Wang Qiangqiang, Deng Keli, Deng Caibo, et al. Three-dimensional numeric simulation of multiplication process of secondary electrons in microchannel plate[J]. High Power Laser and Particle Beams, 2015, 27: 124005. doi: 10.11884/HPLPB201527.124005
Citation: Xiao Delong, Wang Xiaoguang, Wang Guanqiong, et al. Theoretical research on key issues and design of integrated MagLIF experiments on the 7−8 MA facility[J]. High Power Laser and Particle Beams, 2023, 35: 022001. doi: 10.11884/HPLPB202335.220253

Theoretical research on key issues and design of integrated MagLIF experiments on the 7−8 MA facility

doi: 10.11884/HPLPB202335.220253
  • Received Date: 2022-08-18
  • Accepted Date: 2022-10-27
  • Rev Recd Date: 2022-10-12
  • Available Online: 2022-10-31
  • Publish Date: 2023-01-14
  • Magnetized Liner Inertial Fusion (MagLIF) is one of the possible configurations to reach ignition. For future ignition validation, it is necessary to explore key issues of MagLIF and seek an optimal design of integrated MaglIF experiments on the low current generators. In this paper, a simplified circuit model is coupled to the semi-analytical model developed by McBride et al. to investigate key issues of integrated MagLIF experiments possibly conducted on the 7−8 MA facility in China, and parameter domain to attain over 1010 neutron yield is explored. Theoretical results show that many factors together determine the final neutron yield, such as the 7−8 MA current, the liner material, the initial radius and density of D2 fuel, the load height, the preheating energy, the applied axial magnetic field, as well as the fuel mixing. As the preheating energy is increased, the fuel temperature before implosion and at stagnation becomes higher, thus generating higher neutron output. The neutron yield will increase first and then decrease with the applied axial magnetic field, mainly caused by the compromise of reducing the conduction loss and decreasing the fuel convergence. When the mass ratio of impurity is higher than 10%, the neutron yield will be decreased remarkably. If an initial fuel density of 0.7 mg/cm3, an axial magnetic field of 27 T, and a preheating energy of 200 J in the case of 7−8 MA are used, 3.5×1010 neutrons can be produced with the convergence lower than 20 considering 50% fuel mixing. It is thus anticipated that the research platform on key physics of MagLIF can be developed in the case of 7−8 MA drive current.
  • [1]
    Ryutov D D, Derzon M S, Matzen M K. The physics of fast Z pinches[J]. Rev Mod Phys, 2000, 72(1): 167-223. doi: 10.1103/RevModPhys.72.167
    [2]
    Haines M G. A review of the dense Z-pinch[J]. Plasma Phys Control Fusion, 2011, 53: 093001. doi: 10.1088/0741-3335/53/9/093001
    [3]
    Deeney C, Douglas M R, Spielman R B, et al. Enhancement of X-ray power from a Z pinch using nested-wire arrays[J]. Phys Rev Lett, 1998, 81(22): 4883-4886. doi: 10.1103/PhysRevLett.81.4883
    [4]
    Bailey J E, Chandler G A, Mancini R C, et al. Dynamic hohlraum radiation hydrodynamics[J]. Phys Plasmas, 2006, 13: 056301. doi: 10.1063/1.2177640
    [5]
    Rochau G A, Bailey J E, Chandler G A, et al. High performance capsule implosions driven by the Z-pinch dynamic hohlraum[J]. Plasma Phys Control Fusion, 2007, 49(12B): 591-600. doi: 10.1088/0741-3335/49/12B/S55
    [6]
    Gomez M R, Slutz S A, Jennings C A, et al. Performance scaling in magnetized liner inertial fusion experiments[J]. Phys Rev Lett, 2020, 125: 155002. doi: 10.1103/PhysRevLett.125.155002
    [7]
    Slutz S A, Herrmann M C, Vesey R A, et al. Pulsed-power-driven cylindrical liner implosions of laser preheated fuel magnetized with an axial field[J]. Phys Plasmas, 2010, 17: 056303. doi: 10.1063/1.3333505
    [8]
    Slutz S A, Vesey R A. High-gain magnetized inertial fusion[J]. Phys Rev Lett, 2012, 108: 025003. doi: 10.1103/PhysRevLett.108.025003
    [9]
    Cuneo M E, Herrmann M C, Sinars D B, et al. Magnetically driven implosions for inertial confinement fusion at Sandia National Laboratories[J]. IEEE Trans Plasma Sci, 2012, 40(12): 3222-3245. doi: 10.1109/TPS.2012.2223488
    [10]
    Gomez M R, Slutz S A, Sefkow A B, et al. Experimental demonstration of fusion-relevant conditions in magnetized liner inertial fusion[J]. Phys Rev Lett, 2014, 113: 155003. doi: 10.1103/PhysRevLett.113.155003
    [11]
    Sinars D B, Slutz S A, Herrmann M C, et al. Measurements of magneto-Rayleigh-Taylor instability growth during the implosion of initially solid metal liners[J]. Phys Plasmas, 2011, 18: 056301. doi: 10.1063/1.3560911
    [12]
    Harvey-Thompson A J, Weis M R, Harding E C, et al. Diagnosing and mitigating laser preheat induced mix in MagLIF[J]. Phys Plasmas, 2018, 25: 112705. doi: 10.1063/1.5050931
    [13]
    Harvey-Thompson A J, Geissel M, Jennings C A, et al. Constraining preheat energy deposition in MagLIF experiments with multi-frame shadowgraphy[J]. Phys Plasmas, 2019, 26: 032707. doi: 10.1063/1.5086044
    [14]
    Knapp P F, Gomez M R, Hansen S B, et al. Origins and effects of mix on magnetized liner inertial fusion target performance[J]. Phys Plasmas, 2019, 26: 012704. doi: 10.1063/1.5064548
    [15]
    Slutz S A, Jennings C A, Awe T J, et al. Auto-magnetizing liners for magnetized inertial fusion[J]. Phys Plasmas, 2017, 24: 012704. doi: 10.1063/1.4973551
    [16]
    Slutz S A, Gomez M R, Hansen S B, et al. Enhancing performance of magnetized liner inertial fusion at the Z facility[J]. Phys Plasmas, 2018, 25: 112706. doi: 10.1063/1.5054317
    [17]
    Stygar W A, Awe T J, Bailey J E, et al. Conceptual designs of two petawatt-class pulsed-power accelerators for high-energy-density-physics experiments[J]. Phys Rev ST Accel Beams, 2015, 18: 110401. doi: 10.1103/PhysRevSTAB.18.110401
    [18]
    Grabovski E V, Aleksandrov V V, Gritsuk A N, et al. Wire array investigation on Angara-5-1 and Baikal project[C]//Proceedings of 2013 Abstracts IEEE International Conference on Plasma Science. 2013.
    [19]
    肖德龙, 孙顺凯, 薛创, 等. Z箍缩动态黑腔形成过程和关键影响因素数值模拟研究[J]. 物理学报, 2015, 64:235203 doi: 10.7498/aps.64.235203

