Volume 35 Issue 2
Jan.  2023
Turn off MathJax
Article Contents
Kan Mingxian, Jia Yuesong, Zhang Nanchuan, et al. Simulation of Z-pinch experiments with a reflux hood structure[J]. High Power Laser and Particle Beams, 2023, 35: 025003. doi: 10.11884/HPLPB202335.220271
Citation: Kan Mingxian, Jia Yuesong, Zhang Nanchuan, et al. Simulation of Z-pinch experiments with a reflux hood structure[J]. High Power Laser and Particle Beams, 2023, 35: 025003. doi: 10.11884/HPLPB202335.220271

Simulation of Z-pinch experiments with a reflux hood structure

doi: 10.11884/HPLPB202335.220271
  • Received Date: 2022-08-30
  • Accepted Date: 2022-10-19
  • Rev Recd Date: 2022-10-13
  • Available Online: 2022-10-22
  • Publish Date: 2023-01-14
  • The Z-pinch experiments with a reflux hood structure, exp90 or exp60, were carried out in an intense pulsed power device FP-2 and simulated and analyzed by the two-dimensional magnetically driven simulation code (MDSC2). The numerical simulations show that the measured current/loop current is not a load current of liner in the Z-pinch experiment with the reflux hood structure. There is a structure coefficient between the measured current/loop current and the load current. A new formula for the relation between the boundary magnetic field and the loop current is presented. The new boundary magnetic field formula with the structure coefficient and the MDSC2 code can correctly simulate the Z-pinch experiments with a reflux hood structure. The simulated inner diameter velocity is consistent with the measured one by Velocity Interferometry System for Any Reflector (VISAR). The structure coefficients is a constant, which is determined only by the initial structure of Z-pinch with reflux hood structure. In the Z-pinch experiments with the reflux hood structure, the structure coefficients for the 90 mm inner diameter liner and the 60 mm one are 0.87 and 0.90 respectively. When the initial thickness of liner, insulation material and other conditions are the same, the larger the inner diameter of liner, the smaller the structure coefficient of Z-pinch with reflux hood structure.
  • loading
  • [1]
    Reisman D B, Toor A, Cauble R C. Magnetically driven isentropic compression experiments on the Z accelerator[J]. Journal of Applied Physics, 2001, 89(3): 1625-1633. doi: 10.1063/1.1337082
    [2]
    王桂吉, 赵剑衡, 孙承纬, 等. 磁驱动准等熵加载装置CQ-4的加载能力及主要应用[J]. 实验力学, 2015, 30(2):252-262 doi: 10.7520/1001-4888-15-001

    Wang Guiji, Zhao Jianheng, Sun Chengwei, et al. On the loading capability and main application of magnetically driven quasi-isentropic compression device CQ-4[J]. Journal of Experimental Mechanics, 2015, 30(2): 252-262 doi: 10.7520/1001-4888-15-001
    [3]
    Sun Qizhi, Jia Yuesong, Zhang Zhengwei, et al. Cylindrical metal liner implosion at extremes of pressure and material velocity on an intense pulsed power facility-FP-2[J]. Review of Scientific Instruments, 2022, 93: 013904. doi: 10.1063/5.0064238
    [4]
    Knudson M D, Lemke R W, Hayes D B, et al. Near-absolute Hugoniot measurements in aluminum to 500 GPa using a magnetically accelerated flyer plate technique[J]. Journal of Applied Physics, 2003, 94(7): 4420-4431. doi: 10.1063/1.1604967
    [5]
    Lemke R W, Knudson M D, Bliss D E, et al. Magnetically accelerated, ultrahigh velocity flyer plates for shock wave experiments[J]. Journal of Applied Physics, 2005, 98: 073530. doi: 10.1063/1.2084316
    [6]
    Knudson M D, Hanson D L, Bailey J E, et al. Equation of state measurements in liquid deuterium to 70 GPa[J]. Physical Review Letters, 2001, 87: 225501. doi: 10.1103/PhysRevLett.87.225501
    [7]
    Knudson M D, Hanson D L, Bailey J E, et al. Use of a wave reverberation technique to infer the density compression of shocked liquid deuterium to 75 GPa[J]. Physical Review Letters, 2003, 90: 035505. doi: 10.1103/PhysRevLett.90.035505
    [8]
    Knudson M D, Hanson D L, Bailey J E, et al. Principal Hugoniot, reverberating wave, and mechanical reshock measurements of liquid deuterium to 400 GPa using plate impact techniques[J]. Physical Review B, 2004, 69: 144209. doi: 10.1103/PhysRevB.69.144209
    [9]
    Vogler T J, Ao T, Asay J R. High-pressure strength of aluminum under quasi-isentropic loading[J]. International Journal of Plasticity, 2009, 25(4): 671-694. doi: 10.1016/j.ijplas.2008.12.003
    [10]
    Robinson A C, Strack O E, Drake R R, et al. ALEGRA: an arbitrary Lagrangian-Eulerian multimaterial, multiphysics code[C]//Proposed for presentation at the AIAA Aerospace Sciences Meeting. 2008.
    [11]
    Frese M H. MACH2: a two-dimensional magnetohydrodynamic simulation code for complex experimental configurations[R]. AMRC-R-874, 1987.
    [12]
    Chittenden J P, Lebedev S V, Jennings C A, et al. X-ray generation mechanisms in three-dimensional simulations of wire array Z-pinches[J]. Plasma Physics and Controlled Fusion, 2004, 46(12B): B457-B476. doi: 10.1088/0741-3335/46/12B/039
    [13]
    丁宁, 邬吉明, 杨震华, 等. Z箍缩内爆的MARED程序1维模拟分析[J]. 强激光与粒子束, 2008, 20(2):212-218

