Citation: | Huang Ruixian, Xi Chuanyi, Han Liqi, et al. Current situation and development trend analysis of femtosecond laser Betatron radiation source[J]. High Power Laser and Particle Beams, 2023, 35: 012009. doi: 10.11884/HPLPB202335.220229 |
[1] |
Einstein A. On the special and general theory of relativity[J]. CPAE (English translation), 1917, 6: 247-420.
|
[2] |
Strickland D, Mourou G. Compression of amplified chirped optical pulses[J]. Optics Communications, 1985, 55(6): 447-449. doi: 10.1016/0030-4018(85)90151-8
|
[3] |
马文君, 刘志鹏, 王鹏杰, 等. 激光加速高能质子实验研究进展及新加速方案[J]. 物理学报, 2021, 70:084102 doi: 10.7498/aps.70.20202115
Ma Wenjun, Liu Zhipeng, Wang Pengjie, et al. Experimental progress of laser-driven high-energy proton acceleration and new acceleration schemes[J]. Acta Physica Sinica, 2021, 70: 084102 doi: 10.7498/aps.70.20202115
|
[4] |
彭梓洋, 曹正轩, 高营, 等. 液体薄膜靶在激光驱动辐射源和激光离子加速中的应用[J]. 强激光与粒子束, 2022, 34:081003 doi: 10.11884/HPLPB202234.220107
Peng Ziyang, Cao Zhengxuan, Gao Ying, et al. Application of liquid film targets in laser-driven radiation sources and laser ion acceleration[J]. High Power Laser and Particle Beams, 2022, 34: 081003 doi: 10.11884/HPLPB202234.220107
|
[5] |
Albert F, Thomas A G R, Mangles S P D, et al. Laser wakefield accelerator based light sources: potential applications and requirements[J]. Plasma Physics and Controlled Fusion, 2014, 56: 084015. doi: 10.1088/0741-3335/56/8/084015
|
[6] |
Albert F, Thomas A G R. Applications of laser wakefield accelerator-based light sources[J]. Plasma Physics and Controlled Fusion, 2016, 58: 103001. doi: 10.1088/0741-3335/58/10/103001
|
[7] |
Corde S, Phuoc K T, Lambert G, et al. Femtosecond X rays from laser-plasma accelerators[J]. Reviews of Modern Physics, 2013, 85(1): 1-48. doi: 10.1103/RevModPhys.85.1
|
[8] |
Schlenvoigt H P, Haupt K, Debus A, et al. A compact synchrotron radiation source driven by a laser-plasma wakefield accelerator[J]. Nature Physics, 2008, 4(2): 130-133. doi: 10.1038/nphys811
|
[9] |
Pukhov A, Kiselev S, Kostyukov I, et al. Relativistic laser-plasma bubbles: new sources of energetic particles and X-rays[J]. Nuclear Fusion, 2004, 44(12): S191-S201. doi: 10.1088/0029-5515/44/12/S09
|
[10] |
Kiselev S, Pukhov A, Kostyukov I. X-ray generation in strongly nonlinear plasma waves[J]. Physical Review Letters, 2004, 93: 135004. doi: 10.1103/PhysRevLett.93.135004
|
[11] |
陈民, 刘峰, 李博原, 等. 激光等离子体尾波加速器的发展和展望[J]. 强激光与粒子束, 2020, 32:092001 doi: 10.11884/HPLPB202032.200174
Chen Min, Liu Feng, Li Boyuan, et al. Development and prospect of laser plasma wakefield accelerator[J]. High Power Laser and Particle Beams, 2020, 32: 092001 doi: 10.11884/HPLPB202032.200174
|
[12] |
Pukhov A, Meyer-Ter-Vehn J. Laser wake field acceleration: the highly non-linear broken-wave regime[J]. Applied Physics B, 2002, 74(4): 355-361.
|
[13] |
Jackson J D. Classical electrodynamics[M]. 3rd ed. New York: Wiley, 1999.