    Xiao Delong, Sun Shunkai, Xue Chuang, et al. Numerical studies on the formation process of Z-pinch dynamic hohlraums and key issues of optimizing dynamic hohlraum radiation[J]. Acta Phys Sin, 2015, 64: 235203 doi: 10.7498/aps.64.235203
    [20]
    Meng Shijian, Hu Qingyuan, Nin Jiaming, et al. Measurement of axial radiation properties in Z-pinch dynamic hohlraum at Julong-1[J]. Phys Plasmas, 2017, 24: 014505. doi: 10.1063/1.4974771
    [21]
    Xiao Delong, Ye Fan, Meng Shijian, et al. Preliminary investigation on the radiation transfer in dynamic hohlraums on the PTS facility[J]. Phys Plasmas, 2017, 24: 092701. doi: 10.1063/1.4994331
    [22]
    Huang Xianbin, Ren Xiaodong, Dan Jiakun, et al. Radiation characteristics and implosion dynamics of Z-pinch dynamic hohlraums performed on PTS facility[J]. Phys Plasmas, 2017, 24: 092704. doi: 10.1063/1.4998619
    [23]
    肖德龙, 戴自换, 孙顺凯, 等. Z箍缩动态黑腔驱动靶丸内爆动力学[J]. 物理学报, 2018, 67:025203 doi: 10.7498/aps.67.20171640

    Xiao Delong, Dai Zihuan, Sun Sunkai, et al. Numerical studies on dynamics of Z-pinch dynamic hohlraum driven target implosion[J]. Acta Phys Sin, 2018, 67: 025203 doi: 10.7498/aps.67.20171640
    [24]
    Yi Qiang, Guo Hongsheng, Hu Qingyuan, et al. On the bremsstrahlung background of the neutron yield diagnostic in deuterium-filled capsule implosions driven by Z-pinch dynamic hohlraums on an 8-MA pulsed power facility[J]. Phys Plasmas, 2020, 27: 102709. doi: 10.1063/5.0020558
    [25]
    赵海龙, 张恒第, 王刚华, 等. 一维磁化套筒惯性聚变模拟程序的设计与校验[J]. 强激光与粒子束, 2017, 29:072001 doi: 10.11884/HPLPB201729.170002

    Zhao Hailong, Zhang Hengdi, Wang Ganghua, et al. Design and verification of 1D magnetized linear inertial fusion simulation code[J]. High Power Laser Particle Beams, 2017, 29: 072001 doi: 10.11884/HPLPB201729.170002
    [26]
    赵海龙, 王刚华, 王强, 等. 磁化套筒惯性聚变初步探索研究与实验可行性分析[J]. 强激光与粒子束, 2020, 32:062002 doi: 10.11884/HPLPB202032.190352

