Citation: | Zhu Jingguo, Tian Ye, Yang Ying, et al. Review on laser damage fatigue effects of fused silica and other optical materials[J]. High Power Laser and Particle Beams, 2023, 35: 071002. doi: 10.11884/HPLPB202335.220245 |
Under continuous laser irradiation, the damage threshold of fused silica and other optical materials will continue to decrease, showing the “fatigue effect”, which seriously affects the life and stability of the repetition frequency optical system. This paper introduces the performance under fatigue effect of optical materials mainly fused silica materials, supplemented by several other typical optical materials (bismuth niobate crystal, lithium triborate crystal and HfO2/SiO2 multilayer film). The effects of laser wavelength, spot diameter, laser frequency and material position on fatigue effect are summarized. Two modes of fatigue effect are introduced: statistical false fatigue and material modified true fatigue. Three main mechanisms of fatigue effect are introduced: absorption defect model, bond-breaking model and coloured center model. Two experimental modes in fatigue experiment are compared, and their advantages and disadvantages and applicable research objects are analyzed. Finally, the present research status of this field are summarized, and the future development trend and directions are prospected.
[1] |
唐晓军, 王钢, 刘娇, 等. 高亮度固体激光器技术发展研究[J]. 中国工程科学, 2020, 22(3):49-55
Tang Xiaojun, Wang Gang, Liu Jiao, et al. Development of high brightness solid-state laser technology[J]. Strategic Study of CAE, 2020, 22(3): 49-55
|
[2] |
张国书. 核聚变能源的开发现状及新进展[J]. 中国核电, 2018, 11(1):30-34
Zhang Guoshu. Status and recent progress in the development of nuclear fusion energy[J]. China Nuclear Power, 2018, 11(1): 30-34
|
[3] |
肖凯博, 袁晓东, 蒋新颖, 等. 美国LIFE计划激光驱动器概念设计研究现状[J]. 激光与光电子学进展, 2015, 52:040001
Xiao Kaibo, Yuan Xiaodong, Jiang Xinying, et al. Research status of conceptual design of diode-pumped solid-state laser driver for LIFE[J]. Laser & Optoelectronics Progress, 2015, 52: 040001
|
[4] |
Baufeld B, Dutilleul T. Electron beam welding of large components for the nuclear industry[J]. MATEC Web of Conferences, 2019, 269: 02009. doi: 10.1051/matecconf/201926902009
|
[5] |
Schultz V, Cho W I, Merkel A, et al. Deep penetration laser welding with high seam surface quality due to buttonhole welding[C]//IIW 2018 Annual Assembly and International Conference. 2018.
|
[6] |
Natoli J Y, Bertussi B, Commandré M. Effect of multiple laser irradiations on silica at 1064 and 355 nm[J]. Optics Letters, 2005, 30(11): 1315-1317. doi: 10.1364/OL.30.001315
|
[7] |
Douti D B L, Gallais L, Commandré M. Laser-induced damage of optical thin films submitted to 343, 515, and 1030 nm multiple subpicosecond pulses[J]. Optical Engineering, 2014, 53: 122509. doi: 10.1117/1.OE.53.12.122509
|
[8] |
Wagner F R, Hildenbrand A, Natoli J Y, et al. Multiple pulse nanosecond laser induced damage study in LiB3O5 crystals[J]. Optics Express, 2010, 18(26): 26791-26798. doi: 10.1364/OE.18.026791
|
[9] |
Liu W W, Wei C Y, Wu J B, et al. Investigations on single and multiple pulse laser-induced damages in HfO2/SiO2 multilayer dielectric films at 1064 nm[J]. Optics Express, 2013, 21(19): 22476-22487. doi: 10.1364/OE.21.022476
|
[10] |
Kitriotis D, Merkle L D. Multiple pulse laser-induced damage phenomena in silicates[J]. Applied Optics, 1989, 28(5): 949-958. doi: 10.1364/AO.28.000949
|
[11] |
Wagner F R, Gouldieff C, Natoli J Y. Contrasted material responses to nanosecond multiple-pulse laser damage: from statistical behavior to material modification[J]. Optics Letters, 2013, 38(11): 1869-1871. doi: 10.1364/OL.38.001869
|
[12] |
Wagner F R, Natoli J Y, Beaudier A, et al. Nanosecond multiple pulse measurements and the different types of defects[C]//Proceedings of SPIE 10447, Laser-Induced Damage in Optical Materials. 2017: 1044719.
