Volume 35 Issue 5
Apr.  2023
Turn off MathJax
Article Contents
Liu Xiaoli, Qi Jianmin, Chu Yanyun. Effect of load plasma disturbance on radiation temperature in Z-pinch dynamic hohlraum[J]. High Power Laser and Particle Beams, 2023, 35: 052002. doi: 10.11884/HPLPB202335.220280
Citation: Liu Xiaoli, Qi Jianmin, Chu Yanyun. Effect of load plasma disturbance on radiation temperature in Z-pinch dynamic hohlraum[J]. High Power Laser and Particle Beams, 2023, 35: 052002. doi: 10.11884/HPLPB202335.220280

Effect of load plasma disturbance on radiation temperature in Z-pinch dynamic hohlraum

doi: 10.11884/HPLPB202335.220280
  • Received Date: 2022-09-06
  • Accepted Date: 2023-01-10
  • Rev Recd Date: 2023-02-21
  • Available Online: 2023-03-08
  • Publish Date: 2023-04-07
  • The dynamic process of load plasma impacting on the foam cylinder was studied by two-dimensional radiation hydrodynamics simulation, and the influence of the shape of load plasma with disturbance on the radiation temperature in dynamic hohlraum was explored. The results show that Rayleigh-Taylor fluid instability will be generated after the disturbed load plasma impacting on the foam, and the development of RT instability will lead to the radiation leakage in the light-thin region of the load plasma, which will reduce the radiation temperature in the dynamic hohlraum. The larger the amplitude and the wavelength of disturbance in the load plasma, the more serious radiation leakage occurs, and the lower the radiation temperature will be in the dynamic hohlraum under the same kinetic energy loading condition.
  • loading
  • [1]
    杜祥琬, 叶奇蓁, 徐銤, 等. 核能技术方向研究及发展路线图[J]. 中国工程科学, 2018, 20(3):17-24

    Du Xiangwan, Ye Qizhen, Xu Mi, et al. Research on technology directions and development roadmap of nuclear energy[J]. Strategic Study of CAE, 2018, 20(3): 17-24
    [2]
    彭先觉, 王真. Z箍缩驱动聚变-裂变混合能源堆总体概念研究[J]. 强激光与粒子束, 2014, 26:090201 doi: 10.3788/HPLPB20142609.90201

    Peng Xianjue, Wang Zhen. Conceptual research on Z-pinch driven fusion-fission hybrid reactor[J]. High Power Laser and Particle Beams, 2014, 26: 090201 doi: 10.3788/HPLPB20142609.90201
    [3]
    彭先觉, 刘成安, 师学明. 核能未来与Z箍缩驱动聚变裂变混合堆[M]. 北京: 国防工业出版社, 2019

    Peng Xianjue, Liu Cheng’an, Shi Xueming. Nuclear energy future and Z-pinch driven fusion fission hybrid reactor[M]. Beijing: National Defense Industry Press, 2019
    [4]
    Slutz S A, Bailey J E, Chandler G A, et al. Dynamic hohlraum driven inertial fusion capsules[J]. Physics of Plasmas, 2003, 10(5): 1875-1882. doi: 10.1063/1.1565117
    [5]
    Slutz S A, Peterson K J, Vesey R A, et al. Integrated two-dimensional simulations of dynamic hohlraum driven inertial fusion capsule implosions[J]. Physics of Plasmas, 2006, 13: 102701. doi: 10.1063/1.2354587
    [6]
    Sanford T W L, Lemke R W, Mock R C, et al. Dynamics and characteristics of a 215-eV dynamic-hohlraum X-ray source on Z[J]. Physics of Plasmas, 2002, 9(8): 3573-3594. doi: 10.1063/1.1489676
    [7]
    Bennett G R, Cuneo M E, Vesey R A, et al. Symmetric inertial-confinement-fusion-capsule implosions in a double-Z-pinch-driven hohlraum[J]. Physical Review Letters, 2002, 89: 245002. doi: 10.1103/PhysRevLett.89.245002
    [8]
    Sanford T W L, Olson R E, Mock R C, et al. Dynamics of a Z-pinch X-ray source for heating inertial-confinement-fusion relevant hohlraums to 120–160 eV[J]. Physics of Plasmas, 2000, 7(11): 4669-4682. doi: 10.1063/1.1316087
    [9]
    Rochau G A, Bailey J E, Chandler G A, et al. High performance capsule implosions driven by the Z-pinch dynamic hohlraum[J]. Plasma Physics and Controlled Fusion, 2007, 49(12B): B591-B600. doi: 10.1088/0741-3335/49/12B/S55
    [10]
    宁成, 丰志兴, 薛创. Z箍缩驱动动态黑腔中的基本能量转移特征. 物理学报, 2014, 63(12): 125208

