.1038/nphys2090
|
[15] |
Capdessus R, d’Humières E, Tikhonchuk V T. Influence of ion mass on laser-energy absorption and synchrotron radiation at ultrahigh laser intensities[J]. Physical Review Letters, 2013, 110: 215003. doi: 10.1103/PhysRevLett.110.215003
|
[16] |
Chen L, Dürr K L, Gouaux E. X-ray structures of AMPA receptor–cone snail toxin complexes illuminate activation mechanism[J]. Science, 2014, 345(6200): 1021-1026. doi: 10.1126/science.1258409
|
[17] |
de Castro Fonseca M, Araujo B H S, Dias C S B, et al. High-resolution synchrotron-based X-ray microtomography as a tool to unveil the three-dimensional neuronal architecture of the brain[J]. Scientific Reports, 2018, 8: 12074. doi: 10.1038/s41598-018-30501-x
|
[18] |
Kersell H, Shirato N, Cummings M, et al. Detecting element specific electrons from a single cobalt nanocluster with synchrotron X-ray scanning tunneling microscopy[J]. Applied Physics Letters, 2017, 111: 103102. doi: 10.1063/1.4990818
|
[19] |
Corde S, Ta Phuoc K, Lambert G, et al. Femtosecond X rays from laser-plasma accelerators[J]. Reviews of Modern Physics, 2013, 85(1): 1-48. doi: 10.1103/RevModPhys.85.1
|
[20] |
Chen Liming, Yan Wenchao, Li D Z, et al. Bright betatron X-ray radiation from a laser-driven-clustering gas target[J]. Scientific Reports, 2013, 3: 1912. doi: 10.1038/srep01912
|
[21] |
陈民, 刘峰, 李博原, 等. 激光等离子体尾波加速器的发展和展望[J]. 强激光与粒子束, 2020, 32:092001 doi: 10.11884/HPLPB202032.200174
Chen Min, Liu Feng, Li Boyuan, et al. Development and prospect of laser plasma wakefield accelerator[J]. High Power Laser and Particle Beams, 2020, 32: 092001 doi: 10.11884/HPLPB202032.200174
|
[22] |
Döpp A, Hehn L, Götzfried J, et al. Quick X-ray microtomography using a laser-driven betatron source[J]. Optica, 2018, 5(2): 199-203. doi: 10.1364/OPTICA.5.000199
|
[23] |
Fourmaux S, Hallin E, Chaulagain U, et al. Laser-based synchrotron X-ray radiation experimental scaling[J]. Optics Express, 2020, 28(3): 3147-3158. doi: 10.1364/OE.383818
|
[24] |
Tajima T, Dawson J M. Laser electron accelerator[J]. Physical Review Letters, 1979, 43(4): 267-270. doi: 10.1103/PhysRevLett.43.267
|
[25] |
Pukhov A, Meyer-ter-Vehn J. Laser wake field acceleration: the highly non-linear broken-wave regime[J]. Applied Physics B, 2002, 74(4): 355-361.
|
[26] |
Lu W, Tzoufras M, Joshi C, et al. Generating multi-GeV electron bunches using single stage laser wakefield acceleration in a 3D nonlinear regime[J]. Physical Review Special Topics-Accelerators and Beams, 2007, 10: 061301. doi: 10.1103/PhysRevSTAB.10.061301
|
[27] |
Jansen O, Tückmantel T, Pukhov A. Scaling electron acceleration in the bubble regime for upcoming lasers[J]. The European Physical Journal Special Topics, 2014, 223(6): 1017-1030. doi: 10.1140/epjst/e2014-02152-8
|
[28] |
Esarey E, Shadwick B A, Catravas P, et al. Synchrotron radiation from electron beams in plasma-focusing channels[J]. Physical Review E, 2002, 65: 056505. doi: 10.1103/PhysRevE.65.056505
|
[29] |
Ferri J, Corde S, Döpp A, et al. High-brilliance betatron γ-ray source powered by laser-accelerated electrons[J]. Physical Review Letters, 2018, 120: 254802. doi: 10.1103/PhysRevLett.120.254802
|
[30] |
Kozlova M, Andriyash I, Gautier J, et al. Hard X rays from laser-wakefield accelerators in density tailored plasmas[J]. Physical Review X, 2020, 10: 011061.
|
[31] |
Vieira J, Martins J, Sinha U. Plasma based helical undulator for controlled emission of circularly and elliptically polarised betatron radiation[DB/OL]. arXiv preprint arXiv: 1601.04422, 2016.