    Ding Ning, Wu Jiming, Yang Zhenhua, et al. Simulation of Z-pinch implosion using MARED code[J]. High Power Laser and Particle Beams, 2008, 20(2): 212-218
    [14]
    阚明先, 蒋吉昊, 王刚华, 等. 衬套内爆ALE方法二维MHD数值模拟[J]. 四川大学学报(自然科学学报), 2007, 44(1):91-96

    Kan Mingxian, Jiang Jihao, Wang Ganghua, et al. ALE simulation 2D MHD for liner[J]. Journal of Sichuan University (Natural Science Edition), 2007, 44(1): 91-96
    [15]
    阚明先, 王刚华, 赵海龙, 等. 磁驱动飞片二维磁流体力学数值模拟[J]. 强激光与粒子束, 2013, 25(8):2137-2141 doi: 10.3788/HPLPB20132508.2137

    Kan Mingxian, Wang Ganghua, Zhao Hailong, et al. Two-dimensional magneto-hydrodynamic simulations of magnetically accelerated flyer plates[J]. High Power Laser and Particle Beams, 2013, 25(8): 2137-2141 doi: 10.3788/HPLPB20132508.2137
    [16]
    阚明先, 王刚华, 赵海龙, 等. 金属电阻率模型[J]. 爆炸与冲击, 2013, 33(3):282-286 doi: 10.3969/j.issn.1001-1455.2013.03.010

    Kan Mingxian, Wang Ganghua, Zhao Hailong, et al. Electrical resistivity model for metals[J]. Explosion and Shock Waves, 2013, 33(3): 282-286 doi: 10.3969/j.issn.1001-1455.2013.03.010
    [17]
    Kan Mingxian, Zhang Zhaohui, Xiao Bo, et al. Simulation of magnetically driven flyer plate experiments with an improved magnetic field boundary formula[J]. High Energy Density Physics, 2018, 26: 38-43. doi: 10.1016/j.hedp.2017.12.002
    [18]
    阚明先, 段书超, 王刚华, 等. 磁驱动飞片发射实验结构系数初步研究[J]. 强激光与粒子束, 2020, 32:085002 doi: 10.11884/HPLPB202032.200072

    Kan Mingxian, Duan Shuchao, Wang Ganghua, et al. Structure coefficient in magnetically driven flyer plate experiment[J]. High Power Laser and Particle Beams, 2020, 32: 085002 doi: 10.11884/HPLPB202032.200072
    [19]
    阚明先, 王刚华, 刘利新, 等. 带窗口磁驱动准等熵压缩实验模拟[J]. 强激光与粒子束, 2021, 33:055001 doi: 10.11884/HPLPB202133.200329

    Kan Mingxian, Wang Ganghua, Liu Lixin, et al. Simulation of magnetically driven quasi-isentropic compression experiments with windows[J]. High Power Laser and Particle Beams, 2021, 33: 055001 doi: 10.11884/HPLPB202133.200329
    [20]
    Zhou Quan, Zou Xiaobing, Wang Xinxin. An indirect iterative method to couple the generator to the MHD load for future Z-pinch[J]. IEEE Transactions on Plasma Science, 2020, 48(10): 3418-3423. doi: 10.1109/TPS.2020.3010961
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)

    Article views (603) PDF downloads(72) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return