Citation: | Zhou Wenzhong, Pan Weimin, Ge Rui, et al. Design of the China Spallation Neutron Source phase II double spoke resonator[J]. High Power Laser and Particle Beams, 2023, 35: 034004. doi: 10.11884/HPLPB202335.220266 |
[1] |
Hopper C S, Park H. High-velocity spoke cavities[C]//Proceedings of SRF2015. 2015: 943-947.
|
[2] |
Hopper C S, Delayen J R. Superconducting spoke cavities for high-velocity applications[J]. Physical Review Special Topics - Accelerators and Beams, 2013, 16: 102001. doi: 10.1103/PhysRevSTAB.16.102001
|
[3] |
Krawczyk F L, Chan K C D, Gentzlinger R C, et al. An integrated design for a beta=0.175 spoke resonator and associated power coupler[C]//Proceedings of the 8th European Particle Accelerator Conference. 2002: 272-274.
|
[4] |
Zaplatin E. Multi-spoke cavity end region analysis[C]//Proceedings of the 12th International Workshop on RF Superconductivity. 2005: 337-341.
|
[5] |
Jiang T C, Xiong P R, Li C L, et al. Development of a superconducting double-spoke cavity at IMP[C]//Proceedings of the 9th International Particle Accelerator Conference. 2018: 2869-2871.
|
[6] |
周全. 高性能超导双spoke腔的物理与实验研究[D]. 北京: 中国科学院大学, 2021
Zhou Quan. Physical and experimental studies of high performance superconducting double spoke cavity[D]. Beijing: University of Chinese Academy of Sciences, 2021
|
[7] |
Delayen J R, De Silva S U, Hopper C S. Design of superconducting spoke cavities for high-velocity applications[C]//Proceedings of 2011 Particle Accelerator Conference. 2011: 1024-1026.
|
[8] |
Delayen J R. Low and intermediate beta cavity design—a tutorial[C]//Proceedings of the 11th Workshop on RF Superconductivity. 2015: 486-495.
|
[9] |
Padamsee H, Knobloch J, Hays T. RF superconductivity for accelerators[M]. 2nd ed. Weinheim: Wiley-VCH, 2008.
|
[10] |
Zheng Hongjuan, Zhang Pei, Li Zhongquan, et al. Design optimization of a mechanically improved 499.8-MHz single-cell superconducting cavity for HEPS[J]. IEEE Transactions on Applied Superconductivity, 2021, 31: 3500109.
|
[11] |
Merio M. Material properties for engineering analyses of SRF cavities[M]. Fermi National Accelerator Laboratory, 2011.
|
[12] |
Ginsburg C M, Reid C, Sergatskov D A. Magnetic shielding for the Fermilab vertical cavity test facility[J]. IEEE Transactions on Applied Superconductivity, 2009, 19(3): 1419-1422. doi: 10.1109/TASC.2009.2018234
|
[13] |
Jung Y, Joung M, Hyun M O, et al. Analysis of high pressure rinsing chacteristics for SRF cavities[C]//Proceedings of SRF2015. 2015: 414-417.
|
[14] |
Guo H, Xiong P R, Shi Z X, et al. Study on local chemical treatment for recovery from surface oxidation by HPR process on SRF cavities[C]//18th International Conference on RF Superconductivity. 2017: 592-594.
|
[15] |
Jones T, Pattalwar S, Burt G, et al. Determining BCP etch rate and uniformity in high luminosity LHC crab cavities[C]//18th International Conference on RF Superconductivity. 2017: 635-639.