|
[32] |
Ferri J, Davoine X. Enhancement of betatron X rays through asymmetric laser wakefield generated in transverse density gradients[J]. Physical Review Accelerators and Beams, 2018, 21: 091302. doi: 10.1103/PhysRevAccelBeams.21.091302
|
[33] |
Lamberti C, Groppo E, Prestipino C, et al. Oxide/metal interface distance and epitaxial strain in the NiO/Ag(001) system[J]. Physical Review Letters, 2003, 91: 046101. doi: 10.1103/PhysRevLett.91.046101
|
[34] |
Stöhr J, Wu Y, Hermsmeier B D, et al. Element-specific magnetic microscopy with circularly polarized X-rays[J]. Science, 1993, 259(5095): 658-661. doi: 10.1126/science.259.5095.658
|
[35] |
Döpp A, Mahieu B, Lifschitz A, et al. Stable femtosecond X-rays with tunable polarization from a laser-driven accelerator[J]. Light: Science & Applications, 2017, 6: e17086.
|
[36] |
Feng Jie, Li Yifei, Geng Xiaotao, et al. Circularly polarized X-ray generation from an ionization induced laser plasma electron accelerator[J]. Plasma Physics and Controlled Fusion, 2020, 62: 105021. doi: 10.1088/1361-6587/abaf0b
|
[37] |
Zhang Guobo, Chen Min, Yang Xiaohu, et al. Betatron radiation polarization control by using an off-axis ionization injection in a laser wakefield acceleration[J]. Optics Express, 2020, 28(20): 29927-29936. doi: 10.1364/OE.404723
|
[38] |
Chen Min, Esarey E, Schroeder C B, et al. Theory of ionization-induced trapping in laser-plasma accelerators[J]. Physics of Plasmas, 2012, 19: 033101. doi: 10.1063/1.3689922
|
[39] |
Zhu Xinglong, Chen Min, Weng Suming, et al. Extremely brilliant GeV γ-rays from a two-stage laser-plasma accelerator[J]. Science Advances, 2020, 6: eaaz7240. doi: 10.1126/sciadv.aaz7240
|
[40] |
Ji Liangliang, Pukhov A, Kostyukov I Y, et al. Radiation-reaction trapping of electrons in extreme laser fields[J]. Physical Review Letters, 2014, 112: 145003. doi: 10.1103/PhysRevLett.112.145003
|
[41] |
Tan J H, Li Y F, Li D Z, et al. Observation of high efficiency Betatron radiation from femtosecond petawatt laser irradiated near critical plasmas[DB/OL]. arXiv preprint arXiv: 2109.12467, 2021.
|
[42] |
Di Piazza A, Müller C, Hatsagortsyan K Z, et al. Extremely high-intensity laser interactions with fundamental quantum systems[J]. Reviews of Modern Physics, 2012, 84(3): 1177-1228. doi: 10.1103/RevModPhys.84.1177
|
[43] |
Landau L D, Lifshitz E M. The classical theory of fields[M]. 4th ed. Oxford: Butterworth-Heinemann, 1980.
|
[44] |
Zhu Xinglong, Yin Yan, Yu Tongpu, et al. Enhanced electron trapping and γ-ray emission by ultra-intense laser irradiating a near-critical-density plasma filled gold cone[J]. New Journal of Physics, 2015, 17: 053039. doi: 10.1088/1367-2630/17/5/053039
|
[45] |
Zhu Xinglong, Yin Yan, Yu Tongpu, et al. Ultra-bright, high-energy-density γ-ray emission from a gas-filled gold cone-capillary[J]. Physics of Plasmas, 2015, 22: 093109. doi: 10.1063/1.4930117
|
[46] |
Stark D J, Toncian T, Arefiev A V. Enhanced multi-MeV photon emission by a laser-driven electron beam in a self-generated magnetic field[J]. Physical Review Letters, 2016, 116: 185003. doi: 10.1103/PhysRevLett.116.185003
|
[47] |
Popmintchev T, Chen Mingchang, Popmintchev D, et al. Bright coherent ultrahigh harmonics in the keV X-ray regime from mid-infrared femtosecond lasers[J]. Science, 2012, 336(6086): 1287-1291. doi: 10.1126/science.1218497
|
[48] |
Lu Yu, Zhang Guobo, Zhao Jie, et al. Ultra-brilliant GeV betatronlike radiation from energetic electrons oscillating in frequency-downshifted laser pulses[J]. Optics Express, 2021, 29(6): 8926-8940. doi: 10.1364/OE.419761
|
[49] |
Hu Yanting, Zhao Jie, Zhang Hao, et al. Attosecond γ-ray vortex generation in near-critical-density plasma driven by twisted laser pulses[J]. Applied Physics Letters, 2021, 118: 054101. doi: 10.1063/5.0028203
|
[50] |
