Chen Xi, Fu Jiwei, Wu Qiang, et al. Evaluation method for shielding effectiveness cabins in complex transportable systems[J]. High Power Laser and Particle Beams, 2016, 28: 113203. doi: 10.11884/HPLPB201628.160116
Citation: Huang Ruixian, Xi Chuanyi, Han Liqi, et al. Current situation and development trend analysis of femtosecond laser Betatron radiation source[J]. High Power Laser and Particle Beams, 2023, 35: 012009. doi: 10.11884/HPLPB202335.220229

Current situation and development trend analysis of femtosecond laser Betatron radiation source

doi: 10.11884/HPLPB202335.220229
  • Received Date: 2022-07-18
  • Rev Recd Date: 2022-09-13
  • Available Online: 2022-09-22
  • Publish Date: 2023-01-15
  • In the past decades, great progress has been made in laser wakefield acceleration of electron beam inspired by ultra-short intense lasers in plasma. The high-energy electron beam obtained by this method can be applied to the generation of the high-brightness and intense radiation sources, which have attracted extensive attention. In this paper, the basic principle and research status of Betatron radiation generated by laser wakefield acceleration are briefly introduced. The development trend of Betatron radiation is analyzed in combination with the X-ray application requirements. It is found that there is an urgent need to develop a new scheme of laser wakefield electron acceleration based on compact laser device to break through the limit of beam-loading effect on electron charge. By this means, one can generate large charge electron beam and high flux Betatron radiation source. Finally, a new scheme is briefly introduced to generate 10 nC high-energy electron beam and the photon number of Betatron radiation source reach 1.0×1012/shot using hundreds of TW femtosecond laser by a joint team led by Professor Yan Xueqing at Peking Univesity.
  • [1]
    Einstein A. On the special and general theory of relativity[J]. CPAE (English translation), 1917, 6: 247-420.
    [2]
    Strickland D, Mourou G. Compression of amplified chirped optical pulses[J]. Optics Communications, 1985, 55(6): 447-449. doi: 10.1016/0030-4018(85)90151-8
    [3]
    马文君, 刘志鹏, 王鹏杰, 等. 激光加速高能质子实验研究进展及新加速方案[J]. 物理学报, 2021, 70:084102 doi: 10.7498/aps.70.20202115

    Ma Wenjun, Liu Zhipeng, Wang Pengjie, et al. Experimental progress of laser-driven high-energy proton acceleration and new acceleration schemes[J]. Acta Physica Sinica, 2021, 70: 084102 doi: 10.7498/aps.70.20202115
    [4]
    彭梓洋, 曹正轩, 高营, 等. 液体薄膜靶在激光驱动辐射源和激光离子加速中的应用[J]. 强激光与粒子束, 2022, 34:081003 doi: 10.11884/HPLPB202234.220107

    Peng Ziyang, Cao Zhengxuan, Gao Ying, et al. Application of liquid film targets in laser-driven radiation sources and laser ion acceleration[J]. High Power Laser and Particle Beams, 2022, 34: 081003 doi: 10.11884/HPLPB202234.220107
    [5]
    Albert F, Thomas A G R, Mangles S P D, et al. Laser wakefield accelerator based light sources: potential applications and requirements[J]. Plasma Physics and Controlled Fusion, 2014, 56: 084015. doi: 10.1088/0741-3335/56/8/084015
    [6]
    Albert F, Thomas A G R. Applications of laser wakefield accelerator-based light sources[J]. Plasma Physics and Controlled Fusion, 2016, 58: 103001. doi: 10.1088/0741-3335/58/10/103001
    [7]
    Corde S, Phuoc K T, Lambert G, et al. Femtosecond X rays from laser-plasma accelerators[J]. Reviews of Modern Physics, 2013, 85(1): 1-48. doi: 10.1103/RevModPhys.85.1
    [8]
    Schlenvoigt H P, Haupt K, Debus A, et al. A compact synchrotron radiation source driven by a laser-plasma wakefield accelerator[J]. Nature Physics, 2008, 4(2): 130-133. doi: 10.1038/nphys811
    [9]
    Pukhov A, Kiselev S, Kostyukov I, et al. Relativistic laser-plasma bubbles: new sources of energetic particles and X-rays[J]. Nuclear Fusion, 2004, 44(12): S191-S201. doi: 10.1088/0029-5515/44/12/S09
    [10]
    Kiselev S, Pukhov A, Kostyukov I. X-ray generation in strongly nonlinear plasma waves[J]. Physical Review Letters, 2004, 93: 135004. doi: 10.1103/PhysRevLett.93.135004
    [11]
    陈民, 刘峰, 李博原, 等. 激光等离子体尾波加速器的发展和展望[J]. 强激光与粒子束, 2020, 32:092001 doi: 10.11884/HPLPB202032.200174

    Chen Min, Liu Feng, Li Boyuan, et al. Development and prospect of laser plasma wakefield accelerator[J]. High Power Laser and Particle Beams, 2020, 32: 092001 doi: 10.11884/HPLPB202032.200174
    [12]
    Pukhov A, Meyer-Ter-Vehn J. Laser wake field acceleration: the highly non-linear broken-wave regime[J]. Applied Physics B, 2002, 74(4): 355-361.
