Volume 35 Issue 5
Apr.  2023
Turn off MathJax
Article Contents
Li Shengfei, Zhu Xianfeng, Liu Ziwei, et al. Attractive electromagnetic force flanging method for small tube fittings with magnetic field shaper[J]. High Power Laser and Particle Beams, 2023, 35: 055003. doi: 10.11884/HPLPB202335.220281
Citation: Li Shengfei, Zhu Xianfeng, Liu Ziwei, et al. Attractive electromagnetic force flanging method for small tube fittings with magnetic field shaper[J]. High Power Laser and Particle Beams, 2023, 35: 055003. doi: 10.11884/HPLPB202335.220281

Attractive electromagnetic force flanging method for small tube fittings with magnetic field shaper

doi: 10.11884/HPLPB202335.220281
  • Received Date: 2022-09-06
  • Accepted Date: 2023-01-02
  • Rev Recd Date: 2023-01-03
  • Available Online: 2023-01-09
  • Publish Date: 2023-04-07
  • Aiming at the electromagnetic flanging process for small aluminum alloy tube fittings, the driving coil is placed on the outside of the end of the tube, and the dual-frequency discharge current method is used to generate the attractive electromagnetic force to realize flanging in the existing method. However, its flanging ability is not strong, under this background, an attractive electromagnetic force flanging method with a magnetic field shaper is proposed. On the basis of the existing method, a magnetic field shaper is introduced, which can change the magnetic field configuration, optimize the electromagnetic force distribution and increase the axial electromagnetic force, so as to achieve the purpose of enhancing the flanging effect. To verify the feasibility of this method, firstly, the electromagnetic-structural fully coupled finite element simulation model of the tube flanging process was built, and the flanging effects after introducing different magnetic field shaper were compared, and it is concluded that the stepped magnetic field shaper has the best effect. The flanging process were analyzed under the working conditions with stepped magnetic field shaper and without magnetic field shaper. The results show that the flanging angle of the tube fittings is increased from 38° to 90° compared with the case without the magnetic field shaper. Further analysis shows that the radial component of the magnetic flux density and the annular component of the eddy current density increase to 164% and 135%, respectively. The distribution of the electromagnetic force acting on the pipe fittings changes, and the density of the axial electromagnetic force increases significantly at the peak time, increasing to 211%. The method further improves the electromagnetic flanging forming of small aluminum alloy tube fittings, and it has a certain significance for expanding the application of electromagnetic forming technology in aluminum alloy tube flanging.
  • loading
  • [1]
    邱立, 田茜, 吴伟业, 等. 基于磁场变换器的双向加载式管件电磁翻边成形效果研究[J]. 精密成形工程, 2022, 14(3):17-24

    Qiu Li, Tian Xi, Wu Weiye, et al. Electromagnetic flanging forming effect of bidirectional loading tube fittings based on magnetic field shaper[J]. Journal of Netshape Forming Engineering, 2022, 14(3): 17-24
    [2]
    张无名, 邱立, 张望, 等. 放电时序对双向加载式管件电磁翻边的影响[J]. 精密成形工程, 2021, 13(5):84-91

    Zhang Wuming, Qiu Li, Zhang Wang, et al. Influence of discharge timing on electromagnetic flanging of tube with bidirectional loading[J]. Journal of Netshape Forming Engineering, 2021, 13(5): 84-91
    [3]
    熊奇, 唐红涛, 王沐雪, 等. 2011年以来电磁成形研究进展[J]. 高电压技术, 2019, 45(4):1171-1181

    Xiong Qi, Tang Hongtao, Wang Muxue, et al. Research progress of electromagnetic forming technique since 2011[J]. High Voltage Engineering, 2019, 45(4): 1171-1181
    [4]
    Qiu Li, Yu Yijie, Xiong Qi, et al. Analysis of electromagnetic force and deformation behavior in electromagnetic tube expansion with concave coil based on finite element method[J]. IEEE Transactions on Applied Superconductivity, 2018, 28(3): 1-5.
    [5]
    熊奇, 杨猛, 周丽君, 等. 双线圈吸引式板件电磁成形过程中的涡流竞争问题[J]. 电工技术学报, 2021, 36(10):2007-2017

