Citation: | Yang Chunlin. Vector analysis on the characteristics of continuous phase plate speckle under the strong focusing[J]. High Power Laser and Particle Beams, 2023, 35: 032001. doi: 10.11884/HPLPB202335.220260 |
[1] |
Tikhonchuk V T. Physics of laser plasma interaction and particle transport in the context of inertial confinement fusion[J]. Nuclear Fusion, 2019, 59: 032001. doi: 10.1088/1741-4326/aab21a
|
[2] |
Kato Y, Mima K, Miyanaga N, et al. Random phasing of high-power lasers for uniform target acceleration and plasma-instability suppression[J]. Physical Review Letters, 1984, 53(11): 1057-1060. doi: 10.1103/PhysRevLett.53.1057
|
[3] |
Tikhonchuk V T, Mounaix P H, Pesme D. Stimulated Brillouin scattering reflectivity in the case of a spatially smoothed laser beam interacting with an inhomogeneous plasma[J]. Physics of Plasmas, 1997, 4(7): 2658-2669. doi: 10.1063/1.872351
|
[4] |
杨春林. 等离子体中散斑光场的传输特性[J]. 物理学报, 2018, 67:085201 doi: 10.7498/aps.67.20171795
Yang Chunlin. Propagation characteristics of speckle field in plasma[J]. Acta Physica Sinica, 2018, 67: 085201 doi: 10.7498/aps.67.20171795
|
[5] |
Hüller S, Porzio A, Robiche J. Order statistics of high-intensity speckles in stimulated Brillouin scattering and plasma-induced laser beam smoothing[J]. New Journal of Physics, 2013, 15: 025003. doi: 10.1088/1367-2630/15/2/025003
|
[6] |
杨春林. 位相叠加效应对连续位相板束匀滑特性的影响[J]. 红外与激光工程, 2020, 49:20190515 doi: 10.3788/IRLA20190515
Yang Chunlin. Influence of phase additive effect on beam smoothing character of continuous phase plate[J]. Infrared and Laser Engineering, 2020, 49: 20190515 doi: 10.3788/IRLA20190515
|
[7] |
Goodman J W. 光学中的散斑现象: 理论与应用[M]. 曹其智, 陈家璧, 译. 北京: 科学出版社, 2009: 71
Goodman J W. Speckle phenomena in optics: theory and applications[M]. Cao Qizhi, Chen Jiabi, trans. Beijing: Science Press, 2009: 71
|
[8] |
Wolf E. Electromagnetic diffraction in optical systems- I. An integral representation of the image field[J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 1959, 253(1274): 349-357.
|
[9] |
Foley J T, Wolf E. Wave-front spacing in the focal region of high-numerical-aperture systems[J]. Optics Letters, 2005, 30(11): 1312-1314. doi: 10.1364/OL.30.001312
|
[10] |
Youngworth K S, Brown T G. Focusing of high numerical aperture cylindrical-vector beams[J]. Optics Express, 2000, 7(2): 77-87. doi: 10.1364/OE.7.000077
|
[11] |
Khonina S N, Golub I. Tighter focus for ultrashort pulse vector light beams: change of the relative contribution of different field components to the focal spot upon pulse shortening[J]. Journal of the Optical Society of America A, 2018, 35(6): 985-991. doi: 10.1364/JOSAA.35.000985
|
[12] |
Omatsu T, Litchinitser N M, Brasselet E, et al. Focus issue introduction: synergy of structured light and structured materials[J]. Optics Express, 2017, 25(14): 16681-16685. doi: 10.1364/OE.25.016681
|
[13] |
Tao S H, Yuan X C, Lin J, et al. Influence of geometric shape of optically trapped particles on the optical rotation induced by vortex beams[J]. Journal of Applied Physics, 2006, 100: 043105. doi: 10.1063/1.2260823
|
[14] |
Lin J, Rodríguez-Herrera O G, Kenny F, et al. Fast vectorial calculation of the volumetric focused field distribution by using a three-dimensional Fourier transform[J]. Optics Express, 2012, 20(2): 1060-1069. doi: 10.1364/OE.20.001060
|
[15] |
Huang Kun, Shi Peng, Cao G W, et al. Vector-vortex Bessel-Gauss beams and their tightly focusing properties[J]. Optics Letters, 2011, 36(6): 888-890. doi: 10.1364/OL.36.000888
|