Zhang Yang, Wang Xianghui, Zhang Jie, et al. Comparison of two discontinuous spectral element methods[J]. High Power Laser and Particle Beams, 2018, 30: 023004. doi: 10.11884/HPLPB201830.170169
Citation: Liu Xiaoli, Qi Jianmin, Chu Yanyun. Effect of load plasma disturbance on radiation temperature in Z-pinch dynamic hohlraum[J]. High Power Laser and Particle Beams, 2023, 35: 052002. doi: 10.11884/HPLPB202335.220280

Effect of load plasma disturbance on radiation temperature in Z-pinch dynamic hohlraum

doi: 10.11884/HPLPB202335.220280
  • Received Date: 2022-09-06
  • Accepted Date: 2023-01-10
  • Rev Recd Date: 2023-02-21
  • Available Online: 2023-03-08
  • Publish Date: 2023-04-07
  • The dynamic process of load plasma impacting on the foam cylinder was studied by two-dimensional radiation hydrodynamics simulation, and the influence of the shape of load plasma with disturbance on the radiation temperature in dynamic hohlraum was explored. The results show that Rayleigh-Taylor fluid instability will be generated after the disturbed load plasma impacting on the foam, and the development of RT instability will lead to the radiation leakage in the light-thin region of the load plasma, which will reduce the radiation temperature in the dynamic hohlraum. The larger the amplitude and the wavelength of disturbance in the load plasma, the more serious radiation leakage occurs, and the lower the radiation temperature will be in the dynamic hohlraum under the same kinetic energy loading condition.
  • [1]
    杜祥琬, 叶奇蓁, 徐銤, 等. 核能技术方向研究及发展路线图[J]. 中国工程科学, 2018, 20(3):17-24

    Du Xiangwan, Ye Qizhen, Xu Mi, et al. Research on technology directions and development roadmap of nuclear energy[J]. Strategic Study of CAE, 2018, 20(3): 17-24
    [2]
    彭先觉, 王真. Z箍缩驱动聚变-裂变混合能源堆总体概念研究[J]. 强激光与粒子束, 2014, 26:090201 doi: 10.3788/HPLPB20142609.90201

    Peng Xianjue, Wang Zhen. Conceptual research on Z-pinch driven fusion-fission hybrid reactor[J]. High Power Laser and Particle Beams, 2014, 26: 090201 doi: 10.3788/HPLPB20142609.90201
    [3]
    彭先觉, 刘成安, 师学明. 核能未来与Z箍缩驱动聚变裂变混合堆[M]. 北京: 国防工业出版社, 2019

    Peng Xianjue, Liu Cheng’an, Shi Xueming. Nuclear energy future and Z-pinch driven fusion fission hybrid reactor[M]. Beijing: National Defense Industry Press, 2019
    [4]
    Slutz S A, Bailey J E, Chandler G A, et al. Dynamic hohlraum driven inertial fusion capsules[J]. Physics of Plasmas, 2003, 10(5): 1875-1882. doi: 10.1063/1.1565117
    [5]
    Slutz S A, Peterson K J, Vesey R A, et al. Integrated two-dimensional simulations of dynamic hohlraum driven inertial fusion capsule implosions[J]. Physics of Plasmas, 2006, 13: 102701. doi: 10.1063/1.2354587
    [6]
    Sanford T W L, Lemke R W, Mock R C, et al. Dynamics and characteristics of a 215-eV dynamic-hohlraum X-ray source on Z[J]. Physics of Plasmas, 2002, 9(8): 3573-3594. doi: 10.1063/1.1489676
    [7]
    Bennett G R, Cuneo M E, Vesey R A, et al. Symmetric inertial-confinement-fusion-capsule implosions in a double-Z-pinch-driven hohlraum[J]. Physical Review Letters, 2002, 89: 245002. doi: 10.1103/PhysRevLett.89.245002
    [8]
    Sanford T W L, Olson R E, Mock R C, et al. Dynamics of a Z-pinch X-ray source for heating inertial-confinement-fusion relevant hohlraums to 120–160 eV[J]. Physics of Plasmas, 2000, 7(11): 4669-4682. doi: 10.1063/1.1316087
    [9]
    Rochau G A, Bailey J E, Chandler G A, et al. High performance capsule implosions driven by the Z-pinch dynamic hohlraum[J]. Plasma Physics and Controlled Fusion, 2007, 49(12B): B591-B600. doi: 10.1088/0741-3335/49/12B/S55
    [10]
    宁成, 丰志兴, 薛创. Z箍缩驱动动态黑腔中的基本能量转移特征. 物理学报, 2014, 63(12): 125208