    Xiong Qi, Yang Meng, Zhou Lijun, et al. Eddy currents competition in electromagnetic forming process of plates by double-coil attraction[J]. Transactions of China Electrotechnical Society, 2021, 36(10): 2007-2017
    [6]
    邱立, 余一杰, 聂小鹏, 等. 管件电磁胀形过程中的材料变形性能问题与电磁力加载方案[J]. 电工技术学报, 2019, 34(2):212-218

    Qiu Li, Yu Yijie, Nie Xiaopeng, et al. Study on material deformation performance and electromagnetic force loading in electromagnetic tube expansion process[J]. Transactions of China Electrotechnical Society, 2019, 34(2): 212-218
    [7]
    杨澍. 管件磁脉冲侧翻边工艺研究[D]. 哈尔滨: 哈尔滨工业大学, 2011: 6-8

    Yang Shu. Research on technologies of tube magnetic pulse flanging[D]. Harbin: Harbin Institute of Technology, 2011: 6-8
    [8]
    白雪山, 尹延广, 赵天章. 航空5A02铝合金T型三通管翻边电磁成形[J]. 塑性工程学报, 2021, 28(4):24-29

    Bai Xueshan, Yin Yanguang, Zhao Tianzhang. Electromagnetic flanging of 5A02 aluminum alloy T-shaped tube for aviation[J]. Journal of Plasticity Engineering, 2021, 28(4): 24-29
    [9]
    欧航, 安浩, 孙式进, 等. 5182铝合金椭圆孔电磁翻边数值模拟研究[J]. 精密成形工程, 2021, 13(4):9-15

    Ou Hang, An Hao, Sun Shijin, et al. Numerical simulation study on oblique hole-flanging with 5182 aluminum alloy produced by electromagnetic forming (EMF)[J]. Journal of Netshape Forming Engineering, 2021, 13(4): 9-15
    [10]
    李彦涛. 基于径向—轴向电磁力加载式管件电磁翻边成形研究[D]. 宜昌: 三峡大学, 2020: 30-37

    Li Yantao. Research on electromagnetic tube flanging with radial-axial electromagnetic force loading[D]. Yichang: China Three Gorges University, 2020: 30-37
    [11]
    张望, 王于東, 李彦涛, 等. 基于双向电磁力加载的管件电磁翻边理论与实验[J]. 电工技术学报, 2021, 36(14):2904-2911

    Zhang Wang, Wang Yudong, Li Yantao, et al. Theory and experiment of tube electromagnetic flanging based on bidirectional electromagnetic force loading[J]. Transactions of China Electrotechnical Society, 2021, 36(14): 2904-2911
    [12]
    Xiong Qi, Tang Hongtao, Deng Changzhen, et al. Electromagnetic attraction-based bulge forming in small tubes: fundamentals and simulations[J]. IEEE Transactions on Applied Superconductivity, 2018, 28: 0600505.
    [13]
    Xiong Qi, Tang Hongtao, Wang Muxue, et al. Design and implementation of tube bulging by an attractive electromagnetic force[J]. Journal of Materials Processing Technology, 2019, 273: 116240. doi: 10.1016/j.jmatprotec.2019.05.021
    [14]
    Xiong Qi, Huang Hao, Xia Liangyu, et al. A research based on advance dual-coil electromagnetic forming method on flanging of small-size tubes[J]. The International Journal of Advanced Manufacturing Technology, 2019, 102(9): 4087-4094.
    [15]
    Xiong Qi, Gao Dun, Li Zhe, et al. Electromagnetic attraction bulging of small aluminum alloy tube based on a field shaper[J]. The International Journal of Advanced Manufacturing Technology, 2021, 117(1): 511-521.
    [16]
    Xiong Qi, Li Zhe, Tang Jianhua, et al. A flexible and economical method for electromagnetic flanging of tubes with field shapers[J]. The International Journal of Advanced Manufacturing Technology, 2021, 116(3/4): 1169-1177.
    [17]
    熊奇, 李青山, 李哲, 等. 集磁器对电磁成形驱动线圈发热影响及机理[J]. 电工技术学报, 2020, 38(2):285-296