    Zhao Hailong, Wang Ganghua, Wang Qiang, et al. Preliminary exploration of MagLIF concept and feasibility analysis on PTS facility[J]. High Power Laser Particle Beams, 2020, 32: 062002 doi: 10.11884/HPLPB202032.190352
    [27]
    McBride R D, Slutz S A. A semi-analytic model of magnetized liner inertial fusion[J]. Phys Plasmas, 2015, 22: 052708. doi: 10.1063/1.4918953
    [28]
    McBride R D, Slutz S A, Vesey R A, et al. Exploring magnetized liner inertial fusion with a semi-analytic model[J]. Phys Plasmas, 2016, 23: 012705. doi: 10.1063/1.4939479
    [29]
    薛创, 丁宁, 肖德龙, 等. 聚龙一号驱动Z箍缩负载内爆的简化电路模型[J]. 强激光与粒子束, 2016, 28:125004 doi: 10.11884/HPLPB201628.160138

    Xue Chuang, Ding Ning, Xiao Delong, et al. Lumped circuit model for the PTS driving Z pinch load implosion[J]. High Power Laser Particle Beams, 2016, 28: 125004 doi: 10.11884/HPLPB201628.160138
    [30]
    Braginskii S I. Transport processes in a plasma[M]//Leontovich M A. Reviews of Plasma Physics. New York: Consultants Bureau, 1965: 249-253.
    [31]
    Atzeni S, Meyer-ter-Vehn J. 惯性聚变物理[M]. 沈百飞, 译. 北京: 科学出版社, 2008: 14-15

    Atzeni S, Meyer-ter-Vehn J. Physics of inertial fusion[M]. Shen Baifei, trans. Beijing: Science Press, 2008: 14-15
    [32]
    Deng Jianjun, Xie Weiping, Feng Shuping, et al. From concept to reality—a review to the primary test stand and its preliminary application in high energy density physics[J]. Matter Radiat Extremes, 2016, 1(1): 48-58. doi: 10.1016/j.mre.2016.01.004
    [33]
    Lau Y Y, Zier J C, Rittersdorf I M, et al. Anisotropy and feedthrough in magneto-Rayleigh-Taylor instability[J]. Phys Rev E, 2011, 83: 066405. doi: 10.1103/PhysRevE.83.066405
    [34]
    Wang Xiaoguang, Wang Guanqiong, Sun Shunkai, et al. Scaling of rise time of drive current on development of magneto-Rayleigh–Taylor instabilities for single-shell Z-pinches[J]. Chin Phys B, 2022, 31: 025203. doi: 10.1088/1674-1056/ac1fd9
  • Relative Articles