    [13]
    Jackson J D. Classical electrodynamics[M]. 3rd ed. New York: Wiley, 1999.
    [14]
    Wang Shuoqin, Clayton C E, Blue B E, et al. X-ray emission from betatron motion in a plasma wiggler[J]. Physical Review Letters, 2002, 88: 135004. doi: 10.1103/PhysRevLett.88.135004
    [15]
    Németh K, Shen Baifei, Li Yuelin, et al. Laser-driven coherent betatron oscillation in a laser-wakefield cavity[J]. Physical Review Letters, 2008, 100: 095002. doi: 10.1103/PhysRevLett.100.095002
    [16]
    Ta Phuoc K, Corde S, Shah R, et al. Imaging electron trajectories in a laser-wakefield cavity using betatron X-ray radiation[J]. Physical Review Letters, 2006, 97: 225002. doi: 10.1103/PhysRevLett.97.225002
    [17]
    Corde S, Thaury C, Phuoc K T, et al. Mapping the X-ray emission region in a laser-plasma accelerator[J]. Physical Review Letters, 2011, 107: 215004. doi: 10.1103/PhysRevLett.107.215004
    [18]
    Fourmaux S, Corde S, Ta Phuoc K, et al. Demonstration of the synchrotron-type spectrum of laser-produced Betatron radiation[J]. New Journal of Physics, 2011, 13: 033017. doi: 10.1088/1367-2630/13/3/033017
    [19]
    Schnell M, Sävert A, Landgraf B, et al. Deducing the electron-beam diameter in a laser-plasma accelerator using X-ray betatron radiation[J]. Physical Review Letters, 2012, 108: 075001. doi: 10.1103/PhysRevLett.108.075001
    [20]
    Feng Jie, Li Yifei, Geng Xiaotao, et al. Circularly polarized X-ray generation from an ionization induced laser plasma electron accelerator[J]. Plasma Physics and Controlled Fusion, 2020, 62: 105021. doi: 10.1088/1361-6587/abaf0b
    [21]
    Kneip S, McGuffey C, Martins J L, et al. Bright spatially coherent synchrotron X-rays from a table-top source[J]. Nature Physics, 2010, 6(12): 980-983. doi: 10.1038/nphys1789
    [22]
    Cipiccia S, Islam M R, Ersfeld B, et al. Gamma-rays from harmonically resonant betatron oscillations in a plasma wake[J]. Nature Physics, 2011, 7(11): 867-871. doi: 10.1038/nphys2090
    [23]
    Ferri J, Corde S, Döpp A, et al. High-brilliance betatron γ-ray source powered by laser-accelerated electrons[J]. Physical Review Letters, 2018, 120: 254802. doi: 10.1103/PhysRevLett.120.254802
    [24]
    Lei Bifeng, Wang Jingwei, Kharin V, et al. γ-ray generation from plasma wakefield resonant wiggler[J]. Physical Review Letters, 2018, 120: 134801. doi: 10.1103/PhysRevLett.120.134801
    [25]
    Yu Tongpu, Pukhov A, Sheng Zhengming, et al. Bright betatronlike X rays from radiation pressure acceleration of a mass-limited foil target[J]. Physical Review Letters, 2013, 110: 045001. doi: 10.1103/PhysRevLett.110.045001
    [26]
    Lécz Z, Andreev A, Hafz N. Substantial enhancement of betatron radiation in cluster targets[J]. Physical Review E, 2020, 102: 053205. doi: 10.1103/PhysRevE.102.053205
    [27]
    Chen Liming, Yan Wenchao, Li D Z, et al. Bright betatron X-ray radiation from a laser-driven-clustering gas target[J]. Scientific Reports, 2013, 3: 1912. doi: 10.1038/srep01912
    [28]
    Dong Chuanfei, Zhao T Z, Behm K, et al. High flux femtosecond X-ray emission from the electron-hose instability in laser wakefield accelerators[J]. Physical Review Accelerators and Beams, 2018, 21: 041303. doi: 10.1103/PhysRevAccelBeams.21.041303