|
[16] |
Boffo C, Elementi L, Terechkine Y. Facility for chemical polishing of superconducting niobium RF cavities[J]. IEEE Transactions on Applied Superconductivity, 2005, 15(2): 2401-2404. doi: 10.1109/TASC.2005.849682
|
[1] | Jiang Lei, Chen Yi, Dai Jiangyun, Liu Nian, Lü Jiakun, Zhang Lihua, Li Fang, He Honglei, Gao Cong, Shen Changle. Measurement of refractive index profile of special-shaped preform by sleeve-assistant method[J]. High Power Laser and Particle Beams, 2022, 34(12): 121006. doi: 10.11884/HPLPB202234.220233 |
[2] | Yang Shenghui, Zhang Guojun, Han Jianjun, Ding Junwen, Zeng Rui, Shang Zhenzhen. Design of automatic testing system for sensitivity of MEMS vector hydrophone[J]. High Power Laser and Particle Beams, 2017, 29(04): 044101. doi: 10.11884/HPLPB201729.160521 |
[3] | Xing Yonghao, Xie Bo, Chen Jian, Chen Deyong, Wang Junbo. A differential resonant pressure micro sensor with identical sensitivity of two resonant beams[J]. High Power Laser and Particle Beams, 2016, 28(06): 064130. doi: 10.11884/HPLPB201628.064130 |
[4] | Wang Yuxin, Zhou Zaifa, Hua Jie, Wang Fei, Xu Huanwen, Huang Qing'an. Rigorous electromagnetic field model based on waveguide method for 3D thick resist lithography simulation[J]. High Power Laser and Particle Beams, 2016, 28(06): 064102. doi: 10.11884/HPLPB201628.064102 |
[5] | Li Muhua, Zhao Jiahao, You Zheng. Loss mechanisms of radio frequency micro-electro-mechanical systems capacitive switches[J]. High Power Laser and Particle Beams, 2015, 27(02): 024132. doi: 10.11884/HPLPB201527.024132 |
[6] | Sun Jianhai, Ning Zhanwu, Ma Tianjun, Zhu Xiaofeng, Cui Dafu, Zhang Lulu, Li Hui, Chen Xing. High performance integrated micro-fabricated pre-concentrator based on MEMS[J]. High Power Laser and Particle Beams, 2015, 27(02): 024124. doi: 10.11884/HPLPB201527.024124 |
[7] | Xiong Zhuang, Bernard Legrand. Design and measurement of AFM probe based on MEMS resonator[J]. High Power Laser and Particle Beams, 2015, 27(02): 024119. doi: 10.11884/HPLPB201527.024119 |
[8] | Kuang Jian, Li Yang, Bian Chao, Tong Jianhua, Sun Jizhou, Xia Shanhong. Microelectrode arrays modified with copper for nitrate determination[J]. High Power Laser and Particle Beams, 2015, 27(02): 024122. doi: 10.11884/HPLPB201527.024122 |
[9] | Wang Qiang, Wang Weimin, Qiu Chuankai, Yu Junsheng. An electrostatically actuated MEMS tilting mirror based on self-assembly[J]. High Power Laser and Particle Beams, 2015, 27(02): 024127. doi: 10.11884/HPLPB201527.024127 |
[10] | Zhao Xinghai, Shi Zhigui, Xiang Wei, Jin Dazhi, Qian Muyang, Su Wei, Li Nannan, Zhu Jinfeng. Fabrication of micro-hole array for field emission cold cathode gates[J]. High Power Laser and Particle Beams, 2013, 25(06): 1475-1478. doi: 10.3788/HPLPB20132506.1475 |
[11] | You Xiaoguang, Cheng Yonghong, Meng Guodong, Wu Kai, Meng Yongpeng. Pulse breakdown characteristics of microscale gap in micro-electro-mechanical system[J]. High Power Laser and Particle Beams, 2013, 25(07): 1867-1872. doi: 10.3788/HPLPB20132507.1867 |
[12] | chen ying, li chengyue, ji tianren. Simulation study on atmospheric pressure microwave plasma torch[J]. High Power Laser and Particle Beams, 2011, 23(10): 0- . |
[13] | tang enling, yang minghai, xiang shenghai, li lexin, zhang wei, yu hui, zhao xinying. Spectral response characteristics of plasma generated by hypervelocity impact[J]. High Power Laser and Particle Beams, 2011, 23(05): 0- . |
[14] | hu fangrong, yao jun. Microelectromechanical systems deformable mirror actuator based on electrostatic repulsive force[J]. High Power Laser and Particle Beams, 2010, 22(01): 0- . |
[15] | zhang kangkang, luo hailu, wen shuangchun. Focusing and phase compensation of paraxial Hermite-Gaussian and Laguerre-Gaussian beams by a negative refractive index material slab[J]. High Power Laser and Particle Beams, 2010, 22(08): 0- . |
[16] | ma xiao-shan, zhu wen-yue, rao rui-zhong. Comparison of refractive index structure constants of atmospheric turbulence deduced from scintillation and beam wander effects[J]. High Power Laser and Particle Beams, 2007, 19(04): 0- . |
[17] | li xue-bin, hu shun-xing, xu qing-shan, hu huan-ling. Characteristics measurement of extinction and refractive index of aerosol particles[J]. High Power Laser and Particle Beams, 2007, 19(02): 0- . |
[18] | zhu wen-yue, zhao zhu-ling, ma xiao-shan, rao rui-zhong. Optical method for simultaneously measuring refractive-index structure parameter and inner scale of atmospheric turbulence[J]. High Power Laser and Particle Beams, 2005, 17(10): 0- . |
[19] | zhou meng-lian, liu jing-ru, cai yue, yao dong-sheng, cheng de-yan. Ultrasonic method for measuring atmospheric refractive-index-structure parameter[J]. High Power Laser and Particle Beams, 2005, 17(12): 0- . |
[20] | wu xiao qing, ma cheng sheng, wang ying jian, zeng zong yong, gong zhi ben. Longterm measurements and statistics study on refractiveindex structure parameter of surface layer[J]. High Power Laser and Particle Beams, 2002, 14(04): 0- . |