Volume 35 Issue 3
Mar.  2023
Turn off MathJax
Article Contents
Li Yonglong, Yuan Xuelin, Liu Jiulong, et al. Jamming technology of distributed ultra-wideband electromagnetic pulse to ground receivers based on low-orbit satellites[J]. High Power Laser and Particle Beams, 2023, 35: 033006. doi: 10.11884/HPLPB202335.220225
Citation: Li Yonglong, Yuan Xuelin, Liu Jiulong, et al. Jamming technology of distributed ultra-wideband electromagnetic pulse to ground receivers based on low-orbit satellites[J]. High Power Laser and Particle Beams, 2023, 35: 033006. doi: 10.11884/HPLPB202335.220225

Jamming technology of distributed ultra-wideband electromagnetic pulse to ground receivers based on low-orbit satellites

doi: 10.11884/HPLPB202335.220225
  • Received Date: 2022-12-26
  • Accepted Date: 2023-01-05
  • Rev Recd Date: 2023-01-04
  • Available Online: 2023-01-10
  • Publish Date: 2023-03-01
  • With the prosperity and progress of anti-jamming technology, traditional jamming technologies represented by barrage and deception jamming are facing challenges. Therefore, a distributed ultra-wideband (UWB) electromagnetic pulse jamming technology based on low-orbit satellites is proposed in this paper. Compared with the traditional jammers, UWB electromagnetic pulse jamming is a new type of electromagnetic attack system. Initially, the power spectrum of repetitive UWB electromagnetic pulse is derived. Furthermore, the feasibility of distributed jamming technology is evaluated, and the transmit power required for distributed jamming based on low-orbit satellites is calculated. Finally, the effect of a low noise amplifier (LNA) in the navigation receiver is investigated in the UWB electromagnetic pulse jamming experiment, and the constellation layout of the low-orbit satellite for carrying jammers at mid-low latitudes is designed by Satellite Tool Kit (STK). The experimental results show that temporary gain compression occurs in the LNA under the jamming of the UWB electromagnetic pulse. UWB single pulse with a width of 0.7 ns can suppress the navigation signal by nearly 400 ns after through the LNA, and the signal can be completely suppressed under repetitive frequency. Consequently, the distributed UWB electromagnetic pulse jamming system based on low-orbit satellites can effectively enhance the jamming effect, which has the potential to achieve full coverage of the target area.
  • loading
  • [1]
    Yan Dashuang, Ni Shuyan. Overview of anti-jamming technologies for satellite navigation systems[C]//Proceedings of 2022 IEEE 6th Information Technology and Mechatronics Engineering Conference (ITOEC). 2022: 118-124.
    [2]
    Huang Xin, Chen Yazhou, Wang Yuming. Simulation of interference effects of UWB pulse signal to the GPS receiver[J]. Discrete Dynamics in Nature and Society, 2021, 2021: 9935543.
    [3]
    石玉彬. 分布式干扰技术研究[D]. 西安: 西安电子科技大学, 2013

    Shi Yubin. The study of distributed jamming[D]. Xi'an: Xidian University, 2013
    [4]
    田明浩. 星载GPS相关干扰技术研究[D]. 南京: 南京理工大学, 2008

    Tian Minghao. Research on the technology of correlation interference for GPS based on the star carry platform[D]. Nanjing: Nanjing University of Science and Technology, 2008
    [5]
    Zhang Zhengyi, Tao Mingliang, Gong Yanyun, et al. Performance evaluation for UAV-based distributed jamming system: an illustrative example[C]//Proceedings of 2021 IEEE 4th International Conference on Electronic Information and Communication Technology (ICEICT). 2021: 441-444.
    [6]
    杨勇. 防空反导雷达干扰与评估研究[D]. 西安: 西安电子科技大学, 2019