|
[13] |
Gouldieff C, Wagner F, Natoli J Y. Nanosecond UV laser-induced fatigue effects in the bulk of synthetic fused silica: a multi-parameter study[J]. Optics Express, 2015, 23(3): 2962-2972. doi: 10.1364/OE.23.002962
|
[14] |
Rosenfeld A, Lorenz M, Stoian R, et al. Ultrashort-laser-pulse damage threshold of transparent materials and the role of incubation[J]. Applied Physics A, 1999, 69(S1): S373-S376.
|
[15] |
Natoli J Y, Capoulade J, Bertussi B, et al. Need to define a functional LIDT in multiple irradiation cases: examples of silica and KDP at 1064 nm and 355 nm[C]//Proceedings of SPIE 5991, Laser-Induced Damage in Optical Materials. 2005: 599109.
|
[16] |
Momgaudis B, Smalakys L, Vengris M, et al. Optical fatigue investigation with in situ time resolved digital holography[C]//Proceedings of SPIE 11173, Laser-induced Damage in Optical Materials. 2019: 111730A.
|
[17] |
Ke K, Chen J, Gao F, et al. Study of UV repetition laser-induced absorption on fused silica surface using a surface thermal lensing technique[J]. Optics Letters, 2020, 45(8): 2379-2382. doi: 10.1364/OL.391833
|
[18] |
Zhurkov S N, Petrov V A, Kondyrev A M, et al. Thermofluctuation nature of optical resistance of transparent solids[J]. Philosophical Magazine B, 1988, 57(2): 307-317. doi: 10.1080/13642818808201624
|
[19] |
Bass M, Barrett H. Avalanche breakdown and the probabilistic nature of laser-induced damage[J]. IEEE Journal of Quantum Electronics, 1972, 8(3): 338-343. doi: 10.1109/JQE.1972.1076971
|
[20] |
Schrameyer S, Jupé M, Jensen L, et al. Algorithm for cumulative damage probability calculations in S-on-1 laser damage testing[C]//Proceedings of SPIE 8885, Laser-Induced Damage in Optical Materials. 2013: 88851J.
|
[21] |
Jensen L, Mrohs M, Gyamfi M, et al. Lowering evaluation uncertainties in laser-induced damage testing[C]//Proceedings of SPIE 9632, Laser-Induced Damage in Optical Materials. 2015: 96321J.
|
[22] |
Liu Wenwen, Wei Chaoyang, Yi Kui, et al. Multiscale analysis of single- and multiple-pulse laser-induced damages in HfO2/SiO2 multilayer dielectric films at 532 nm[J]. Chinese Optics Letters, 2015, 13: 091404. doi: 10.3788/COL201513.091404
|
[23] |
Becker S, Pereira A, Bouchut P, et al. Accelerated low fluence laser ageing of AR coatings[C]//Proceedings of SPIE 5991, Laser-Induced Damage in Optical Materials. 2005: 59910M.
|
[24] |
Wagner F R, Gouldieff C, Natoli J Y, et al. Nanosecond multi-pulse laser-induced damage mechanisms in pure and mixed oxide thin films[J]. Thin Solid Films, 2015, 592: 225-231. doi: 10.1016/j.tsf.2015.04.014
|
[25] |
Eva E, Mann K. Calorimetric measurement of two-photon absorption and color-center formation in ultraviolet-window materials[J]. Applied Physics A, 1996, 62(2): 143-149.
|
[26] |
Chambonneau M, Diaz R, Grua P, et al. Origin of the damage ring pattern in fused silica induced by multiple longitudinal modes laser pulses[J]. Applied Physics Letters, 2014, 104: 021121. doi: 10.1063/1.4861748
|
[27] |
李雨菡, 肖华攀, 王海容, 等. 湿法刻蚀处理熔石英光学元件研究进展[J]. 激光与光电子学进展, 2021, 58:1516026
Li Yuhan, Xiao Huapan, Wang Hairong, et al. Review on wet etching technique of fused silica optical elements[J]. Laser & Optoelectronics Progress, 2021, 58: 1516026
|
[28] |
Rudenko A, Colombier J P, Itina T E, et al. Genesis of nanogratings in silica bulk via multipulse interplay of ultrafast photo-excitation and hydrodynamics[J]. Advanced Optical Materials, 2021, 9: 2100973. doi: 10.1002/adom.202100973
|
[29] |
Wootton A, Thomas B, Harrowell P. Radiation-induced densification in amorphous silica: a computer simulation study[J]. The Journal of Chemical Physics, 2001, 115(7): 3336-3341. doi: 10.1063/1.1387039
|
[30] |
Zheng Lianqing, Lambropoulos J C, Schmid A W. Molecular dynamics study of UV-laser-induced densification of fused silica. II. Effects of laser pulse duration, pressure, and temperature, and comparison with pressure-induced densification[J]. Journal of Non-Crystalline Solids, 2005, 351(40/42): 3271-3278.
