Citation: | Yang Chunlin. Vector analysis on the characteristics of continuous phase plate speckle under the strong focusing[J]. High Power Laser and Particle Beams, 2023, 35: 032001. doi: 10.11884/HPLPB202335.220260 |
[1] |
Tikhonchuk V T. Physics of laser plasma interaction and particle transport in the context of inertial confinement fusion[J]. Nuclear Fusion, 2019, 59: 032001. doi: 10.1088/1741-4326/aab21a
|
[2] |
Kato Y, Mima K, Miyanaga N, et al. Random phasing of high-power lasers for uniform target acceleration and plasma-instability suppression[J]. Physical Review Letters, 1984, 53(11): 1057-1060. doi: 10.1103/PhysRevLett.53.1057
|
[3] |
Tikhonchuk V T, Mounaix P H, Pesme D. Stimulated Brillouin scattering reflectivity in the case of a spatially smoothed laser beam interacting with an inhomogeneous plasma[J]. Physics of Plasmas, 1997, 4(7): 2658-2669. doi: 10.1063/1.872351
|
[4] |
杨春林. 等离子体中散斑光场的传输特性[J]. 物理学报, 2018, 67:085201 doi: 10.7498/aps.67.20171795
Yang Chunlin. Propagation characteristics of speckle field in plasma[J]. Acta Physica Sinica, 2018, 67: 085201 doi: 10.7498/aps.67.20171795
|
[5] |
Hüller S, Porzio A, Robiche J. Order statistics of high-intensity speckles in stimulated Brillouin scattering and plasma-induced laser beam smoothing[J]. New Journal of Physics, 2013, 15: 025003. doi: 10.1088/1367-2630/15/2/025003
|
[6] |
杨春林. 位相叠加效应对连续位相板束匀滑特性的影响[J]. 红外与激光工程, 2020, 49:20190515 doi: 10.3788/IRLA20190515
Yang Chunlin. Influence of phase additive effect on beam smoothing character of continuous phase plate[J]. Infrared and Laser Engineering, 2020, 49: 20190515 doi: 10.3788/IRLA20190515
|
[7] |
Goodman J W. 光学中的散斑现象: 理论与应用[M]. 曹其智, 陈家璧, 译. 北京: 科学出版社, 2009: 71
Goodman J W. Speckle phenomena in optics: theory and applications[M]. Cao Qizhi, Chen Jiabi, trans. Beijing: Science Press, 2009: 71
|
[8] |
Wolf E. Electromagnetic diffraction in optical systems- I. An integral representation of the image field[J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 1959, 253(1274): 349-357.
|
[9] |
Foley J T, Wolf E. Wave-front spacing in the focal region of high-numerical-aperture systems[J]. Optics Letters, 2005, 30(11): 1312-1314. doi: 10.1364/OL.30.001312
|
[10] |
Youngworth K S, Brown T G. Focusing of high numerical aperture cylindrical-vector beams[J]. Optics Express, 2000, 7(2): 77-87. doi: 10.1364/OE.7.000077
|
[11] |
Khonina S N, Golub I. Tighter focus for ultrashort pulse vector light beams: change of the relative contribution of different field components to the focal spot upon pulse shortening[J]. Journal of the Optical Society of America A, 2018, 35(6): 985-991. doi: 10.1364/JOSAA.35.000985
|
[12] |
Omatsu T, Litchinitser N M, Brasselet E, et al. Focus issue introduction: synergy of structured light and structured materials[J]. Optics Express, 2017, 25(14): 16681-16685. doi: 10.1364/OE.25.016681
|
[13] |
Tao S H, Yuan X C, Lin J, et al. Influence of geometric shape of optically trapped particles on the optical rotation induced by vortex beams[J]. Journal of Applied Physics, 2006, 100: 043105. doi: 10.1063/1.2260823
|
[14] |
