Volume 35 Issue 2
Jan.  2023
Turn off MathJax
Article Contents
Xiao Delong, Wang Xiaoguang, Wang Guanqiong, et al. Theoretical research on key issues and design of integrated MagLIF experiments on the 7−8 MA facility[J]. High Power Laser and Particle Beams, 2023, 35: 022001. doi: 10.11884/HPLPB202335.220253
Citation: Xiao Delong, Wang Xiaoguang, Wang Guanqiong, et al. Theoretical research on key issues and design of integrated MagLIF experiments on the 7−8 MA facility[J]. High Power Laser and Particle Beams, 2023, 35: 022001. doi: 10.11884/HPLPB202335.220253

Theoretical research on key issues and design of integrated MagLIF experiments on the 7−8 MA facility

doi: 10.11884/HPLPB202335.220253
  • Received Date: 2022-08-18
  • Accepted Date: 2022-10-27
  • Rev Recd Date: 2022-10-12
  • Available Online: 2022-10-31
  • Publish Date: 2023-01-14
  • Magnetized Liner Inertial Fusion (MagLIF) is one of the possible configurations to reach ignition. For future ignition validation, it is necessary to explore key issues of MagLIF and seek an optimal design of integrated MaglIF experiments on the low current generators. In this paper, a simplified circuit model is coupled to the semi-analytical model developed by McBride et al. to investigate key issues of integrated MagLIF experiments possibly conducted on the 7−8 MA facility in China, and parameter domain to attain over 1010 neutron yield is explored. Theoretical results show that many factors together determine the final neutron yield, such as the 7−8 MA current, the liner material, the initial radius and density of D2 fuel, the load height, the preheating energy, the applied axial magnetic field, as well as the fuel mixing. As the preheating energy is increased, the fuel temperature before implosion and at stagnation becomes higher, thus generating higher neutron output. The neutron yield will increase first and then decrease with the applied axial magnetic field, mainly caused by the compromise of reducing the conduction loss and decreasing the fuel convergence. When the mass ratio of impurity is higher than 10%, the neutron yield will be decreased remarkably. If an initial fuel density of 0.7 mg/cm3, an axial magnetic field of 27 T, and a preheating energy of 200 J in the case of 7−8 MA are used, 3.5×1010 neutrons can be produced with the convergence lower than 20 considering 50% fuel mixing. It is thus anticipated that the research platform on key physics of MagLIF can be developed in the case of 7−8 MA drive current.
  • loading
  • [1]
    Ryutov D D, Derzon M S, Matzen M K. The physics of fast Z pinches[J]. Rev Mod Phys, 2000, 72(1): 167-223. doi: 10.1103/RevModPhys.72.167
    [2]
    Haines M G. A review of the dense Z-pinch[J]. Plasma Phys Control Fusion, 2011, 53: 093001. doi: 10.1088/0741-3335/53/9/093001
    [3]
    Deeney C, Douglas M R, Spielman R B, et al. Enhancement of X-ray power from a Z pinch using nested-wire arrays[J]. Phys Rev Lett, 1998, 81(22): 4883-4886. doi: 10.1103/PhysRevLett.81.4883
    [4]
    Bailey J E, Chandler G A, Mancini R C, et al. Dynamic hohlraum radiation hydrodynamics[J]. Phys Plasmas, 2006, 13: 056301. doi: 10.1063/1.2177640
    [5]
    Rochau G A, Bailey J E, Chandler G A, et al. High performance capsule implosions driven by the Z-pinch dynamic hohlraum[J]. Plasma Phys Control Fusion, 2007, 49(12B): 591-600. doi: 10.1088/0741-3335/49/12B/S55
    [6]
    Gomez M R, Slutz S A, Jennings C A, et al. Performance scaling in magnetized liner inertial fusion experiments[J]. Phys Rev Lett, 2020, 125: 155002. doi: 10.1103/PhysRevLett.125.155002
    [7]
    Slutz S A, Herrmann M C, Vesey R A, et al. Pulsed-power-driven cylindrical liner implosions of laser preheated fuel magnetized with an axial field[J]. Phys Plasmas, 2010, 17: 056303. doi: 10.1063/1.3333505
    [8]
    Slutz S A, Vesey R A. High-gain magnetized inertial fusion[J]. Phys Rev Lett, 2012, 108: 025003. doi: 10.1103/PhysRevLett.108.025003
    [9]
    Cuneo M E, Herrmann M C, Sinars D B, et al. Magnetically driven implosions for inertial confinement fusion at Sandia National Laboratories[J]. IEEE Trans Plasma Sci, 2012, 40(12): 3222-3245. doi: 10.1109/TPS.2012.2223488
    [10]
    Gomez M R, Slutz S A, Sefkow A B, et al. Experimental demonstration of fusion-relevant conditions in magnetized liner inertial fusion[J]. Phys Rev Lett, 2014, 113: 155003. doi: 10.1103/PhysRevLett.113.155003
    [11]
    Sinars D B, Slutz S A, Herrmann M C, et al. Measurements of magneto-Rayleigh-Taylor instability growth during the implosion of initially solid metal liners[J]. Phys Plasmas, 2011, 18: 056301. doi: 10.1063/1.3560911
    [12]
    Harvey-Thompson A J, Weis M R, Harding E C, et al. Diagnosing and mitigating laser preheat induced mix in MagLIF[J]. Phys Plasmas, 2018, 25: 112705. doi: 10.1063/1.5050931
    [13]
    Harvey-Thompson A J, Geissel M, Jennings C A, et al. Constraining preheat energy deposition in MagLIF experiments with multi-frame shadowgraphy[J]. Phys Plasmas, 2019, 26: 032707. doi: 10.1063/1.5086044
    [14]
    Knapp P F, Gomez M R, Hansen S B, et al. Origins and effects of mix on magnetized liner inertial fusion target performance[J]. Phys Plasmas, 2019, 26: 012704. doi: 10.1063/1.5064548
    [15]
    Slutz S A, Jennings C A, Awe T J, et al. Auto-magnetizing liners for magnetized inertial fusion[J]. Phys Plasmas, 2017, 24: 012704. doi: 10.1063/1.4973551
    [16]
    Slutz S A, Gomez M R, Hansen S B, et al. Enhancing performance of magnetized liner inertial fusion at the Z facility[J]. Phys Plasmas, 2018, 25: 112706. doi: 10.1063/1.5054317
    [17]
    Stygar W A, Awe T J, Bailey J E, et al. Conceptual designs of two petawatt-class pulsed-power accelerators for high-energy-density-physics experiments[J]. Phys Rev ST Accel Beams, 2015, 18: 110401. doi: 10.1103/PhysRevSTAB.18.110401
    [18]
    Grabovski E V, Aleksandrov V V, Gritsuk A N, et al. Wire array investigation on Angara-5-1 and Baikal project[C]//Proceedings of 2013 Abstracts IEEE International Conference on Plasma Science. 2013.
    [19]
    肖德龙, 孙顺凯, 薛创, 等. Z箍缩动态黑腔形成过程和关键影响因素数值模拟研究[J]. 物理学报, 2015, 64:235203 doi: 10.7498/aps.64.235203