Zhu Xinglong, Yu Tongpu, Chen Min, et al. Generation of GeV positron and γ-photon beams with controllable angular momentum by intense lasers[J]. New Journal of Physics, 2018, 20: 083013. doi: 10.1088/1367-2630/aad71a
|
[51] |
Lu Yu, Zhang Hao, Hu Yanting, et al. Effect of laser polarization on the electron dynamics and photon emission in near-critical-density plasmas[J]. Plasma Physics and Controlled Fusion, 2020, 62: 035002. doi: 10.1088/1361-6587/ab61e1
|
[52] |
Compton A H. A quantum theory of the scattering of X-rays by light elements[J]. Physical Review, 1923, 21(5): 483-502. doi: 10.1103/PhysRev.21.483
|
[53] |
Gu Y J, Klimo O, Weber S, et al. High density ultrashort relativistic positron beam generation by laser-plasma interaction[J]. New Journal of Physics, 2016, 18: 113023. doi: 10.1088/1367-2630/18/11/113023
|
[54] |
Zhu Xinglong, Yu Tongpu, Sheng Zhengming, et al. Dense GeV electron–positron pairs generated by lasers in near-critical-density plasmas[J]. Nature Communications, 2016, 7: 13686. doi: 10.1038/ncomms13686
|
[55] |
Shen Yijie, Wang Xuejiao, Xie Zhenwei, et al. Optical vortices 30 years on: OAM manipulation from topological charge to multiple singularities[J]. Light: Science & Applications, 2019, 8: 90.
|
[56] |
Harwit M. Photon orbital angular momentum in astrophysics[J]. The Astrophysical Journal, 2003, 597(2): 1266-1270. doi: 10.1086/378623
|
[57] |
Zhao Jie, Hu Yanting, Lu Yu, et al. All-optical quasi-monoenergetic GeV positron bunch generation by twisted laser fields[J]. Communications Physics, 2022, 5(1): 1-10. doi: 10.1038/s42005-021-00784-0
|
[58] |
Liu Jinjin, Yu Tongpu, Yin Yan, et al. All-optical bright γ-ray and dense positron source by laser driven plasmas-filled cone[J]. Optics Express, 2016, 24(14): 15978-15986. doi: 10.1364/OE.24.015978
|
[59] |
Gu Yanjun, Klimo O, Bulanov S V, et al. Brilliant gamma-ray beam and electron-positron pair production by enhanced attosecond pulses[J]. Communications Physics, 2018, 1: 93. doi: 10.1038/s42005-018-0095-3
|
[60] |
Liu Jianbo, Yu Jinqing, Shou Yinren, et al. Generation of bright γ-ray/hard X-ray flash with intense femtosecond pulses and double-layer targets[J]. Physics of Plasmas, 2019, 26: 033109. doi: 10.1063/1.5085306
|
[61] |
Huang T W, Kim C M, Zhou Cangtao, et al. Tabletop laser-driven gamma-ray source with nanostructured double-layer target[J]. Plasma Physics and Controlled Fusion, 2018, 60: 115006. doi: 10.1088/1361-6587/aadbeb
|
[62] |
Kneip S, Nagel S R, Bellei C, et al. Observation of synchrotron radiation from electrons accelerated in a petawatt-laser-generated plasma cavity[J]. Physical Review Letters, 2008, 100: 105006. doi: 10.1103/PhysRevLett.100.105006
|
[63] |
Huang T W, Robinson A P L, Zhou C T, et al. Characteristics of betatron radiation from direct-laser-accelerated electrons[J]. Physical Review E, 2016, 93: 063203. doi: 10.1103/PhysRevE.93.063203
|
[64] |
Wang Jian, Zhu Bin, Yu Tongpu, et al. High-flux X-ray photon emission by a superluminal hybrid electromagnetic mode of intense laser in a plasma waveguide[J]. Plasma Physics and Controlled Fusion, 2019, 61: 085026. doi: 10.1088/1361-6587/ab27d4
|
[65] |
Yi Longqing, Pukhov A, Shen Baifei. Radiation from laser-microplasma-waveguide interactions in the ultra-intense regime[J]. Physics of Plasmas, 2016, 23: 073110. doi: 10.1063/1.4958314
|
[66] |
Wang Jian, Zhu Bin, Wang Dangchao, et al. Brilliant keV-MeV X-ray emission through weakly unbalanced quasi-static electric and magnetic fields[J]. Plasma Physics and Controlled Fusion, 2020, 62: 025016. doi: 10.1088/1361-6587/ab586c
|
[67] |
Yu Tongpu, Pukhov A, Sheng Zhengming, et al. Bright betatronlike X rays from radiation pressure acceleration of a mass-limited foil target[J]. Physical Review Letters, 2013, 110: 045001. doi: 10.1103/PhysRevLett.110.045001
|
[68] |