|
[31] |
Shcheblanov N S, Povarnitsyn M E, Mishchik K N, et al. Raman spectroscopy of femtosecond multipulse irradiation of vitreous silica: experiment and simulation[J]. Physical Review B, 2018, 97: 054106. doi: 10.1103/PhysRevB.97.054106
|
[32] |
Chmel A E. Fatigue laser-induced damage in transparent materials[J]. Materials Science and Engineering: B, 1997, 49(3): 175-190. doi: 10.1016/S0921-5107(97)00138-4
|
[33] |
Tian Ye, Du Jincheng, Zu Xiaotao, et al. UV-induced modification of fused silica: insights from ReaxFF-based molecular dynamics simulations[J]. AIP Advances, 2016, 6: 095312. doi: 10.1063/1.4963204
|
[34] |
Shcheblanov N S, Povarnitsyn M E. Bond-breaking mechanism of vitreous silica densification by IR femtosecond laser pulses[J]. Europhysics Letters, 2016, 114: 26004. doi: 10.1209/0295-5075/114/26004
|
[35] |
Pasquarello A, Car R. Identification of Raman defect lines as signatures of ring structures in vitreous silica[J]. Physical Review Letters, 1998, 80(23): 5145-5147. doi: 10.1103/PhysRevLett.80.5145
|
[36] |
Emmert L A, Mero M, Rudolph W. Modeling the effect of native and laser-induced states on the dielectric breakdown of wide band gap optical materials by multiple subpicosecond laser pulses[J]. Journal of Applied Physics, 2010, 108: 043523. doi: 10.1063/1.3457791
|
[37] |
Tanimura K, Tanaka T, Itoh N. Creation of quasistable lattice defects by electronic excitation in SiO2[J]. Physical Review Letters, 1983, 51(5): 423-426. doi: 10.1103/PhysRevLett.51.423
|
[38] |
Guizard S, Martin P, Petite G, et al. Time-resolved study of laser-induced colour centres in SiO2[J]. Journal of Physics: Condensed Matter, 1996, 8(9): 1281-1290. doi: 10.1088/0953-8984/8/9/018
|
[39] |
Jürgens P, Vrakking M J J, Husakou A, et al. Plasma formation and relaxation dynamics in fused silica driven by femtosecond short-wavelength infrared laser pulses[J]. Applied Physics Letters, 2019, 115: 191903. doi: 10.1063/1.5117837
|
[40] |
Velpula P K, Bhuyan M K, Courvoisier F, et al. Spatio-temporal dynamics in nondiffractive Bessel ultrafast laser nanoscale volume structuring[J]. Laser & Photonics Reviews, 2016, 10(2): 230-244.