    Xiao Delong, Sun Shunkai, Xue Chuang, et al. Numerical studies on the formation process of Z-pinch dynamic hohlraums and key issues of optimizing dynamic hohlraum radiation[J]. Acta Phys Sin, 2015, 64: 235203 doi: 10.7498/aps.64.235203
    [20]
    Meng Shijian, Hu Qingyuan, Nin Jiaming, et al. Measurement of axial radiation properties in Z-pinch dynamic hohlraum at Julong-1[J]. Phys Plasmas, 2017, 24: 014505. doi: 10.1063/1.4974771
    [21]
    Xiao Delong, Ye Fan, Meng Shijian, et al. Preliminary investigation on the radiation transfer in dynamic hohlraums on the PTS facility[J]. Phys Plasmas, 2017, 24: 092701. doi: 10.1063/1.4994331
    [22]
    Huang Xianbin, Ren Xiaodong, Dan Jiakun, et al. Radiation characteristics and implosion dynamics of Z-pinch dynamic hohlraums performed on PTS facility[J]. Phys Plasmas, 2017, 24: 092704. doi: 10.1063/1.4998619
    [23]
    肖德龙, 戴自换, 孙顺凯, 等. Z箍缩动态黑腔驱动靶丸内爆动力学[J]. 物理学报, 2018, 67:025203 doi: 10.7498/aps.67.20171640