    [29]
    Li Yifei, Feng Jie, Tan Junhao, et al. Electron beam and betatron X-ray generation in a hybrid electron accelerator driven by high intensity picosecond laser pulses[J]. High Energy Density Physics, 2020, 37: 100859. doi: 10.1016/j.hedp.2020.100859
    [30]
    Tomkus V, Girdauskas V, Dudutis J, et al. Laser wakefield accelerated electron beams and betatron radiation from multijet gas targets[J]. Scientific Reports, 2020, 10: 16807. doi: 10.1038/s41598-020-73805-7
    [31]
    Shen Xiaofei, Pukhov A, Günther M M, et al. Bright betatron X-rays generation from picosecond laser interactions with long-scale near critical density plasmas[J]. Applied Physics Letters, 2021, 118: 134102. doi: 10.1063/5.0042997
    [32]
    Kozlova M, Andriyash I, Gautier J, et al. Hard X rays from laser-wakefield accelerators in density tailored plasmas[J]. Physical Review X, 2020, 10: 011061.
    [33]
    Corde S, Phuoc K T, Fitour R, et al. Controlled betatron X-ray radiation from tunable optically injected electrons[J]. Physical Review Letters, 2011, 107: 255003. doi: 10.1103/PhysRevLett.107.255003
    [34]
    Döpp A, Mahieu B, Lifschitz A, et al. Stable femtosecond X-rays with tunable polarization from a laser-driven accelerator[J]. Light: Science & Applications, 2017, 6: e17086.
    [35]
    Zhang Guobo, Chen Min, Yang Xiaohu, et al. Betatron radiation polarization control by using an off-axis ionization injection in a laser wakefield acceleration[J]. Optics Express, 2020, 28(20): 29927-29936. doi: 10.1364/OE.404723
    [36]
    Rao B S, Cho M H, Kim H T, et al. Optical shaping of plasma cavity for controlled laser wakefield acceleration[J]. Physical Review Research, 2020, 2: 043319. doi: 10.1103/PhysRevResearch.2.043319
    [37]
    Rousse A, Ta Phuoc K, Shah R, et al. Production of a keV X-ray beam from synchrotron radiation in relativistic laser-plasma interaction[J]. Physical Review Letters, 2004, 93: 135005. doi: 10.1103/PhysRevLett.93.135005
    [38]
    Kneip S, Nagel S R, Bellei C, et al. Observation of synchrotron radiation from electrons accelerated in a petawatt-laser-generated plasma cavity[J]. Physical Review Letters, 2008, 100: 105006. doi: 10.1103/PhysRevLett.100.105006
    [39]
    Mangles S P D, Genoud G, Kneip S, et al. Controlling the spectrum of X-rays generated in a laser-plasma accelerator by tailoring the laser wavefront[J]. Applied Physics Letters, 2009, 95: 181106. doi: 10.1063/1.3258022
    [40]
    Thorn D B, Geddes C G R, Matlis N H, et al. Spectroscopy of betatron radiation emitted from laser-produced wakefield accelerated electrons[J]. Review of Scientific Instruments, 2010, 81: 10E325. doi: 10.1063/1.3479118
    [41]
    Genoud G, Cassou K, Wojda F, et al. Laser-plasma electron acceleration in dielectric capillary tubes[J]. Applied Physics B, 2011, 105(2): 309-316. doi: 10.1007/s00340-011-4639-4
    [42]
    Fourmaux S, Corde S, Phuoc K T, et al. Single shot phase contrast imaging using laser-produced betatron X-ray beams[J]. Optics Letters, 2011, 36(13): 2426-2428. doi: 10.1364/OL.36.002426
    [43]
    Ju Jinchuan, Svensson K, Döpp A, et al. Enhancement of X-rays generated by a guided laser wakefield accelerator inside capillary tubes[J]. Applied Physics Letters, 2012, 100: 191106. doi: 10.1063/1.4712594