    Ning Cheng, Feng Zhixing, Xuechuang. Basic characteristics of kinetic energy transfer in the dynamic hohlraums of Z-pinch. Acta Physica Sinica , 2014, 63(12): 125208.
    [11]
    丁宁, 邬吉明, 戴自换, 等. Z箍缩内爆的MARED程序数值模拟分析[J]. 物理学报, 2010, 59(12):8707-8716 doi: 10.7498/aps.59.8707

    Ding Ning, Wu Jiming, Dai Zihuan, et al. Numerical simulation analysis of Z-pinch implosion using MARED code[J]. Acta Physica Sinica, 2010, 59(12): 8707-8716 doi: 10.7498/aps.59.8707
    [12]
    肖德龙, 孙顺凯, 薛创, 等. Z箍缩动态黑腔形成过程和关键影响因素数值模拟研究[J]. 物理学报, 2015, 64:235203 doi: 10.7498/aps.64.235203

    Xiao Delong, Sun Shunkai, Xue Chuang, et al. Numerical studies on the formation process of Z-pinch dynamic hohlruams and key issues of optimizing dynamic hohlraum radiation[J]. Acta Physica Sinica, 2015, 64: 235203 doi: 10.7498/aps.64.235203
    [13]
    肖德龙, 戴自换, 孙顺凯, 等. Z箍缩动态黑腔驱动靶丸内爆动力学[J]. 物理学报, 2018, 67:025203 doi: 10.7498/aps.67.20171640

    Xiao Delong, Dai Zihuan, Sun Shunkai, et al. Numerical studies on dynamics of Z-pinch dynamic hohlraum driven target implosion[J]. Acta Physica Sinica, 2018, 67: 025203 doi: 10.7498/aps.67.20171640
    [14]
    何开辉, 冯开明, 李强, 等. 金属丝阵列Z箍缩装置中的瑞利-泰勒不稳定性[J]. 核聚变与等离子体物理, 2000, 20(4):241-245 doi: 10.3969/j.issn.0254-6086.2000.04.010

    He Kaihui, Feng Kaiming, Li Qiang, et al. Preliminary study of Rayleigh-Taylor instability in wire-array Z-pinch[J]. Nuclear Fusion and Plasma Physics, 2000, 20(4): 241-245 doi: 10.3969/j.issn.0254-6086.2000.04.010
    [15]
    Shumlak U, Roderick N F. Mitigation of the Rayleigh–Taylor instability by sheared axial flows[J]. Physics of Plasmas, 1998, 5(6): 2384-2389. doi: 10.1063/1.872913
    [16]
    张扬, 丁宁. 轴向流对Z箍缩等离子体稳定性的影响[J]. 物理学报, 2006, 55(5):2333-2339 doi: 10.3321/j.issn:1000-3290.2006.05.037

    Zhang Yang, Ding Ning. The effect of axial flow on the stability in the Z-pinch[J]. Acta Physica Sinica, 2006, 55(5): 2333-2339 doi: 10.3321/j.issn:1000-3290.2006.05.037
    [17]
    段耀勇, 郭永辉, 王文生, 等. Z箍缩等离子体不稳定性的数值研究[J]. 物理学报, 2004, 53(10):3429-3434 doi: 10.3321/j.issn:1000-3290.2004.10.036