    Ning Cheng, Feng Zhixing, Xuechuang. Basic characteristics of kinetic energy transfer in the dynamic hohlraums of Z-pinch. Acta Physica Sinica , 2014, 63(12): 125208.
    [11]
    丁宁, 邬吉明, 戴自换, 等. Z箍缩内爆的MARED程序数值模拟分析[J]. 物理学报, 2010, 59(12):8707-8716 doi: 10.7498/aps.59.8707

    Ding Ning, Wu Jiming, Dai Zihuan, et al. Numerical simulation analysis of Z-pinch implosion using MARED code[J]. Acta Physica Sinica, 2010, 59(12): 8707-8716 doi: 10.7498/aps.59.8707
    [12]
    肖德龙, 孙顺凯, 薛创, 等. Z箍缩动态黑腔形成过程和关键影响因素数值模拟研究[J]. 物理学报, 2015, 64:235203 doi: 10.7498/aps.64.235203

    Xiao Delong, Sun Shunkai, Xue Chuang, et al. Numerical studies on the formation process of Z-pinch dynamic hohlruams and key issues of optimizing dynamic hohlraum radiation[J]. Acta Physica Sinica, 2015, 64: 235203 doi: 10.7498/aps.64.235203
    [13]
    肖德龙, 戴自换, 孙顺凯, 等. Z箍缩动态黑腔驱动靶丸内爆动力学[J]. 物理学报, 2018, 67:025203 doi: 10.7498/aps.67.20171640

    Xiao Delong, Dai Zihuan, Sun Shunkai, et al. Numerical studies on dynamics of Z-pinch dynamic hohlraum driven target implosion[J]. Acta Physica Sinica, 2018, 67: 025203 doi: 10.7498/aps.67.20171640
    [14]
    何开辉, 冯开明, 李强, 等. 金属丝阵列Z箍缩装置中的瑞利-泰勒不稳定性[J]. 核聚变与等离子体物理, 2000, 20(4):241-245 doi: 10.3969/j.issn.0254-6086.2000.04.010

    He Kaihui, Feng Kaiming, Li Qiang, et al. Preliminary study of Rayleigh-Taylor instability in wire-array Z-pinch[J]. Nuclear Fusion and Plasma Physics, 2000, 20(4): 241-245 doi: 10.3969/j.issn.0254-6086.2000.04.010
    [15]
    Shumlak U, Roderick N F. Mitigation of the Rayleigh–Taylor instability by sheared axial flows[J]. Physics of Plasmas, 1998, 5(6): 2384-2389. doi: 10.1063/1.872913
    [16]
    张扬, 丁宁. 轴向流对Z箍缩等离子体稳定性的影响[J]. 物理学报, 2006, 55(5):2333-2339 doi: 10.3321/j.issn:1000-3290.2006.05.037

    Zhang Yang, Ding Ning. The effect of axial flow on the stability in the Z-pinch[J]. Acta Physica Sinica, 2006, 55(5): 2333-2339 doi: 10.3321/j.issn:1000-3290.2006.05.037
    [17]
    段耀勇, 郭永辉, 王文生, 等. Z箍缩等离子体不稳定性的数值研究[J]. 物理学报, 2004, 53(10):3429-3434 doi: 10.3321/j.issn:1000-3290.2004.10.036