    Xiao Delong, Dai Zihuan, Sun Sunkai, et al. Numerical studies on dynamics of Z-pinch dynamic hohlraum driven target implosion[J]. Acta Phys Sin, 2018, 67: 025203 doi: 10.7498/aps.67.20171640
    [24]
    Yi Qiang, Guo Hongsheng, Hu Qingyuan, et al. On the bremsstrahlung background of the neutron yield diagnostic in deuterium-filled capsule implosions driven by Z-pinch dynamic hohlraums on an 8-MA pulsed power facility[J]. Phys Plasmas, 2020, 27: 102709. doi: 10.1063/5.0020558
    [25]
    赵海龙, 张恒第, 王刚华, 等. 一维磁化套筒惯性聚变模拟程序的设计与校验[J]. 强激光与粒子束, 2017, 29:072001 doi: 10.11884/HPLPB201729.170002

    Zhao Hailong, Zhang Hengdi, Wang Ganghua, et al. Design and verification of 1D magnetized linear inertial fusion simulation code[J]. High Power Laser Particle Beams, 2017, 29: 072001 doi: 10.11884/HPLPB201729.170002
    [26]
    赵海龙, 王刚华, 王强, 等. 磁化套筒惯性聚变初步探索研究与实验可行性分析[J]. 强激光与粒子束, 2020, 32:062002 doi: 10.11884/HPLPB202032.190352

    Zhao Hailong, Wang Ganghua, Wang Qiang, et al. Preliminary exploration of MagLIF concept and feasibility analysis on PTS facility[J]. High Power Laser Particle Beams, 2020, 32: 062002 doi: 10.11884/HPLPB202032.190352
    [27]
    McBride R D, Slutz S A. A semi-analytic model of magnetized liner inertial fusion[J]. Phys Plasmas, 2015, 22: 052708. doi: 10.1063/1.4918953
    [28]
    McBride R D, Slutz S A, Vesey R A, et al. Exploring magnetized liner inertial fusion with a semi-analytic model[J]. Phys Plasmas, 2016, 23: 012705. doi: 10.1063/1.4939479
    [29]
    薛创, 丁宁, 肖德龙, 等. 聚龙一号驱动Z箍缩负载内爆的简化电路模型[J]. 强激光与粒子束, 2016, 28:125004 doi: 10.11884/HPLPB201628.160138

    Xue Chuang, Ding Ning, Xiao Delong, et al. Lumped circuit model for the PTS driving Z pinch load implosion[J]. High Power Laser Particle Beams, 2016, 28: 125004 doi: 10.11884/HPLPB201628.160138
    [30]
    Braginskii S I. Transport processes in a plasma[M]//Leontovich M A. Reviews of Plasma Physics. New York: Consultants Bureau, 1965: 249-253.
    [31]
    Atzeni S, Meyer-ter-Vehn J. 惯性聚变物理[M]. 沈百飞, 译. 北京: 科学出版社, 2008: 14-15

    Atzeni S, Meyer-ter-Vehn J. Physics of inertial fusion[M]. Shen Baifei, trans. Beijing: Science Press, 2008: 14-15
    [32]
    Deng Jianjun, Xie Weiping, Feng Shuping, et al. From concept to reality—a review to the primary test stand and its preliminary application in high energy density physics[J]. Matter Radiat Extremes, 2016, 1(1): 48-58. doi: 10.1016/j.mre.2016.01.004
    [33]
    Lau Y Y, Zier J C, Rittersdorf I M, et al. Anisotropy and feedthrough in magneto-Rayleigh-Taylor instability[J]. Phys Rev E, 2011, 83: 066405. doi: 10.1103/PhysRevE.83.066405
    [34]
    Wang Xiaoguang, Wang Guanqiong, Sun Shunkai, et al. Scaling of rise time of drive current on development of magneto-Rayleigh–Taylor instabilities for single-shell Z-pinches[J]. Chin Phys B, 2022, 31: 025203. doi: 10.1088/1674-1056/ac1fd9
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(15)

    Article views (674) PDF downloads(88) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return