Yu Tongpu, Sheng Zhengming, Yin Yan, et al. Dynamics of laser mass-limited foil interaction at ultra-high laser intensities[J]. Physics of Plasmas, 2014, 21: 053105. doi: 10.1063/1.4879034
|
[69] |
Wang Weimin, Sheng Zhengming, Gibbon P, et al. Collimated ultrabright gamma rays from electron wiggling along a petawatt laser-irradiated wire in the QED regime[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(40): 9911-9916. doi: 10.1073/pnas.1809649115
|
[70] |
Yu Jinqing, Hu Ronghao, Gong Zheng, et al. The generation of collimated γ-ray pulse from the interaction between 10 PW laser and a narrow tube target[J]. Applied Physics Letters, 2018, 112: 204103. doi: 10.1063/1.5030942
|
[71] |
Luo Wen, Zhuo Hongbin, Ma Yanyun, et al. Attosecond Thomson-scattering X-ray source driven by laser-based electron acceleration[J]. Applied Physics Letters, 2013, 103: 174103. doi: 10.1063/1.4826600
|
[72] |
Hu Lixiang, Yu Tongpu, Shao Fuqiu, et al. A bright attosecond X-ray pulse train generation in a double-laser-driven cone target[J]. Journal of Applied Physics, 2016, 119: 243301. doi: 10.1063/1.4954321
|
[73] |
Luo Wen, Zhu Yibo, Zhuo Hongbin, et al. Dense electron-positron plasmas and gamma-ray bursts generation by counter-propagating quantum electrodynamics-strong laser interaction with solid targets[J]. Physics of Plasmas, 2015, 22: 063112. doi: 10.1063/1.4923265
|
[74] |
Chang Hengxin, Qiao Bin, Xu Z, et al. Generation of overdense and high-energy electron-positron-pair plasmas by irradiation of a thin foil with two ultraintense lasers[J]. Physical Review E, 2015, 92: 053107. doi: 10.1103/PhysRevE.92.053107
|
[75] |
Li Hanzhen, Yu Tongpu, Liu Jinjin, et al. Ultra-bright γ-ray emission and dense positron production from two laser-driven colliding foils[J]. Scientific Reports, 2017, 7: 17312. doi: 10.1038/s41598-017-17605-6
|
[76] |
Li Hanzhen, Yu Tongpu, Hu Lixiang, et al. Ultra-bright γ-ray flashes and dense attosecond positron bunches from two counter-propagating laser pulses irradiating a micro-wire target[J]. Optics Express, 2017, 25(18): 21583-21593. doi: 10.1364/OE.25.021583
|
[77] |
Lu Yu, Yu Tongpu, Hu Lixiang, et al. Enhanced copious electron–positron pair production via electron injection from a mass-limited foil[J]. Plasma Physics and Controlled Fusion, 2018, 60: 125008. doi: 10.1088/1361-6587/aae819
|
[78] |
Zhang Liangqi, Wu Shaodong, Huang Hairong, et al. Brilliant attosecond γ-ray emission and high-yield positron production from intense laser-irradiated nano-micro array[J]. Physics of Plasmas, 2021, 28: 023110. doi: 10.1063/5.0030909
|
[79] |
Zhu Xinglong, Chen Min, Yu Tongpu, et al. Bright attosecond γ-ray pulses from nonlinear Compton scattering with laser-illuminated compound targets[J]. Applied Physics Letters, 2018, 112: 174102. doi: 10.1063/1.5028555
|
[80] |
Liu Chen, Shen Baifei, Zhang Xiaomei, et al. Generation of gamma-ray beam with orbital angular momentum in the QED regime[J]. Physics of Plasmas, 2016, 23: 093120. doi: 10.1063/1.4963396
|
[81] |
Zhang Hao, Zhao Jie, Hu Yanting, et al. Efficient bright γ-ray vortex emission from a laser-illuminated light-fan-in-channel target[J]. High Power Laser Science and Engineering, 2021, 9: e43. doi: 10.1017/hpl.2021.29
|
[82] |
Feng B, Qin C Y, Geng Xuesong, et al. The emission of γ-ray beams with orbital angular momentum in laser-driven micro-channel plasma target[J]. Scientific Reports, 2019, 9: 18780. doi: 10.1038/s41598-019-55217-4
|
[83] |
Liu Ke, Yu Tongpu, Zou Debin, et al. Twisted radiation from nonlinear Thomson scattering with arbitrary incident angle[J]. The European Physical Journal D, 2020, 74: 7. doi: 10.1140/epjd/e2019-100437-4
|
[84] |
Haessler S, Ouillé M, Kaur J, et al. High-harmonic generation and correlated electron emission from relativistic plasma mirrors at 1 kHz repetition rate[J]. Ultrafast Science, 2022, 2022: 9893418.