    [1]Mao Chongyang, Xue Chuang, Xiao Delong, Ding Ning. Simulation method of quadruple-level circuit model for stack and vacuum section of Julong-I facility[J]. High Power Laser and Particle Beams, 2020, 32(2): 025004. doi: 10.11884/HPLPB202032.190330
    [2]Mao Chongyang, Xue Chuang, Xiao Delong, Wang Xiaoguang, Wang Guanqiong, Ding Ning. Full circuit simulation for influence of the laser-triggered gas switches' closing time on load current in PTS facility[J]. High Power Laser and Particle Beams, 2019, 31(1): 015001. doi: 10.11884/HPLPB201931.180256
    [3]Zhang Huang, Wang Yi, Li Tiantao, Yang Zhiyong, Li Qin, Jiang Wei, Li Yuan, Huang Ziping, Chen Sifu, Shi Jinshui, Zhang Linwen, Deng Jianjun. Beam load effect on the cavity voltage waveform in linear induction accelerators[J]. High Power Laser and Particle Beams, 2016, 28(01): 015101. doi: 10.11884/HPLPB201628.015101
    [4]Xue Chuang, Ding Ning, Zhang Yang, Xiao Delong, Sun Shunkai, Ning Cheng, Shu Xiaojian, . Full circuit simulation for electromagnetic pulse forming and transmission in the PTS facility[J]. High Power Laser and Particle Beams, 2016, 28(01): 015014. doi: 10.11884/HPLPB201628.015014
    [5]Xue Chuang, Ding Ning, Xiao Delong, Zhang Yang, Sun Shunkai, Ning Cheng, Shu Xiaojian. Lumped circuit model for the PTS driving Z pinch load implosion[J]. High Power Laser and Particle Beams, 2016, 28(12): 125004. doi: 10.11884/HPLPB201628.160138
    [6]Xia Minghe, Li Fengping, Ji Ce, Wei Bing, Feng Shuping, Wang Meng, Xie Weiping. Current pulse shaping of load on Primary Test Stand facility[J]. High Power Laser and Particle Beams, 2016, 28(05): 055003. doi: 10.11884/HPLPB201628.055003
    [7]Kan Mingxian, Zhang Zhaohui, Duan Shuchao, Wang Ganghua, Yang Long, Xiao Bo, Wang Guilin. Numerical simulation of magnetically driven aluminum flyer plate on PTS accelerator[J]. High Power Laser and Particle Beams, 2015, 27(12): 125001. doi: 10.11884/HPLPB201527.125001
    [8]Wang Jie, Chen Lin, Guo Fan, Zhao Yue, Zhang Yuanjun, Li Ye, Wang Meng, Dai Yingmin. Shaping of output current rise time on 1 MA-LTD cavity[J]. High Power Laser and Particle Beams, 2014, 26(04): 045009. doi: 10.11884/HPLPB201426.045009
    [9]Guo Fan, Zou Wenkang, Chen Lin. Circuit simulation method for calculating vacuum power flow in magnetically insulated transmission line[J]. High Power Laser and Particle Beams, 2013, 25(07): 1845-1850. doi: 10.3788/HPLPB20132507.1845
    [10]Zou Wenkang, He Yong, Chen Lin, Zhou Liangji, Wang Meng, Xie Weiping, Deng Jianjun. Power flow computation with circuit for magnetically-insulated inductive voltage adder[J]. High Power Laser and Particle Beams, 2012, 24(05): 1211-1216. doi: 10.3788/HPLPB20122405.1211
    [11]Lai Dingguo, Xie Linshen. Application of Pspice subcircuit to circuit simulation of pulsed power device[J]. High Power Laser and Particle Beams, 2012, 24(03): 689-692. doi: 10.3788/HPLPB20122403.0689
    [12]He Yong, Zou Wenkang, ZHang Le, Song SHengyi. Circuit simulation and analysis of magnetically insulated transmission line[J]. High Power Laser and Particle Beams, 2012, 24(03): 581-586. doi: 10.3788/HPLPB20122403.0581
    [13]Xia Minghe, Ji Ce, Wang Yujuan, Wang Meng, Li Feng, Feng Shuping, Xie Weiping. Operation models and waveform shaping of primary test stand[J]. High Power Laser and Particle Beams, 2012, 24(11): 2768-2772. doi: 10.3788/HPLPB20122411.2768
    [14]zeng zhengzhong. Circuit simulation of exponential transmission line for petawatt Z-pinch plasma drivers[J]. High Power Laser and Particle Beams, 2011, 23(07): 0- .
    [15]zhou liangji, deng jianjun, chen lin, dai yingmin, wang meng, xie weiping, feng shuping, yang libing. Design of 1 MA linear transformer driver stage[J]. High Power Laser and Particle Beams, 2010, 22(03): 0- .
    [16]wang ganping, xiang fei, tan jie, luo min, kang qiang, cao shaoyun. Physical design and simulation of LTD-based source with long pulse and high power[J]. High Power Laser and Particle Beams, 2010, 22(10): 0- .
    [17]song sheng-yi, gu yuan-chao, guan yong-chao, zou wen-kang. Circuit simulation of magnetically insulated transmission line driving a wire array to implode[J]. High Power Laser and Particle Beams, 2008, 20(03): 0- .
    [18]zou wen-kang, zhou liang-ji, chen lin, deng jian-jun. Physical design and simulation for a 100 GW LTD system[J]. High Power Laser and Particle Beams, 2008, 20(02): 0- .
    [19]zhou liang-ji, deng jian-jun, chen lin, xie wei-ping, feng shu-ping, guan yong-chao, wu shou-dong, ren jing, li ye. Influence of volt-second product of magnetic core on output of linear transformer driver[J]. High Power Laser and Particle Beams, 2007, 19(01): 0- .
    [20]song sheng-yi, qiu xu, wang wen-dou, xie wei-ping. Circuit model for magnetically insulated transmission line[J]. High Power Laser and Particle Beams, 2005, 17(05): 0- .
  • Cited by

    Periodical cited type(3)

    1. 张朝辉,王贵林,章征伟,郭帆,计策,傅贞,李勇. 10 MA多支路汇流装置上钽的强度实验研究. 强激光与粒子束. 2021(04): 121-129 . 本站查看
    2. 毛重阳,薛创,肖德龙,丁宁. “聚龙一号”4层绝缘堆和真空区电路模拟方法. 强激光与粒子束. 2020(02): 24-28 . 本站查看
    3. 王贵林,张朝辉,孙奇志,杨雯捷,计策,丰树平. 聚龙一号装置的强电磁干扰对PDV的影响研究. 强激光与粒子束. 2019(10): 99-103 . 本站查看

    Other cited types(4)

  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(15)

    Article views (743) PDF downloads(90) Cited by(7)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return