    [44]
    Wang Xiaoming, Zgadzaj R, Fazel N, et al. Quasi-monoenergetic laser-plasma acceleration of electrons to 2 GeV[J]. Nature Communications, 2013, 4: 1988. doi: 10.1038/ncomms2988
    [45]
    Schnell M, Sävert A, Uschmann I, et al. Optical control of hard X-ray polarization by electron injection in a laser wakefield accelerator[J]. Nature Communications, 2013, 4: 2421. doi: 10.1038/ncomms3421
    [46]
    Ho Y C, Hung T S, Jhou J G, et al. Induction of electron injection and betatron oscillation in a plasma-waveguide-based laser wakefield accelerator by modification of waveguide structure[J]. Physics of Plasmas, 2013, 20: 083104. doi: 10.1063/1.4817294
    [47]
    Wenz J, Schleede S, Khrennikov K, et al. Quantitative X-ray phase-contrast microtomography from a compact laser-driven betatron source[J]. Nature Communications, 2015, 6: 7568. doi: 10.1038/ncomms8568
    [48]
    Cole J M, Wood J C, Lopes N C, et al. Laser wakefield accelerators as hard X-ray sources for 3D medical imaging of human bone[J]. Scientific Reports, 2015, 5: 13244. doi: 10.1038/srep13244
    [49]
    Huang K, Li Y F, Li D Z, et al. Resonantly enhanced betatron hard X-rays from ionization injected electrons in a laser plasma accelerator[J]. Scientific Reports, 2016, 6: 27633. doi: 10.1038/srep27633
    [50]
    Döpp A, Hehn L, Götzfried J, et al. Quick X-ray microtomography using a laser-driven betatron source[J]. Optica, 2018, 5(2): 199-203. doi: 10.1364/OPTICA.5.000199
    [51]
    张秋菊, 盛政明, 张杰. 周期量级超短激光脉冲在近临界密度等离子体中形成的光孤子[J]. 物理学报, 2004, 53(3):798-802 doi: 10.7498/aps.53.798

    Zhang Qiuju, Sheng Zhengming, Zhang Jie. Solitons formed by ultrashort laser pulses propagating in a plasma[J]. Acta Physica Sinica, 2004, 53(3): 798-802 doi: 10.7498/aps.53.798
    [52]
    Pukhov A, Sheng Z M, Meyer-Ter-Vehn J. Particle acceleration in relativistic laser channels[J]. Physics of Plasmas, 1999, 6(7): 2847-2854. doi: 10.1063/1.873242
  • Relative Articles

    [1]Liu Jiaxi, Wu Junying, Yang Lijun, Li Yaojiang, Wu Jiaojiao, Lu Jianying, Chen Lang. Analysis of thermal effect on explosives of single-pulse femtosecond laser ablation[J]. High Power Laser and Particle Beams, 2020, 32(7): 071007. doi: 10.11884/HPLPB202032.200061
    [2]Wang Xinmei, Zheng Zebin, Fan Yingbao, Lai Mingwei, Wei Jinyu, Wu Xinyu. A focus automatic positioning system of high-power laser beam based on plasma ultraviolet radiation[J]. High Power Laser and Particle Beams, 2019, 31(9): 091006. doi: 10.11884/HPLPB201931.190252
    [3]Guo Luting, Wei Minxi, Hu Xin, Deng Keli, Chen Tao, Deng Bo, Zhang Lu, Zhao Yang, Li Jin, Xiao Shaoqiu, Liu Shenye. High performance streaked X-ray spectrometer for research of laser-produced plasmas[J]. High Power Laser and Particle Beams, 2016, 28(02): 022005. doi: 10.11884/HPLPB201628.022005
    [4]Sun Shaohua, Liu Xiaoliang, Sun Mingze, Cao Yu, Shi Yanchao, Zhao Peixi, Hu Bitao. Experimental study on spectra of femtosecond-laser-induced low-pressure Ni plasma[J]. High Power Laser and Particle Beams, 2014, 26(05): 052006. doi: 10.11884/HPLPB201426.052006