|
[14] |
Wang Shuoqin, Clayton C E, Blue B E, et al. X-ray emission from betatron motion in a plasma wiggler[J]. Physical Review Letters, 2002, 88: 135004. doi: 10.1103/PhysRevLett.88.135004
|
[15] |
Németh K, Shen Baifei, Li Yuelin, et al. Laser-driven coherent betatron oscillation in a laser-wakefield cavity[J]. Physical Review Letters, 2008, 100: 095002. doi: 10.1103/PhysRevLett.100.095002
|
[16] |
Ta Phuoc K, Corde S, Shah R, et al. Imaging electron trajectories in a laser-wakefield cavity using betatron X-ray radiation[J]. Physical Review Letters, 2006, 97: 225002. doi: 10.1103/PhysRevLett.97.225002
|
[17] |
Corde S, Thaury C, Phuoc K T, et al. Mapping the X-ray emission region in a laser-plasma accelerator[J]. Physical Review Letters, 2011, 107: 215004. doi: 10.1103/PhysRevLett.107.215004
|
[18] |
Fourmaux S, Corde S, Ta Phuoc K, et al. Demonstration of the synchrotron-type spectrum of laser-produced Betatron radiation[J]. New Journal of Physics, 2011, 13: 033017. doi: 10.1088/1367-2630/13/3/033017
|
[19] |
Schnell M, Sävert A, Landgraf B, et al. Deducing the electron-beam diameter in a laser-plasma accelerator using X-ray betatron radiation[J]. Physical Review Letters, 2012, 108: 075001. doi: 10.1103/PhysRevLett.108.075001
|
[20] |
Feng Jie, Li Yifei, Geng Xiaotao, et al. Circularly polarized X-ray generation from an ionization induced laser plasma electron accelerator[J]. Plasma Physics and Controlled Fusion, 2020, 62: 105021. doi: 10.1088/1361-6587/abaf0b
|
[21] |
Kneip S, McGuffey C, Martins J L, et al. Bright spatially coherent synchrotron X-rays from a table-top source[J]. Nature Physics, 2010, 6(12): 980-983. doi: 10.1038/nphys1789
|
[22] |
Cipiccia S, Islam M R, Ersfeld B, et al. Gamma-rays from harmonically resonant betatron oscillations in a plasma wake[J]. Nature Physics, 2011, 7(11): 867-871. doi: 10.1038/nphys2090
|
[23] |
Ferri J, Corde S, Döpp A, et al. High-brilliance betatron γ-ray source powered by laser-accelerated electrons[J]. Physical Review Letters, 2018, 120: 254802. doi: 10.1103/PhysRevLett.120.254802
|
[24] |
Lei Bifeng, Wang Jingwei, Kharin V, et al. γ-ray generation from plasma wakefield resonant wiggler[J]. Physical Review Letters, 2018, 120: 134801. doi: 10.1103/PhysRevLett.120.134801
|
[25] |
Yu Tongpu, Pukhov A, Sheng Zhengming, et al. Bright betatronlike X rays from radiation pressure acceleration of a mass-limited foil target[J]. Physical Review Letters, 2013, 110: 045001. doi: 10.1103/PhysRevLett.110.045001
|
[26] |
Lécz Z, Andreev A, Hafz N. Substantial enhancement of betatron radiation in cluster targets[J]. Physical Review E, 2020, 102: 053205. doi: 10.1103/PhysRevE.102.053205
|
[27] |
Chen Liming, Yan Wenchao, Li D Z, et al. Bright betatron X-ray radiation from a laser-driven-clustering gas target[J]. Scientific Reports, 2013, 3: 1912. doi: 10.1038/srep01912
|
[28] |
Dong Chuanfei, Zhao T Z, Behm K, et al. High flux femtosecond X-ray emission from the electron-hose instability in laser wakefield accelerators[J]. Physical Review Accelerators and Beams, 2018, 21: 041303. doi: 10.1103/PhysRevAccelBeams.21.041303
|
[29] |
Li Yifei, Feng Jie, Tan Junhao, et al. Electron beam and betatron X-ray generation in a hybrid electron accelerator driven by high intensity picosecond laser pulses[J]. High Energy Density Physics, 2020, 37: 100859. doi: 10.1016/j.hedp.2020.100859
|
[30] |
Tomkus V, Girdauskas V, Dudutis J, et al. Laser wakefield accelerated electron beams and betatron radiation from multijet gas targets[J]. Scientific Reports, 2020, 10: 16807. doi: 10.1038/s41598-020-73805-7
|
[31] |
Shen Xiaofei, Pukhov A, Günther M M, et al. Bright betatron X-rays generation from picosecond laser interactions with long-scale near critical density plasmas[J]. Applied Physics Letters, 2021, 118: 134102. doi: 10.1063/5.0042997
|
[32] |
Kozlova M, Andriyash I, Gautier J, et al. Hard X rays from laser-wakefield accelerators in density tailored plasmas[J]. Physical Review X, 2020, 10: 011061.
|
[33] |
Corde S, Phuoc K T, Fitour R, et al. Controlled betatron X-ray radiation from tunable optically injected electrons[J]. Physical Review Letters, 2011, 107: 255003. doi: 10.1103/PhysRevLett.107.255003
|
[34] |
Döpp A, Mahieu B, Lifschitz A, et al. Stable femtosecond X-rays with tunable polarization from a laser-driven accelerator[J]. Light: Science & Applications, 2017, 6: e17086.