    Duan Yaoyong, Guo Yonghui, Wang Wensheng, et al. Numerical investigations of Z-pinch plasma instabilities[J]. Acta Physica Sinica, 2004, 53(10): 3429-3434 doi: 10.3321/j.issn:1000-3290.2004.10.036
    [18]
    Wang Guanqiong, Xiao Delong, Dan Jiakun, et al. Preliminary investigation on electrothermal instabilities in early phases of cylindrical foil implosions on primary test stand facility[J]. Chinese Physics B, 2019, 28: 025203. doi: 10.1088/1674-1056/28/2/025203
    [19]
    陈忠旺, 宁成. 基于MULTI2D-Z程序的Z箍缩动态黑腔形成过程模拟[J]. 物理学报, 2017, 66:125202 doi: 10.7498/aps.66.125202

    Chen Zhongwang, Ning Cheng. Simulation of forming process of Z-pinch dynamic hohlraum based on the program MULTI2D-Z[J]. Acta Physica Sinica, 2017, 66: 125202 doi: 10.7498/aps.66.125202
    [20]
    Brownell J H, Bowers R L, McLenithan K D, et al. Radiation environments produced by plasma Z-pinch stagnation on central targets[J]. Physics of Plasmas, 1998, 5(5): 2071-2080. doi: 10.1063/1.872879
    [21]
    徐彬彬. Z箍缩动态黑腔内辐射温度与均匀性以及烧蚀层界面不稳定性研究[D]. 长沙: 国防科技大学, 2017

    Xu Binbin. Research on the radiation temperature and radiation uniformity in Z-pinch dynamic hohlraum and the fluid instability in ablator[D]. Changsha: National University of Defense Technology, 2017
    [22]
    Fryxell B, Olson K, Ricker P, et al. FLASH: an adaptive mesh hydrodynamics code for modeling astrophysical thermonuclear flashes[J]. The Astrophysical Journal Supplement Series, 2000, 131(1): 273-334. doi: 10.1086/317361
    [23]
    龙城德, 赵斌, 袁鹏, 等. 小焦斑纳秒激光烧蚀铝平面靶的数值研究[J]. 强激光与粒子束, 2014, 26:102005 doi: 10.11884/HPLPB201426.102005

    Long Chengde, Zhao Bin, Yuan Peng, et al. Simulation of expansion of aluminum plasmas produced by a small focal spot nanosecond laser irradiation[J]. High Power Laser and Particle Beams, 2014, 26: 102005 doi: 10.11884/HPLPB201426.102005
    [24]
    Tzeferacos P, Fatenejad M, Flocke N, et al. FLASH magnetohydrodynamic simulations of shock-generated magnetic field experiments[J]. High Energy Density Physics, 2012, 8(4): 322-328. doi: 10.1016/j.hedp.2012.08.001
    [25]
    孙伟, 吕冲, 雷柱, 等. 磁场对激光驱动Rayleigh-Taylor不稳定性影响的数值研究[J]. 物理学报, 2022, 71:154701 doi: 10.7498/aps.71.20220362

    Sun Wei, Lü Chong, Lei Zhu, et al. Numerical study of effect of magnetic field on laser-driven Rayleigh-Taylor instability[J]. Acta Physica Sinica, 2022, 71: 154701 doi: 10.7498/aps.71.20220362
    [26]
    Faik S, Tauschwitz A, Iosilevskiy I. The equation of state package FEOS for high energy density matter[J]. Computer Physics Communications, 2018, 227: 117-125. doi: 10.1016/j.cpc.2018.01.008
    [27]
    Kemp A J, Meyer-ter-Vehn J. An equation of state code for hot dense matter, based on the QEOS description[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1998, 415(3): 674-676. doi: 10.1016/S0168-9002(98)00446-X
    [28]
    赵凯歌, 薛创, 王立锋, 等. 经典瑞利-泰勒不稳定性界面变形演化的改进型薄层模型[J]. 物理学报, 2018, 67:094701 doi: 10.7498/aps.67.20172613

    Zhao Kaige, Xue Chuang, Wang Lifeng, et al. Improved thin layer model of classical Rayleigh-Taylor instability for the deformation of interface[J]. Acta Physica Sinica, 2018, 67: 094701 doi: 10.7498/aps.67.20172613
  • Relative Articles