    [5]Abudurexiti A, Pazilaiti A, Mijit F. Thermoelectric mechanism for self-generated magnetic field in femtosecond laser-plasma interaction[J]. High Power Laser and Particle Beams, 2013, 25(07): 1709-1710. doi: 10.3788/HPLPB20132507.1709
    [6]Hu Qianglin, Xiao Guilan, Yu Xiaoguang. Radiation damping effects in ultra-intense laser-plasma interaction[J]. High Power Laser and Particle Beams, 2013, 25(06): 1379-1382. doi: 10.3788/HPLPB20132506.1379
    [7]Yang Qingguo, Li Zeren, Yang Libing, Chen Guanghua, Huang Xianbin, Cai Hongchun, Li Jing, Xiao Shali. K-shell emission monochromatic X-ray imaging of Z-pinch plasmas[J]. High Power Laser and Particle Beams, 2012, 24(05): 1081-1084. doi: 10.3788/HPLPB20122405.1081
    [8]Wang Guangchang, Ma Chunsheng, Zhang JianWei, Bai Chunyan, Liu Yuhong, Zheng Zhijian. 飞秒激光渡越辐射时间特性的实验研究[J]. High Power Laser and Particle Beams, 2012, 24(06): 1419-1423. doi: 10.3788/HPLPB20122406.1419
    [9]xu han, tian youwei, zhuo hongbin. Spatial characteristics of emission from electron oscillation driven by femtosecond laser pulses[J]. High Power Laser and Particle Beams, 2011, 23(05): 0- .
    [10]liu liwei, qu lu, tan yong, zhang xihe. Plasma spectrum analysis of monocrystalline silicon irradiated by pulsed laser[J]. High Power Laser and Particle Beams, 2010, 22(08): 0- .
    [11]chen huaying, liu sanqiu. Collapse behavior of laser beam in plasma[J]. High Power Laser and Particle Beams, 2010, 22(12): 0- .
    [12]xu yuan, wu dong-jiang, liu yue. Numerical simulation on plasma characteristics of Ge ablated by pulse laser[J]. High Power Laser and Particle Beams, 2007, 19(09): 0- .
    [13]lin chen, zhang li-wen, qin xiao, gao jun-yi. Conductivity of self-guided laser plasma channel produced by femtosecond laser pulses in air[J]. High Power Laser and Particle Beams, 2007, 19(05): 0- .
    [14]cai da-feng, gu yu-qiu, zheng zhi-jian, zhou wei-min, jiao chun-ye, wen tian-shu, chunyu shu-tai. Fast electron energy distribution in femtosecond laser plasma interactions[J]. High Power Laser and Particle Beams, 2007, 19(04): 0- .
    [15]li hong-xia, lou qi-hong, dong jing-xing, wei yun-rong. Excimer laser plasma switch controlling laser pulse duration[J]. High Power Laser and Particle Beams, 2006, 18(07): 0- .
    [16]tian you-wei, yu wei, lu pei-iang, he feng, xu han. Broadening and redshift of harmonic emission from electron oscillation driven by femtosecond intense laser pulses[J]. High Power Laser and Particle Beams, 2005, 17(12): 0- .
    [17]wu jian-qiang. Cherenkov radiation in a plasma-filled, dielectric coaxial waveguide[J]. High Power Laser and Particle Beams, 2004, 16(11): 0- .
    [18]cai da-feng, gu yu-qiu, zheng zhi-jian, yang xiang-dong, wen tian shu, chunyu shu-tai. Measurement of hot electron energy spectrum in femtosecond laserplasma[J]. High Power Laser and Particle Beams, 2003, 15(06): 0- .
    [20]yan jun, qu yizhi, li jiaming. Simulations of X ray Transmission through LaserProduced Plasmas[J]. High Power Laser and Particle Beams, 1999, 11(01): 0- .
  • Cited by

    Periodical cited type(5)

    1. 周纭加,赵民,付继伟,龙中权. 基于粒子群算法的火箭抗雷电加固设计. 兵器装备工程学报. 2023(03): 281-287 .
    2. 石广军,夏睿. 直升机复杂机体结构屏蔽性能测试方法研究. 安全与电磁兼容. 2021(03): 31-33+40 .
    3. 李兴福,郭琦. 基于隶属度函数的飞机结构防护有效性分析. 现代制造技术与装备. 2020(11): 117-120 .