|
[1] | Zhang Yue, Qi Wenjun, Chen Yang, Xu Qian. Research on susceptibility of vehicles to complex electromagnetic environment based on reverberation chamber[J]. High Power Laser and Particle Beams, 2025, 37(2): 023003. doi: 10.11884/HPLPB202537.240228 |
[2] | Jia Rui, Wang Chuanchuan, Wang Peng, Dai Huanyao, Ma Lei. Analysis of field distribution characteristics of controllable boundary deformation reverberation chamber[J]. High Power Laser and Particle Beams, 2024, 36(12): 123002. doi: 10.11884/HPLPB202436.240104 |
[3] | Wang Pingping, Cheng Erwei, Zhou Xing, Zhang Yi. Performance evaluation of the shielding effectiveness testing system for boundary deformation mutual coupling reverberation chambers[J]. High Power Laser and Particle Beams, 2024, 36(4): 043014. doi: 10.11884/HPLPB202436.230345 |
[4] | Cheng Erwei, Wang Pingping, Zhao Min, Meng Cui. Design and performance evaluation of boundary deformation reverberation chamber[J]. High Power Laser and Particle Beams, 2021, 33(12): 123002. doi: 10.11884/HPLPB202133.210472 |
[5] | Zhao Xiang, Ru Mengyuan, Yan Liping, Liu Changjun. A review of research on stirring methods of electromagnetic reverberation chamber[J]. High Power Laser and Particle Beams, 2020, 32(6): 063001. doi: 10.11884/HPLPB202032.200079 |
[6] | Su Zhengming, Liu Qiang, Zhao Yuan, Yan Liping, Zhao Xiang, Zhou Haijing. Design and application of flexible shielding material based reverberation chamber[J]. High Power Laser and Particle Beams, 2018, 30(7): 073202. doi: 10.11884/HPLPB201830.180048 |
[7] | Ji Kaifu, Wei Guanghui, Pan Xiaodong, Hu Dezhou. Calculation model of critical radiated interference E-field intensity in reverberation chamber[J]. High Power Laser and Particle Beams, 2018, 30(1): 013205. doi: 10.11884/HPLPB201830.170291 |
[8] | Jia Rui, Zeng Yonghu, Wang Chuanchuan. Uniformity of electromagnetic field in a pulse excited reverberation chamber[J]. High Power Laser and Particle Beams, 2015, 27(10): 103220. doi: 10.11884/HPLPB201527.103220 |
[9] | Cheng Erwei, Liu Yifei. Theory and application of frequency stirring reverberation chamber[J]. High Power Laser and Particle Beams, 2015, 27(10): 103202. doi: 10.11884/HPLPB201527.103202 |
[10] | Liang Yuying, Tu Peng, Han Zhuangzhi, Li Jiacheng, Xie Xin. Radar ground clutter statistical characteristics simulation in reverberation chamber[J]. High Power Laser and Particle Beams, 2015, 27(08): 083202. doi: 10.11884/HPLPB201527.083202 |
[11] | Liu Yifei, Chen Yongguang, Cheng Erwei, Wu Wei, Li Jinxi, Zhao Mo, Guo Jinghai, . Frequency stirring method and field characteristics analysis in reverberation chamber[J]. High Power Laser and Particle Beams, 2015, 27(10): 103222. doi: 10.11884/HPLPB201527.103222 |
[12] | Liu Yifei, Chen Yongguang, Cheng Erwei, Wang Qingguo, Jia Rui. Statistical characteristics of field distribution in nested frequency stirred reverberation chambers[J]. High Power Laser and Particle Beams, 2014, 26(02): 023202. doi: 10.3788/HPLPB201426.023202 |
[13] | Jia Rui, Wang Qingguo, Wang Shuqiao, Liu Yifei. Model of field-to-line coupling in a reverberation chamber based on transmission line theory[J]. High Power Laser and Particle Beams, 2014, 26(01): 014006. doi: 10.3788/HPLPB201426.014006 |
[14] | Jiang Lin, Wang Qingguo, Cheng Erwei. Modelling and experimental study of the number of independent samples in reverberation chamber with mechanical stirring[J]. High Power Laser and Particle Beams, 2013, 25(11): 3050-3054. doi: 10.3788/HPLPB20132511.3050 |
[15] | Tan Wuduan, Yu Zhiyong, Song Jianshe, Shao Zehua. Chaotic characteristics and statistic distribution of field in reverberation chamber[J]. High Power Laser and Particle Beams, 2013, 25(04): 940-944. |
[16] | Liu Yifei, Chen Yongguang, Wang Qingguo, Cheng Erwei. Analysis of stirring efficiency in reverberation chamber with combined stirring[J]. High Power Laser and Particle Beams, 2013, 25(04): 963-967. |
[17] | Li Shuang, Wang Jianguo, . Design of reverberation chamber excited by short pulse[J]. High Power Laser and Particle Beams, 2012, 24(06): 1439-1444. doi: 10.3788/HPLPB20122406.1439 |
[18] | li shuang, wang jianguo, xie haiyan, lu xicheng. Improving field uniformity in reverberation chamber with multiple sources[J]. High Power Laser and Particle Beams, 2011, 23(11): 0- . |
[19] | li shuang, wang jianguo. Improvement of field uniformity by stirring source in reverberation chamber[J]. High Power Laser and Particle Beams, 2011, 23(10): 0- . |
[20] | cui yaozhong, wei guanghui, fan lisi, liu xiaoqiang, pan xiaodong, chen yazhou. Simulation and experiment on optimization of position of emission antenna in reverberation chamber[J]. High Power Laser and Particle Beams, 2011, 23(08): 0- . |