|
[35] |
Zhang Guobo, Chen Min, Yang Xiaohu, et al. Betatron radiation polarization control by using an off-axis ionization injection in a laser wakefield acceleration[J]. Optics Express, 2020, 28(20): 29927-29936. doi: 10.1364/OE.404723
|
[36] |
Rao B S, Cho M H, Kim H T, et al. Optical shaping of plasma cavity for controlled laser wakefield acceleration[J]. Physical Review Research, 2020, 2: 043319. doi: 10.1103/PhysRevResearch.2.043319
|
[37] |
Rousse A, Ta Phuoc K, Shah R, et al. Production of a keV X-ray beam from synchrotron radiation in relativistic laser-plasma interaction[J]. Physical Review Letters, 2004, 93: 135005. doi: 10.1103/PhysRevLett.93.135005
|
[38] |
Kneip S, Nagel S R, Bellei C, et al. Observation of synchrotron radiation from electrons accelerated in a petawatt-laser-generated plasma cavity[J]. Physical Review Letters, 2008, 100: 105006. doi: 10.1103/PhysRevLett.100.105006
|
[39] |
Mangles S P D, Genoud G, Kneip S, et al. Controlling the spectrum of X-rays generated in a laser-plasma accelerator by tailoring the laser wavefront[J]. Applied Physics Letters, 2009, 95: 181106. doi: 10.1063/1.3258022
|
[40] |
Thorn D B, Geddes C G R, Matlis N H, et al. Spectroscopy of betatron radiation emitted from laser-produced wakefield accelerated electrons[J]. Review of Scientific Instruments, 2010, 81: 10E325. doi: 10.1063/1.3479118
|
[41] |
Genoud G, Cassou K, Wojda F, et al. Laser-plasma electron acceleration in dielectric capillary tubes[J]. Applied Physics B, 2011, 105(2): 309-316. doi: 10.1007/s00340-011-4639-4
|
[42] |
Fourmaux S, Corde S, Phuoc K T, et al. Single shot phase contrast imaging using laser-produced betatron X-ray beams[J]. Optics Letters, 2011, 36(13): 2426-2428. doi: 10.1364/OL.36.002426
|
[43] |
Ju Jinchuan, Svensson K, Döpp A, et al. Enhancement of X-rays generated by a guided laser wakefield accelerator inside capillary tubes[J]. Applied Physics Letters, 2012, 100: 191106. doi: 10.1063/1.4712594
|
[44] |
Wang Xiaoming, Zgadzaj R, Fazel N, et al. Quasi-monoenergetic laser-plasma acceleration of electrons to 2 GeV[J]. Nature Communications, 2013, 4: 1988. doi: 10.1038/ncomms2988
|
[45] |
Schnell M, Sävert A, Uschmann I, et al. Optical control of hard X-ray polarization by electron injection in a laser wakefield accelerator[J]. Nature Communications, 2013, 4: 2421. doi: 10.1038/ncomms3421
|
[46] |
Ho Y C, Hung T S, Jhou J G, et al. Induction of electron injection and betatron oscillation in a plasma-waveguide-based laser wakefield accelerator by modification of waveguide structure[J]. Physics of Plasmas, 2013, 20: 083104. doi: 10.1063/1.4817294
|
[47] |
Wenz J, Schleede S, Khrennikov K, et al. Quantitative X-ray phase-contrast microtomography from a compact laser-driven betatron source[J]. Nature Communications, 2015, 6: 7568. doi: 10.1038/ncomms8568
|
[48] |
Cole J M, Wood J C, Lopes N C, et al. Laser wakefield accelerators as hard X-ray sources for 3D medical imaging of human bone[J]. Scientific Reports, 2015, 5: 13244. doi: 10.1038/srep13244
|
[49] |
Huang K, Li Y F, Li D Z, et al. Resonantly enhanced betatron hard X-rays from ionization injected electrons in a laser plasma accelerator[J]. Scientific Reports, 2016, 6: 27633. doi: 10.1038/srep27633
|
[50] |
Döpp A, Hehn L, Götzfried J, et al. Quick X-ray microtomography using a laser-driven betatron source[J]. Optica, 2018, 5(2): 199-203. doi: 10.1364/OPTICA.5.000199
|
[51] |
张秋菊, 盛政明, 张杰. 周期量级超短激光脉冲在近临界密度等离子体中形成的光孤子[J]. 物理学报, 2004, 53(3):798-802 doi: 10.7498/aps.53.798
Zhang Qiuju, Sheng Zhengming, Zhang Jie. Solitons formed by ultrashort laser pulses propagating in a plasma[J]. Acta Physica Sinica, 2004, 53(3): 798-802 doi: 10.7498/aps.53.798
|
[52] |
Pukhov A, Sheng Z M, Meyer-Ter-Vehn J. Particle acceleration in relativistic laser channels[J]. Physics of Plasmas, 1999, 6(7): 2847-2854. doi: 10.1063/1.873242
|