    4. 刘强,徐勇,孟雪松,郑宇腾,闫丽萍,周海京. 基于CP-FDTD的复杂细缝屏蔽效能分析方法. 强激光与粒子束. 2019(10): 55-60 . 本站查看
    5. 龙中权,赵民,付继伟,陈曦,齐欢. 固体运载火箭抗强电磁脉冲优化设计方法. 宇航学报. 2018(10): 1141-1147 .

    Other cited types(0)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-04020406080
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 15.4 %FULLTEXT: 15.4 %META: 72.3 %META: 72.3 %PDF: 12.3 %PDF: 12.3 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 5.7 %其他: 5.7 %其他: 3.0 %其他: 3.0 %China: 0.1 %China: 0.1 %Falls Church: 0.0 %Falls Church: 0.0 %Seattle: 0.0 %Seattle: 0.0 %Taichung: 0.0 %Taichung: 0.0 %United States: 0.1 %United States: 0.1 %[]: 1.7 %[]: 1.7 %三明: 0.0 %三明: 0.0 %三门峡: 0.0 %三门峡: 0.0 %上海: 5.6 %上海: 5.6 %东京: 0.1 %东京: 0.1 %东莞: 0.3 %东莞: 0.3 %中山: 0.1 %中山: 0.1 %临汾: 0.1 %临汾: 0.1 %丹东: 0.0 %丹东: 0.0 %丽水: 0.0 %丽水: 0.0 %乐山: 0.0 %乐山: 0.0 %伦敦: 0.6 %伦敦: 0.6 %保定: 0.4 %保定: 0.4 %光州: 0.0 %光州: 0.0 %兰州: 0.2 %兰州: 0.2 %兴安盟: 0.1 %兴安盟: 0.1 %内江: 0.1 %内江: 0.1 %加利福尼亚州: 0.0 %加利福尼亚州: 0.0 %北京: 7.7 %北京: 7.7 %十堰: 0.2 %十堰: 0.2 %南京: 0.3 %南京: 0.3 %南充: 0.2 %南充: 0.2 %南昌: 0.5 %南昌: 0.5 %南通: 0.0 %南通: 0.0 %台北: 0.1 %台北: 0.1 %台州: 0.2 %台州: 0.2 %合肥: 1.2 %合肥: 1.2 %吉林: 0.0 %吉林: 0.0 %呼和浩特: 0.0 %呼和浩特: 0.0 %哈尔滨: 0.1 %哈尔滨: 0.1 %哥伦布: 0.0 %哥伦布: 0.0 %喀什: 0.1 %喀什: 0.1 %嘉兴: 0.1 %嘉兴: 0.1 %大连: 2.1 %大连: 2.1 %天水: 0.0 %天水: 0.0 %天津: 0.6 %天津: 0.6 %太原: 0.1 %太原: 0.1 %奥斯汀: 0.2 %奥斯汀: 0.2 %安庆: 0.0 %安庆: 0.0 %安康: 0.2 %安康: 0.2 %官坑: 0.0 %官坑: 0.0 %宜昌: 0.0 %宜昌: 0.0 %宜春: 0.1 %宜春: 0.1 %宣城: 0.4 %宣城: 0.4 %宿迁: 0.0 %宿迁: 0.0 %密蘇里城: 0.1 %密蘇里城: 0.1 %岳阳: 0.1 %岳阳: 0.1 %巴音郭楞: 0.1 %巴音郭楞: 0.1 %常州: 0.1 %常州: 0.1 %常德: 0.2 %常德: 0.2 %广州: 1.1 %广州: 1.1 %廊坊: 0.1 %廊坊: 0.1 %张家口: 1.2 %张家口: 1.2 %张家界: 0.4 %张家界: 0.4 %德黑兰: 0.2 %德黑兰: 0.2 %悉尼: 0.1 %悉尼: 0.1 %慕尼黑: 0.1 %慕尼黑: 0.1 %成都: 1.4 %成都: 1.4 %扬州: 0.0 %扬州: 