    Yang Yong. Research on jamming and evaluation of air defense and anti-missile radar[D]. Xi’an: Xidian University, 2019
    [7]
    Luo Zhaoyi, Deng Min, Yao Zhiqiang, et al. Distributed blanket jamming resource scheduling for satellite navigation based on particle swarm optimization and genetic algorithm[C]//Proceedings of 2020 IEEE 20th International Conference on Communication Technology (ICCT). 2020: 611-616.
    [8]
    杨猛, 宁辉, 张永栋, 等. 重频超宽带脉冲干扰低噪声放大器[J]. 强激光与粒子束, 2015, 27:083004 doi: 10.11884/HPLPB201527.083004

    Yang Meng, Ning Hui, Zhang Yongdong, et al. Interference effects of repetitive ultra-wideband pulses on low noise amplifier[J]. High Power Laser and Particle Beams, 2015, 27: 083004 doi: 10.11884/HPLPB201527.083004
    [9]
    孙正淳. 基于雪崩三极管Marx脉冲源的抖动抑制与峰值功率合成[D]. 成都: 电子科技大学, 2021

    Sun Zhengchun. Jitter suppression and peak power synthesis based on avalanche transistor Marx pulse source[D]. Chengdu: University of Electronic Science and Technology of China, 2021
    [10]
    张凯轩, 郭承军. GNSS导航接收机射频前端技术综述[C]//第十一届中国卫星导航年会. 2020

    Zhang Kaixuan, Guo Chengjun. Overview of RF front end technology for GNSS navigation receiver[C]//Proceedings of the 11th China Satellite Navigation Annual Conference. 2020
    [11]
    Qin Yingshuo, Chai Changchun, Li Fuxing, et al. Study of self-heating and high-power microwave effects for enhancement-mode p-gate GaN HEMT[J]. Micromachines, 2022, 13: 106. doi: 10.3390/mi13010106
    [12]
    Li Fuxing, Chai Changchun, Wu Han, et al. Study on high power microwave nonlinear effects and degradation characteristics of C-band low noise amplifier[J]. Microelectronics Reliability, 2022, 128: 114427. doi: 10.1016/j.microrel.2021.114427
    [13]
    Lin Qian, Jia Lining, Wu Haifeng, et al. Investigation on temperature behavior for a GaAs E-pHEMT MMIC LNA[J]. Micromachines, 2022, 13: 1121. doi: 10.3390/mi13071121
    [14]
    袁健锋, 陈正坤, 蔡佳炜, 等. 基于超宽带电磁脉冲的导航干扰[C]//第七届全国脉冲功率会议暨第八届全国特种电源学术交流会. 2021

    Yuan Jianfeng, Chen Zhengkun, Cai Jiawei, et al. Navigation interference based on ultra-wide band electromagnetic pulse[C]//Proceedings of the 7th National Pulse Power Conference and the 8th National Special Power Supply Academic Exchange Conference. 2021
    [15]
    Sakharov K Y, Sukhov A V, Ugolev V L, et al. Study of UWB electromagnetic pulse impact on commercial unmanned aerial vehicle[C]//Proceedings of 2018 International Symposium on Electromagnetic Compatibility (EMC EUROPE). 2018: 40-43.
    [16]
    鞠涛, 黄高明, 满欣. 任意分散布阵通信干扰机空间功率合成方法[J]. 火力与指挥控制, 2020, 45(8):57-61,67 doi: 10.3969/j.issn.1002-0640.2020.08.009

    Ju Tao, Huang Gaoming, Man Xin. A spatial power synthetic method for random distributed array communication jammers[J]. Fire Control & Command Control, 2020, 45(8): 57-61,67 doi: 10.3969/j.issn.1002-0640.2020.08.009
    [17]
    袁雪林, 徐哲锋, 张洪德, 等. UWB冲激雷达全固态高重频脉冲源设计[J]. 微波学报, 2008, 24(5):35-39

    Yuan Xuelin, Xu Zhefeng, Zhang Hongde, et al. Design of the full-solid high-repeatation pulser in UWB impulse radar[J]. Journal of Microwaves, 2008, 24(5): 35-39
    [18]
    相巳琪. 基于有限反馈的分布式干扰波束形成[D]. 西安: 西安电子科技大学, 2019

    Xiang Siqi. Distributed inference beamforming based on finite feedback[D]. Xi'an: Xidian University, 2019
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(2)

    Article views (957) PDF downloads(146) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return