|
[85] |
Mirzanejad S, Salehi M. Two-color high-order-harmonic generation: relativistic mirror effects and attosecond pulses[J]. Physical Review A, 2013, 87: 063815. doi: 10.1103/PhysRevA.87.063815
|
[86] |
Zhang Xueyu, Rykovanov S, Shi Mingyuan, et al. Giant isolated attosecond pulses from two-color laser-plasma interactions[J]. Physical Review Letters, 2020, 124: 114802. doi: 10.1103/PhysRevLett.124.114802
|
[87] |
Zhong C L, Qiao B, Xu X R, et al. Intense circularly polarized attosecond pulse generation from solid targets irradiated with a two-color linearly polarized laser[J]. Physical Review A, 2020, 101: 053814. doi: 10.1103/PhysRevA.101.053814
|
[88] |
Chen Ziyu. Spectral control of high harmonics from relativistic plasmas using bicircular fields[J]. Physical Review E, 2018, 97: 043202. doi: 10.1103/PhysRevE.97.043202
|
[89] |
Li Qianni, Xu Xinrong, Wu Yanbo, et al. Efficient high-order harmonics generation from overdense plasma irradiated by a two-color co-rotating circularly polarized laser pulse[J]. Optics Express, 2022, 30(9): 15470-15481. doi: 10.1364/OE.459866
|
[90] |
Li Qianni, Xu Xinrong, Wu Yanbo, et al. Generation of single circularly polarized attosecond pulse from near-critical density plasma irradiated by a two-color co-rotating circular polarized laser. (Under Review).
|
[91] |
郭博, 刘得翔, 吴双华, 等. 基于激光尾波加速的涡轮叶片高能X射线CT[J]. 强激光与粒子束, 2021, 33:074001 doi: 10.11884/HPLPB202133.210201
Guo Bo, Liu Dexiang, Wu Shuanghua, et al. Micro-focus computed tomography for turbine blade based on all-optical bremsstrahlung source[J]. High Power Laser and Particle Beams, 2021, 33: 074001 doi: 10.11884/HPLPB202133.210201
|
[92] |
Weeks K J, Litvinenko V N, Madey J M. The Compton backscattering process and radiotherapy[J]. Medical Physics, 1997, 24(3): 417-423. doi: 10.1118/1.597903
|
[93] |
高党忠, 赵学森, 马小军, 等. X射线相衬成像法检测内爆靶参数[J]. 强激光与粒子束, 2012, 24(11):2627-2630 doi: 10.3788/HPLPB20122411.2627
Gao Dangzhong, Zhao Xuesen, Ma Xiaojun, et al. Measurement of implosion target parameters by X-ray phase contrast imaging[J]. High Power Laser and Particle Beams, 2012, 24(11): 2627-2630 doi: 10.3788/HPLPB20122411.2627
|
[94] |
Kwan E, Rusev G, Adekola A S, et al. Discrete deexcitations in 235U below 3 MeV from nuclear resonance fluorescence[J]. Physical Review C, 2011, 83: 041601.
|
[95] |
Chen Hui, Link A, Sentoku Y, et al. The scaling of electron and positron generation in intense laser-solid interactions[J]. Physics of Plasmas, 2015, 22: 056705. doi: 10.1063/1.4921147
|
[96] |
Bulanov S V, Esirkepov T Z, Kando M, et al. On the problems of relativistic laboratory astrophysics and fundamental physics with super powerful lasers[J]. Plasma Physics Reports, 2015, 41(1): 1-51. doi: 10.1134/S1063780X15010018
|