Citation: | Xiao Delong, Wang Xiaoguang, Wang Guanqiong, et al. Theoretical research on key issues and design of integrated MagLIF experiments on the 7−8 MA facility[J]. High Power Laser and Particle Beams, 2023, 35: 022001. doi: 10.11884/HPLPB202335.220253 |
[1] |
Ryutov D D, Derzon M S, Matzen M K. The physics of fast Z pinches[J]. Rev Mod Phys, 2000, 72(1): 167-223. doi: 10.1103/RevModPhys.72.167
|
[2] |
Haines M G. A review of the dense Z-pinch[J]. Plasma Phys Control Fusion, 2011, 53: 093001. doi: 10.1088/0741-3335/53/9/093001
|
[3] |
Deeney C, Douglas M R, Spielman R B, et al. Enhancement of X-ray power from a Z pinch using nested-wire arrays[J]. Phys Rev Lett, 1998, 81(22): 4883-4886. doi: 10.1103/PhysRevLett.81.4883
|
[4] |
Bailey J E, Chandler G A, Mancini R C, et al. Dynamic hohlraum radiation hydrodynamics[J]. Phys Plasmas, 2006, 13: 056301. doi: 10.1063/1.2177640
|
[5] |
Rochau G A, Bailey J E, Chandler G A, et al. High performance capsule implosions driven by the Z-pinch dynamic hohlraum[J]. Plasma Phys Control Fusion, 2007, 49(12B): 591-600. doi: 10.1088/0741-3335/49/12B/S55
|
[6] |
Gomez M R, Slutz S A, Jennings C A, et al. Performance scaling in magnetized liner inertial fusion experiments[J]. Phys Rev Lett, 2020, 125: 155002. doi: 10.1103/PhysRevLett.125.155002
|
[7] |
Slutz S A, Herrmann M C, Vesey R A, et al. Pulsed-power-driven cylindrical liner implosions of laser preheated fuel magnetized with an axial field[J]. Phys Plasmas, 2010, 17: 056303. doi: 10.1063/1.3333505
|
[8] |
Slutz S A, Vesey R A. High-gain magnetized inertial fusion[J]. Phys Rev Lett, 2012, 108: 025003. doi: 10.1103/PhysRevLett.108.025003
|
[9] |
Cuneo M E, Herrmann M C, Sinars D B, et al. Magnetically driven implosions for inertial confinement fusion at Sandia National Laboratories[J]. IEEE Trans Plasma Sci, 2012, 40(12): 3222-3245. doi: 10.1109/TPS.2012.2223488
|
[10] |
Gomez M R, Slutz S A, Sefkow A B, et al. Experimental demonstration of fusion-relevant conditions in magnetized liner inertial fusion[J]. Phys Rev Lett, 2014, 113: 155003. doi: 10.1103/PhysRevLett.113.155003
|
[11] |
Sinars D B, Slutz S A, Herrmann M C, et al. Measurements of magneto-Rayleigh-Taylor instability growth during the implosion of initially solid metal liners[J]. Phys Plasmas, 2011, 18: 056301. doi: 10.1063/1.3560911
|
[12] |
Harvey-Thompson A J, Weis M R, Harding E C, et al. Diagnosing and mitigating laser preheat induced mix in MagLIF[J]. Phys Plasmas, 2018, 25: 112705. doi: 10.1063/1.5050931
|
[13] |
Harvey-Thompson A J, Geissel M, Jennings C A, et al. Constraining preheat energy deposition in MagLIF experiments with multi-frame shadowgraphy[J]. Phys Plasmas, 2019, 26: 032707. doi: 10.1063/1.5086044
|
[14] |
Knapp P F, Gomez M R, Hansen S B, et al. Origins and effects of mix on magnetized liner inertial fusion target performance[J]. Phys Plasmas, 2019, 26: 012704. doi: 10.1063/1.5064548
|
[15] |
Slutz S A, Jennings C A, Awe T J, et al. Auto-magnetizing liners for magnetized inertial fusion[J]. Phys Plasmas, 2017, 24: 012704. doi: 10.1063/1.4973551
|
[16] |
Slutz S A, Gomez M R, Hansen S B, et al. Enhancing performance of magnetized liner inertial fusion at the Z facility[J]. Phys Plasmas, 2018, 25: 112706. doi: 10.1063/1.5054317
|
[17] |
Stygar W A, Awe T J, Bailey J E, et al. Conceptual designs of two petawatt-class pulsed-power accelerators for high-energy-density-physics experiments[J]. Phys Rev ST Accel Beams, 2015, 18: 110401. doi: 10.1103/PhysRevSTAB.18.110401
|
[18] |
Grabovski E V, Aleksandrov V V, Gritsuk A N, et al. Wire array investigation on Angara-5-1 and Baikal project[C]//Proceedings of 2013 Abstracts IEEE International Conference on Plasma Science. 2013.