    [1]Zhou Wenchao, Wei Qianhe, Peng Chen, Huang Dequan, Zhu Rihong. Reflectivity measurement of highly reflective mirrors at spectral band of 2.7−3.0 μm[J]. High Power Laser and Particle Beams, 2024, 36(1): 011002. doi: 10.11884/HPLPB202436.240014
    [2]Li Hao, Bai Yang, Yan Lianghong, Yan Hongwei, Li Heyang, Yang Ke, Liu Taixiang, Wang Tao, Yuan Xiaodong. Stability of sol-gel silica coatings under ISO Class 5 atmosphere condition[J]. High Power Laser and Particle Beams, 2018, 30(5): 052001. doi: 10.11884/HPLPB201830.170383
    [3]Luo Kui, Fu Sizu, Huang Xiuguang, He Zhiyu, Jia Guo, Shu Hua, He Hao, Xia Miao. Electrical conductivity of liquid deuterium under laser-driven shock loading[J]. High Power Laser and Particle Beams, 2017, 29(08): 082002. doi: 10.11884/HPLPB201729.170564
    [4]Yi Qiang, Huang Qiushi, Wang Xiangmei, Yang Yang, Zhang Zhong, Wang Zhanshan, Xu Rongkun, Peng Taiping, Zhou Hongjun, Huo Tonglin. Narrow-band Si/Mo/C multilayer mirrors working at 13 nm[J]. High Power Laser and Particle Beams, 2016, 28(12): 122002. doi: 10.11884/HPLPB201628.160440
    [5]Chen Bin, Zhang Zehai, Zheng Guozhi, Yi Junli. Numerical simulation of electromagnetic wave reflectivity and transmissivity of concrete with steel wires[J]. High Power Laser and Particle Beams, 2016, 28(08): 083201. doi: 10.11884/HPLPB201628.150410
    [6]Yi Hengyu, Peng Yong, Huang Zuxin, Chen Xingwu. Super-high reflectivity measurement of arbitrary spheric optical element[J]. High Power Laser and Particle Beams, 2013, 25(02): 287-291. doi: 10.3788/HPLPB20132502.0287
    [7]Jin Yunsheng, Tan Fuli, He Jia, Li Mu, Zhang Yongqiang, Zhang Hongping, Zhao Jianheng. Numerical inverse computation of reflectivity[J]. High Power Laser and Particle Beams, 2013, 25(03): 549-552. doi: 10.3788/HPLPB20132503.0549
    [8]Jin Yunsheng, Tan Fuli, Li Mu, Zhang Yongqiang, Zhao Jianheng. Reflectivity of 30CrMnSiA steel under continuous-wave laser repeated irradiation[J]. High Power Laser and Particle Beams, 2012, 24(12): 2827-2830. doi: 10.3788/HPLPB20122412.2827
    [9]Guo ZhiyinG, Yi RonGqinG, Du HuabinG, He Xiaoan, ZhenG Lei, Zhao YidonG. Investigation on reflectance of soft X-ray mirror used in ICF experiments[J]. High Power Laser and Particle Beams, 2012, 24(09): 2113-2116. doi: 10.3788/HPLPB20122409.2113
    [10]jin yunsheng, tan fuli, zhang yongqiang, li mu, zhao jianheng. Effects and elimination method of thermal radiation interference on reflectivity measurement[J]. High Power Laser and Particle Beams, 2011, 23(07): 0- .
    [11]chen mingrui, bi siwen, dou xibo. Transmission characteristics of two-cavity Fabry-Perot structure[J]. High Power Laser and Particle Beams, 2010, 22(08): 0- .
    [12]zhang hui-jing, zhang zhong, zhu jing-tao, bai liang, chen rui, huang qiu-shi, liu li-qin, tan mo-yan, wang feng-li, wang zhan-shan, chen ling-yan. Design and fabrication of high reflectivity Mo/B4C multilayer mirrors[J]. High Power Laser and Particle Beams, 2008, 20(01): 0- .
    [13]hou li-fei, yi rong-qing, du hua-bing, liu shen-ye, zhu jing-tao, zhao yi-dong, cui ming-qi. Reflectivity calibration of soft X-ray multilayer mirror in Beijing Synchrotron Radiation Facility[J]. High Power Laser and Particle Beams, 2007, 19(12): 0- .
    [14]yang chun-lin, xu qiao, zhou li-shu, yang li-ming. Characteristcs of the tansmission grating under the Brewster angle[J]. High Power Laser and Particle Beams, 2005, 17(06): 0- .
    [15]gao li-feng, xiong sheng-ming, li bin-cheng, zhang yun-dong, cai bang-wei, . Analysis of reflectivity measurement by cavity ring-down spectroscopy[J]. High Power Laser and Particle Beams, 2005, 17(03): 0- .
    [16]yi heng-yu, peng yong, hu xiao-yang, wang yao-mei, wang wen-dong, zhou wen-chao, zheng wei-min, huang zu-xin, liao yuan. Precise measurement system for reflectivity scanning of large aperture components[J]. High Power Laser and Particle Beams, 2005, 17(11): 0- .
    [17]wang wei, ni yuan-long, wan bing-gen, sun jin-ren, wu jiang, wang chen, sun yu-qin, zhou guan-lin, gu yuan, wang shi-ji. Single-shot measurement of soft X-ray Mo/Si multi-layer mirror reflectance[J]. High Power Laser and Particle Beams, 2001, 13(05): 0- .
  • Cited by

