Volume 35 Issue 3
Mar.  2023
Turn off MathJax
Article Contents
Yang Chunlin. Vector analysis on the characteristics of continuous phase plate speckle under the strong focusing[J]. High Power Laser and Particle Beams, 2023, 35: 032001. doi: 10.11884/HPLPB202335.220260
Citation: Yang Chunlin. Vector analysis on the characteristics of continuous phase plate speckle under the strong focusing[J]. High Power Laser and Particle Beams, 2023, 35: 032001. doi: 10.11884/HPLPB202335.220260

Vector analysis on the characteristics of continuous phase plate speckle under the strong focusing

doi: 10.11884/HPLPB202335.220260
  • Received Date: 2022-08-23
  • Accepted Date: 2023-02-15
  • Rev Recd Date: 2023-02-15
  • Available Online: 2023-02-21
  • Publish Date: 2023-03-01
  • Continuous phase plate (CPP) is a typical phase optical element. It will form a speckle field focused by a lens. The statistical characteristics of the speckle field affect the beam smoothing result. When a lens with large number aperture is used, scalar diffraction theory is unsuitable to analyze the distribution character of the focal spot because the paraxial approximation is no longer valid. In this paper, the Richar-Wolf vector diffraction theory is employed to calculate the focal spot of CPP under the strong focusing condition. Then both the profile of the focal spot and its statistical characteristics are discussed in detail. The results show that the spot size that calculated by the vector method is larger than which calculated by scalar method due to the non-paraxial effect. According to the feature of the vector method, the z-component of the light field can be obtained. The amplitude distribution of the speckle meets the Rayleigh distribution character, and its intensity distribution meets the negative exponential distribution character. Influenced by the z-component, the intensity distribution in the vectorial resultant direction will slightly deviate from the negative exponential distribution character .
  • loading
  • [1]
    Tikhonchuk V T. Physics of laser plasma interaction and particle transport in the context of inertial confinement fusion[J]. Nuclear Fusion, 2019, 59: 032001. doi: 10.1088/1741-4326/aab21a
    [2]
    Kato Y, Mima K, Miyanaga N, et al. Random phasing of high-power lasers for uniform target acceleration and plasma-instability suppression[J]. Physical Review Letters, 1984, 53(11): 1057-1060. doi: 10.1103/PhysRevLett.53.1057
    [3]
    Tikhonchuk V T, Mounaix P H, Pesme D. Stimulated Brillouin scattering reflectivity in the case of a spatially smoothed laser beam interacting with an inhomogeneous plasma[J]. Physics of Plasmas, 1997, 4(7): 2658-2669. doi: 10.1063/1.872351
    [4]
    杨春林. 等离子体中散斑光场的传输特性[J]. 物理学报, 2018, 67:085201 doi: 10.7498/aps.67.20171795

    Yang Chunlin. Propagation characteristics of speckle field in plasma[J]. Acta Physica Sinica, 2018, 67: 085201 doi: 10.7498/aps.67.20171795
    [5]
    Hüller S, Porzio A, Robiche J. Order statistics of high-intensity speckles in stimulated Brillouin scattering and plasma-induced laser beam smoothing[J]. New Journal of Physics, 2013, 15: 025003. doi: 10.1088/1367-2630/15/2/025003
    [6]
    杨春林. 位相叠加效应对连续位相板束匀滑特性的影响[J]. 红外与激光工程, 2020, 49:20190515 doi: 10.3788/IRLA20190515

    Yang Chunlin. Influence of phase additive effect on beam smoothing character of continuous phase plate[J]. Infrared and Laser Engineering, 2020, 49: 20190515 doi: 10.3788/IRLA20190515
    [7]
    Goodman J W. 光学中的散斑现象: 理论与应用[M]. 曹其智, 陈家璧, 译. 北京: 科学出版社, 2009: 71

    Goodman J W. Speckle phenomena in optics: theory and applications[M]. Cao Qizhi, Chen Jiabi, trans. Beijing: Science Press, 2009: 71
    [8]
    Wolf E. Electromagnetic diffraction in optical systems- I. An integral representation of the image field[J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 1959, 253(1274): 349-357.
    [9]
    Foley J T, Wolf E. Wave-front spacing in the focal region of high-numerical-aperture systems[J]. Optics Letters, 2005, 30(11): 1312-1314. doi: 10.1364/OL.30.001312
    [10]
    Youngworth K S, Brown T G. Focusing of high numerical aperture cylindrical-vector beams[J]. Optics Express, 2000, 7(2): 77-87. doi: 10.1364/OE.7.000077
    [11]
    Khonina S N, Golub I. Tighter focus for ultrashort pulse vector light beams: change of the relative contribution of different field components to the focal spot upon pulse shortening[J]. Journal of the Optical Society of America A, 2018, 35(6): 985-991. doi: 10.1364/JOSAA.35.000985
    [12]
    Omatsu T, Litchinitser N M, Brasselet E, et al. Focus issue introduction: synergy of structured light and structured materials[J]. Optics Express, 2017, 25(14): 16681-16685. doi: 10.1364/OE.25.016681
    [13]
    Tao S H, Yuan X C, Lin J, et al. Influence of geometric shape of optically trapped particles on the optical rotation induced by vortex beams[J]. Journal of Applied Physics, 2006, 100: 043105. doi: 10.1063/1.2260823
    [14]
    Lin J, Rodríguez-Herrera O G, Kenny F, et al. Fast vectorial calculation of the volumetric focused field distribution by using a three-dimensional Fourier transform[J]. Optics Express, 2012, 20(2): 1060-1069. doi: 10.1364/OE.20.001060
    [15]
    Huang Kun, Shi Peng, Cao G W, et al. Vector-vortex Bessel-Gauss beams and their tightly focusing properties[J]. Optics Letters, 2011, 36(6): 888-890. doi: 10.1364/OL.36.000888
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)

    Article views (531) PDF downloads(70) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return