0.0 %新余: 0.0 %新余: 0.0 %新泽西州: 0.1 %新泽西州: 0.1 %无锡: 0.1 %无锡: 0.1 %昆明: 0.5 %昆明: 0.5 %晋城: 0.0 %晋城: 0.0 %普洱: 0.0 %普洱: 0.0 %曼彻斯特: 0.0 %曼彻斯特: 0.0 %朝阳: 0.1 %朝阳: 0.1 %杜塞尔多夫: 0.3 %杜塞尔多夫: 0.3 %杭州: 0.9 %杭州: 0.9 %林肯: 0.6 %林肯: 0.6 %武汉: 0.5 %武汉: 0.5 %毕节: 0.0 %毕节: 0.0 %沈阳: 0.0 %沈阳: 0.0 %泰安: 0.0 %泰安: 0.0 %泰州: 0.1 %泰州: 0.1 %洛杉矶: 0.1 %洛杉矶: 0.1 %洛阳: 0.1 %洛阳: 0.1 %济宁: 0.1 %济宁: 0.1 %淄博: 0.1 %淄博: 0.1 %深圳: 1.6 %深圳: 1.6 %温州: 0.2 %温州: 0.2 %渭南: 0.1 %渭南: 0.1 %湖州: 0.1 %湖州: 0.1 %湘潭: 0.5 %湘潭: 0.5 %漯河: 0.5 %漯河: 0.5 %潜江: 0.0 %潜江: 0.0 %濮阳: 0.1 %濮阳: 0.1 %石家庄: 0.4 %石家庄: 0.4 %秦皇岛: 0.1 %秦皇岛: 0.1 %约翰内斯堡: 0.1 %约翰内斯堡: 0.1 %绵阳: 1.8 %绵阳: 1.8 %罗莫朗坦朗特奈: 0.1 %罗莫朗坦朗特奈: 0.1 %芒廷维尤: 18.1 %芒廷维尤: 18.1 %芝加哥: 0.2 %芝加哥: 0.2 %莫斯科: 0.2 %莫斯科: 0.2 %菏泽: 0.0 %菏泽: 0.0 %萨默维尔: 0.3 %萨默维尔: 0.3 %衡水: 0.0 %衡水: 0.0 %衡阳: 0.4 %衡阳: 0.4 %襄阳: 0.0 %襄阳: 0.0 %西宁: 21.6 %西宁: 21.6 %西安: 1.3 %西安: 1.3 %诺沃克: 1.8 %诺沃克: 1.8 %贵港: 0.0 %贵港: 0.0 %贵阳: 0.4 %贵阳: 0.4 %费利蒙: 0.0 %费利蒙: 0.0 %资阳: 0.0 %资阳: 0.0 %运城: 1.0 %运城: 1.0 %连云港: 0.0 %连云港: 0.0 %遵义: 0.1 %遵义: 0.1 %邯郸: 0.0 %邯郸: 0.0 %郑州: 0.5 %郑州: 0.5 %都伯林: 0.1 %都伯林: 0.1 %重庆: 0.3 %重庆: 0.3 %铁岭: 0.2 %铁岭: 0.2 %锦州: 0.0 %锦州: 0.0 %长春: 0.0 %长春: 0.0 %长沙: 2.6 %长沙: 2.6 %青岛: 0.3 %青岛: 0.3 %马鞍山: 0.0 %马鞍山: 0.0 %驻马店: 0.1 %驻马店: 0.1 %其他其他ChinaFalls ChurchSeattleTaichungUnited States[]三明三门峡上海东京东莞中山临汾丹东丽水乐山伦敦保定光州兰州兴安盟内江加利福尼亚州北京十堰南京南充南昌南通台北台州合肥吉林呼和浩特哈尔滨哥伦布喀什嘉兴大连天水天津太原奥斯汀安庆安康官坑宜昌宜春宣城宿迁密蘇里城岳阳巴音郭楞常州常德广州廊坊张家口张家界德黑兰悉尼慕尼黑成都扬州新余新泽西州无锡昆明晋城普洱曼彻斯特朝阳杜塞尔多夫杭州林肯武汉毕节沈阳泰安泰州洛杉矶洛阳济宁淄博深圳温州渭南湖州湘潭漯河潜江濮阳石家庄秦皇岛约翰内斯堡绵阳罗莫朗坦朗特奈芒廷维尤芝加哥莫斯科菏泽萨默维尔衡水衡阳襄阳西宁西安诺沃克贵港贵阳费利蒙资阳运城连云港遵义邯郸郑州都伯林重庆铁岭锦州长春长沙青岛马鞍山驻马店

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(3)  / Tables(1)

    Article views (1460) PDF downloads(261) Cited by(5)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return