    Periodical cited type(0)

    Other cited types(2)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-04051015202530
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 25.0 %FULLTEXT: 25.0 %META: 73.6 %META: 73.6 %PDF: 1.4 %PDF: 1.4 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 4.4 %其他: 4.4 %其他: 0.1 %其他: 0.1 %China: 0.7 %China: 0.7 %India: 0.1 %India: 0.1 %Wageningen: 0.4 %Wageningen: 0.4 %[]: 0.5 %[]: 0.5 %上海: 0.7 %上海: 0.7 %中山: 0.1 %中山: 0.1 %临汾: 0.1 %临汾: 0.1 %丹东: 0.1 %丹东: 0.1 %兰州: 0.1 %兰州: 0.1 %北京: 18.5 %北京: 18.5 %南京: 0.1 %南京: 0.1 %台州: 1.1 %台州: 1.1 %合肥: 0.1 %合肥: 0.1 %宁波: 0.1 %宁波: 0.1 %宜昌: 0.1 %宜昌: 0.1 %宣城: 0.1 %宣城: 0.1 %广州: 0.2 %广州: 0.2 %张家口: 0.8 %张家口: 0.8 %成都: 0.4 %成都: 0.4 %晋城: 0.1 %晋城: 0.1 %普洱: 0.1 %普洱: 0.1 %杭州: 2.4 %杭州: 2.4 %桃园: 0.1 %桃园: 0.1 %武汉: 0.1 %武汉: 0.1 %沈阳: 0.1 %沈阳: 0.1 %深圳: 0.1 %深圳: 0.1 %漯河: 0.1 %漯河: 0.1 %石家庄: 0.1 %石家庄: 0.1 %科英布拉: 0.4 %科英布拉: 0.4 %秦皇岛: 0.1 %秦皇岛: 0.1 %纽约: 0.6 %纽约: 0.6 %芒廷维尤: 14.2 %芒廷维尤: 14.2 %衢州: 0.4 %衢州: 0.4 %西宁: 51.3 %西宁: 51.3 %西安: 0.5 %西安: 0.5 %运城: 0.4 %运城: 0.4 %重庆: 0.1 %重庆: 0.1 %金华: 0.1 %金华: 0.1 %长治: 0.1 %长治: 0.1 %阳泉: 0.1 %阳泉: 0.1 %其他其他ChinaIndiaWageningen[]上海中山临汾丹东兰州北京南京台州合肥宁波宜昌宣城广州张家口成都晋城普洱杭州桃园武汉沈阳深圳漯河石家庄科英布拉秦皇岛纽约芒廷维尤衢州西宁西安运城重庆金华长治阳泉

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)

    Article views (573) PDF downloads(69) Cited by(2)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return