Lin J, Rodríguez-Herrera O G, Kenny F, et al. Fast vectorial calculation of the volumetric focused field distribution by using a three-dimensional Fourier transform[J]. Optics Express, 2012, 20(2): 1060-1069. doi: 10.1364/OE.20.001060
|
[15] |
Huang Kun, Shi Peng, Cao G W, et al. Vector-vortex Bessel-Gauss beams and their tightly focusing properties[J]. Optics Letters, 2011, 36(6): 888-890. doi: 10.1364/OL.36.000888
|
[1] | Xiao Hu, Pan Zhiyong, Chen Zilun, Ma Pengfei, Liu Wei, Yang Huan, Yan Zhiping, Wang Meng, Xi Xiaoming, Li Zhixian, Yang Baolai, Yang Linyong, Huang Liangjin, Huang Zhihe, Cao Jianqiu, Wang Xiaolin, Wang Zefeng, Chen Jinbao. 20 kW fiber laser with high beam quality enabled by tapered ytterbium-doped fiber[J]. High Power Laser and Particle Beams, 2024, 36(1): 011001. doi: 10.11884/HPLPB202436.230418 |
[2] | Xi Xiaoming, Yang Baolai, Zhang Hanwei, Pan Zhiyong, Huang Liangjin, Wang Peng, Yang Huan, Shi Chen, Yan Zhiping, Chen Zilun, Wang Xiaolin, Han Kai, Wang Zefeng, Zhou Pu, Xu Xiaojun. 20 kW monolithic fiber amplifier directly pumped by LDs[J]. High Power Laser and Particle Beams, 2023, 35(2): 021001. doi: 10.11884/HPLPB202335.220424 |
[3] | Liu Jiaqi, Zeng Lingfa, Shi Chen, Wu Hanshuo, Wang Peng, Xi Xiaoming, Zhang Hanwei, Wang Xiaolin, Xi Fengjie. A bidirectional output all-fiber laser oscillator with record output power of 8 kW[J]. High Power Laser and Particle Beams, 2023, 35(8): 081003. doi: 10.11884/HPLPB202335.230201 |
[4] | Gao Cong, Liu Nian, Li Fengyun, Liu Yu, Dai Jiangyun, Shen Changle, He Hongle, Lü Jiakun, Li Fang, Zhang Lihua, Li Yuwei, Jiang Lei, Guo Chao, Tao Rumao, Ke Weiwei, Zhang Haoyu, Wang Jianjun, Lin Honghuan, Jing Feng. 17.4 kW (1+1) long distance side-pumped laser fiber[J]. High Power Laser and Particle Beams, 2022, 34(5): 051002. doi: 10.11884/HPLPB202234.220070 |
[5] | Yang Baolai, Yang Huan, Ye Yun, Xi Xiaoming, Zhang Hanwei, Huang Liangjin, Wang Peng, Shi Chen, Wang Xiaolin, Yan Zhiping, Pan Zhiyong, Wang Zefeng, Zhou Pu, Xu Xiaojun, Chen Jinbao. 6 kW broadband fiber laser based on home-made ytterbium-doped fiber with gradually varying spindle-shape structure[J]. High Power Laser and Particle Beams, 2022, 34(8): 081001. doi: 10.11884/HPLPB202234.220220 |
[6] | Wang Peng, Xi Xiaoming, Zhang Hanwei, Yang Baolai, Shi Chen, Xiao Hu, Chen Zilun, Pan Zhiyong, Wang Xiaolin, Wang Zefeng, Zhou Pu, Xu Xiaojun, Chen Jinbao. Laser-diode-pumped fiber laser amplifier for 13 kW high-beam-quality output[J]. High Power Laser and Particle Beams, 2022, 34(12): 121001. doi: 10.11884/HPLPB202234.220247 |
[7] | Zhang Chun, Xie Lianghua, Chu Qiuhui, Liu Yu, Huang Shan, Song Huaqing, Wu Wenjie, Feng Xi, Li Min, Shen Benjian, Li Haokun, Tao Rumao, Xu Lixin, Wang Jianjun. Research progress of stimulated Raman scattering effect in high power fiber lasers[J]. High Power Laser and Particle Beams, 2022, 34(2): 021002. doi: 10.11884/HPLPB202234.210251 |
[8] | Wang Li, Wang Xiaoling, Zhang Hanwei, Chen Zilun, Xu Xiaojun. Theoretical study on transmission characteristics of stimulated Raman scattering in passive fiber with variable core radius[J]. High Power Laser and Particle Beams, 2021, 33(11): 111011. doi: 10.11884/HPLPB202133.210225 |