|
[19] |
肖德龙, 孙顺凯, 薛创, 等. Z箍缩动态黑腔形成过程和关键影响因素数值模拟研究[J]. 物理学报, 2015, 64:235203 doi: 10.7498/aps.64.235203
Xiao Delong, Sun Shunkai, Xue Chuang, et al. Numerical studies on the formation process of Z-pinch dynamic hohlraums and key issues of optimizing dynamic hohlraum radiation[J]. Acta Phys Sin, 2015, 64: 235203 doi: 10.7498/aps.64.235203
|
[20] |
Meng Shijian, Hu Qingyuan, Nin Jiaming, et al. Measurement of axial radiation properties in Z-pinch dynamic hohlraum at Julong-1[J]. Phys Plasmas, 2017, 24: 014505. doi: 10.1063/1.4974771
|
[21] |
Xiao Delong, Ye Fan, Meng Shijian, et al. Preliminary investigation on the radiation transfer in dynamic hohlraums on the PTS facility[J]. Phys Plasmas, 2017, 24: 092701. doi: 10.1063/1.4994331
|
[22] |
Huang Xianbin, Ren Xiaodong, Dan Jiakun, et al. Radiation characteristics and implosion dynamics of Z-pinch dynamic hohlraums performed on PTS facility[J]. Phys Plasmas, 2017, 24: 092704. doi: 10.1063/1.4998619
|
[23] |
肖德龙, 戴自换, 孙顺凯, 等. Z箍缩动态黑腔驱动靶丸内爆动力学[J]. 物理学报, 2018, 67:025203 doi: 10.7498/aps.67.20171640
Xiao Delong, Dai Zihuan, Sun Sunkai, et al. Numerical studies on dynamics of Z-pinch dynamic hohlraum driven target implosion[J]. Acta Phys Sin, 2018, 67: 025203 doi: 10.7498/aps.67.20171640
|
[24] |
Yi Qiang, Guo Hongsheng, Hu Qingyuan, et al. On the bremsstrahlung background of the neutron yield diagnostic in deuterium-filled capsule implosions driven by Z-pinch dynamic hohlraums on an 8-MA pulsed power facility[J]. Phys Plasmas, 2020, 27: 102709. doi: 10.1063/5.0020558
|
[25] |
赵海龙, 张恒第, 王刚华, 等. 一维磁化套筒惯性聚变模拟程序的设计与校验[J]. 强激光与粒子束, 2017, 29:072001 doi: 10.11884/HPLPB201729.170002
Zhao Hailong, Zhang Hengdi, Wang Ganghua, et al. Design and verification of 1D magnetized linear inertial fusion simulation code[J]. High Power Laser Particle Beams, 2017, 29: 072001 doi: 10.11884/HPLPB201729.170002
|
[26] |
赵海龙, 王刚华, 王强, 等. 磁化套筒惯性聚变初步探索研究与实验可行性分析[J]. 强激光与粒子束, 2020, 32:062002 doi: 10.11884/HPLPB202032.190352
Zhao Hailong, Wang Ganghua, Wang Qiang, et al. Preliminary exploration of MagLIF concept and feasibility analysis on PTS facility[J]. High Power Laser Particle Beams, 2020, 32: 062002 doi: 10.11884/HPLPB202032.190352
|
[27] |
McBride R D, Slutz S A. A semi-analytic model of magnetized liner inertial fusion[J]. Phys Plasmas, 2015, 22: 052708. doi: 10.1063/1.4918953
|
[28] |
McBride R D, Slutz S A, Vesey R A, et al. Exploring magnetized liner inertial fusion with a semi-analytic model[J]. Phys Plasmas, 2016, 23: 012705. doi: 10.1063/1.4939479
|
[29] |
薛创, 丁宁, 肖德龙, 等. 聚龙一号驱动Z箍缩负载内爆的简化电路模型[J]. 强激光与粒子束, 2016, 28:125004 doi: 10.11884/HPLPB201628.160138
Xue Chuang, Ding Ning, Xiao Delong, et al. Lumped circuit model for the PTS driving Z pinch load implosion[J]. High Power Laser Particle Beams, 2016, 28: 125004 doi: 10.11884/HPLPB201628.160138
|
[30] |
Braginskii S I. Transport processes in a plasma[M]//Leontovich M A. Reviews of Plasma Physics. New York: Consultants Bureau, 1965: 249-253.
|
[31] |
Atzeni S, Meyer-ter-Vehn J. 惯性聚变物理[M]. 沈百飞, 译. 北京: 科学出版社, 2008: 14-15
Atzeni S, Meyer-ter-Vehn J. Physics of inertial fusion[M]. Shen Baifei, trans. Beijing: Science Press, 2008: 14-15
|
[32] |
Deng Jianjun, Xie Weiping, Feng Shuping, et al. From concept to reality—a review to the primary test stand and its preliminary application in high energy density physics[J]. Matter Radiat Extremes, 2016, 1(1): 48-58. doi: 10.1016/j.mre.2016.01.004
|
[33] |
Lau Y Y, Zier J C, Rittersdorf I M, et al. Anisotropy and feedthrough in magneto-Rayleigh-Taylor instability[J]. Phys Rev E, 2011, 83: 066405. doi: 10.1103/PhysRevE.83.066405
|
[34] |
Wang Xiaoguang, Wang Guanqiong, Sun Shunkai, et al. Scaling of rise time of drive current on development of magneto-Rayleigh–Taylor instabilities for single-shell Z-pinches[J]. Chin Phys B, 2022, 31: 025203. doi: 10.1088/1674-1056/ac1fd9
|