    Duan Yaoyong, Guo Yonghui, Wang Wensheng, et al. Numerical investigations of Z-pinch plasma instabilities[J]. Acta Physica Sinica, 2004, 53(10): 3429-3434 doi: 10.3321/j.issn:1000-3290.2004.10.036
    [18]
    Wang Guanqiong, Xiao Delong, Dan Jiakun, et al. Preliminary investigation on electrothermal instabilities in early phases of cylindrical foil implosions on primary test stand facility[J]. Chinese Physics B, 2019, 28: 025203. doi: 10.1088/1674-1056/28/2/025203
    [19]
    陈忠旺, 宁成. 基于MULTI2D-Z程序的Z箍缩动态黑腔形成过程模拟[J]. 物理学报, 2017, 66:125202 doi: 10.7498/aps.66.125202

    Chen Zhongwang, Ning Cheng. Simulation of forming process of Z-pinch dynamic hohlraum based on the program MULTI2D-Z[J]. Acta Physica Sinica, 2017, 66: 125202 doi: 10.7498/aps.66.125202
    [20]
    Brownell J H, Bowers R L, McLenithan K D, et al. Radiation environments produced by plasma Z-pinch stagnation on central targets[J]. Physics of Plasmas, 1998, 5(5): 2071-2080. doi: 10.1063/1.872879
    [21]
    徐彬彬. Z箍缩动态黑腔内辐射温度与均匀性以及烧蚀层界面不稳定性研究[D]. 长沙: 国防科技大学, 2017

    Xu Binbin. Research on the radiation temperature and radiation uniformity in Z-pinch dynamic hohlraum and the fluid instability in ablator[D]. Changsha: National University of Defense Technology, 2017
    [22]
    Fryxell B, Olson K, Ricker P, et al. FLASH: an adaptive mesh hydrodynamics code for modeling astrophysical thermonuclear flashes[J]. The Astrophysical Journal Supplement Series, 2000, 131(1): 273-334. doi: 10.1086/317361
    [23]
    龙城德, 赵斌, 袁鹏, 等. 小焦斑纳秒激光烧蚀铝平面靶的数值研究[J]. 强激光与粒子束, 2014, 26:102005 doi: 10.11884/HPLPB201426.102005

    Long Chengde, Zhao Bin, Yuan Peng, et al. Simulation of expansion of aluminum plasmas produced by a small focal spot nanosecond laser irradiation[J]. High Power Laser and Particle Beams, 2014, 26: 102005 doi: 10.11884/HPLPB201426.102005
    [24]
    Tzeferacos P, Fatenejad M, Flocke N, et al. FLASH magnetohydrodynamic simulations of shock-generated magnetic field experiments[J]. High Energy Density Physics, 2012, 8(4): 322-328. doi: 10.1016/j.hedp.2012.08.001
    [25]
    孙伟, 吕冲, 雷柱, 等. 磁场对激光驱动Rayleigh-Taylor不稳定性影响的数值研究[J]. 物理学报, 2022, 71:154701 doi: 10.7498/aps.71.20220362

    Sun Wei, Lü Chong, Lei Zhu, et al. Numerical study of effect of magnetic field on laser-driven Rayleigh-Taylor instability[J]. Acta Physica Sinica, 2022, 71: 154701 doi: 10.7498/aps.71.20220362
    [26]
    Faik S, Tauschwitz A, Iosilevskiy I. The equation of state package FEOS for high energy density matter[J]. Computer Physics Communications, 2018, 227: 117-125. doi: 10.1016/j.cpc.2018.01.008
    [27]
    Kemp A J, Meyer-ter-Vehn J. An equation of state code for hot dense matter, based on the QEOS description[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1998, 415(3): 674-676. doi: 10.1016/S0168-9002(98)00446-X
    [28]
    赵凯歌, 薛创, 王立锋, 等. 经典瑞利-泰勒不稳定性界面变形演化的改进型薄层模型[J]. 物理学报, 2018, 67:094701 doi: 10.7498/aps.67.20172613

    Zhao Kaige, Xue Chuang, Wang Lifeng, et al. Improved thin layer model of classical Rayleigh-Taylor instability for the deformation of interface[J]. Acta Physica Sinica, 2018, 67: 094701 doi: 10.7498/aps.67.20172613
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)

    Article views (511) PDF downloads(68) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return