[9] | Xi Xiaoming, Zeng Lingfa, Zhang Hanwei, Wang Peng, Yang Baolai, Wang Xiaolin, Xu Xiaojun. 5 kW oscillating-amplifying integrated fiber laser with high reliability[J]. High Power Laser and Particle Beams, 2021, 33(7): 071001. doi: 10.11884/HPLPB202133.210245 |
[10] | Xiao Hu, Leng Jinyong, Zhang Hanwei, Huang Liangjin, Guo Shaofeng, Zhou Pu, Chen Jinbao. A 2.14 kW tandem pumped fiber amplifier[J]. High Power Laser and Particle Beams, 2015, 27(01): 010103. doi: 10.11884/HPLPB201527.010103 |
[11] | Du Wenbo, Wang Xiaolin, Zhu Jiajian, Zhou Pu, Xu Xiaojun, Shu Bohong. Suppression of stimulated Brillouin scattering effect in fiber amplifiers[J]. High Power Laser and Particle Beams, 2013, 25(03): 598-602. doi: 10.3788/HPLPB20132503.0598 |
[12] | Wang Hailin, Huang Weicun, Hong Xinhua. Mode field evolution in 1 550 nm single-mode tapered fiber[J]. High Power Laser and Particle Beams, 2012, 24(05): 1052-1056. doi: 10.3788/HPLPB20122405.1052 |
[13] | zhou pu, ma yanxing, wang xiaolin, ma haotong, xu xiaojun, liu zejin. Coherent beam combining of fiber amplifiers based on stimulated annealing algorithm[J]. High Power Laser and Particle Beams, 2010, 22(05): 0- . |
[14] | zhao zhen-yu, duan kai-liang, wang jian-ming, zhao wei, wang yi-shan. Experimental study of gain characteristics of high power photonic crystal fiber amplifier[J]. High Power Laser and Particle Beams, 2008, 20(12): 0- . |
[15] | li jing-qin, pan wei, luo bin, zou xi-hua, zhang wei-li, zhou zhi. Stimulated Raman scattering and thermal stress in double clad fiber laser[J]. High Power Laser and Particle Beams, 2007, 19(12): 0- . |
[16] | hou jing, xiao rui, jiang zong-fu, shu bo-hong, cheng jin-bao, liu ze-jin. Coherent beam combination of three ytterbium fiber amplifiers[J]. High Power Laser and Particle Beams, 2006, 18(10): 0- . |
[17] | ding guang-lei, shen hua, yang ling-zhen, wang yi-shan, zhao wei, chen guo-fu. High repetition rate femtosecond Yb-doped fiber amplifier[J]. High Power Laser and Particle Beams, 2006, 18(06): 0- . |
[18] | chen ji-xin, sui zhan, chen fu-shen, liu zhi-qiang, li ming-zhong, wang jian-jun, luo yi-ming. Stimulated Raman scattering and thermal effect in high power double clad fiber laser[J]. High Power Laser and Particle Beams, 2006, 18(09): 0- . |
[19] | shen hua, ding guang-lei, wang yi-shan, zhao wei. Experiment of cladding pumped femtosecond fiber amplifier[J]. High Power Laser and Particle Beams, 2005, 17(09): 0- . |
[20] | ding guang-lei, shen hua, yang ling-zhen, zhao wei, chen guo-fu, duan zuo-liang, cheng zhao. ps fiber amplifier and gratings compressor[J]. High Power Laser and Particle Beams, 2005, 17(07): 0- . |
1. | 杨保来,王鹏,奚小明,马鹏飞,王小林,王泽锋. LD泵浦高平均功率、高光束质量掺镱光纤激光振荡器与放大器研究进展. 光学学报. 2023(17): 150-170 . ![]() | |
2. | 张志伦,林贤峰,李文臻,徐中巍,廖雷,陈瑰,褚应波,邢颍滨,李海清,彭景刚,戴能利,李进延. 低数值孔径部分掺杂纺锤形光纤实现4 kW近衍射极限激光输出. 中国激光. 2022(13): 173-176 . ![]() | |
3. | 奚小明,曾令筏,张汉伟,王鹏,杨保来,王小林,许晓军. 5 kW振荡放大一体化高可靠性光纤激光器. 强激光与粒子束. 2021(07): 45-47 . ![]() | |
4. | 肖起榕,田佳丁,李丹,齐天澄,王泽晖,于伟龙,吴与伦,闫平,巩马理. 级联泵浦高功率掺镱光纤激光器:进展与展望. 中国激光. 2021(15): 66-86 . ![]() | |
5. | 王力,王小林,张汉伟,陈子伦,许晓军. 变纤芯直径传能光纤中受激拉曼散射传输特性的理论研究. 强激光与粒子束. 2021(11): 96-101 . ![]() |