    Xiong Qi, Li Qingshan, Li Zhe, et al. Influence and mechanism of field shaper on heating of electromagnetic forming drive coil[J]. Transactions of China Electrotechnical Society, 2020, 38(2): 285-296
    [18]
    Xiong Qi, Song Xianqi, Yang Meng, et al. Future trends in magnetic source device design for magnetic targeted drug delivery system[J]. International Journal of Applied Electromagnetics and Mechanics, 2021, 67(3): 261-277. doi: 10.3233/JAE-210021
    [19]
    邱立, 何晨骏, 张望. 双管件电磁约束成形的电磁分布与均匀性变形研究[J]. 电测与仪表, 2021, 58(11):128-135

    Qiu Li, He Chenjun, Zhang Wang. Study on electromagnetic force distribution and axial uniform deformation of dual-tube electromagnetic constraint forming[J]. Electrical Measurement & Instrumentation, 2021, 58(11): 128-135
    [20]
    张重远, 芮皓然, 刘贺晨, 等. 高压单芯电缆单相接地故障护套过电压特性仿真分析[J]. 电测与仪表, 2018, 55(11):115-119

    Zhang Zhongyuan, Rui Haoran, Liu Hechen, et al. Simulation analysis of sheath overvoltage characteristic for single-phase ground fault in high voltage single-core cable[J]. Electrical Measurement & Instrumentation, 2018, 55(11): 115-119
    [21]
    唐红涛. 基于吸引式电磁力的金属管件电磁胀形设计与实现[D]. 宜昌: 三峡大学, 2019: 16-17

    Tang Hongtao. Design and implementation of tube bulging by an attractive electromagnetic force[D]. Yichang: China Three Gorges University, 2019: 16-17
    [22]
    Cao Quanliang, Lai Zhipeng, Xiong Qi, et al. Electromagnetic attractive forming of sheet metals by means of a dual-frequency discharge current: design and implementation[J]. The International Journal of Advanced Manufacturing Technology, 2017, 90(1): 309-316.
    [23]
    黄浩. 基于集磁器的板材电磁成形校形研究[D]. 宜昌: 三峡大学, 2019: 24-25

    Huang Hao. Research on electromagnetic calibration of the sheet metal based on the field shaper[D]. Yichang: China Three Gorges University, 2019: 24-25
    [24]
    黎镇浩, 曹全梁, 赖智鹏, 等. 电流丝法在电磁成形线圈电流和工件电磁力计算中的应用[J]. 电工技术学报, 2018, 33(18):4181-4190

    Li Zhenhao, Cao Quanliang, Lai Zhipeng, et al. Application of current filament method on the calculation of current and force in electromagnetic forming[J]. Transactions of China Electrotechnical Society, 2018, 33(18): 4181-4190
    [25]
    Cao Quanliang, Han Xiaotao, Lai Zhipeng, et al. Analysis and reduction of coil temperature rise in electromagnetic forming[J]. Journal of Materials Processing Technology, 2015, 225: 185-194. doi: 10.1016/j.jmatprotec.2015.02.006
    [26]
    Du Limeng, Xia Liangyu, Li Xian, et al. Adjustable current waveform via altering the damping coefficient: a new way to reduce Joule heating in electromagnetic forming coils[J]. Journal of Materials Processing Technology, 2021, 293: 117086. doi: 10.1016/j.jmatprotec.2021.117086
    [27]
    杨猛. 基于双线圈的吸引式板件电磁成形规律研究[D]. 宜昌: 三峡大学, 2021: 21-22

    Yang Meng. Research on electromagnetic forming law of attracting sheet metal based on dual-coil[D]. Yichang: China Three Gorges University, 2021: 21-22
    [28]
    Xiong Qi, Yang Meng, Liu Xin, et al. A dual-coil method for electromagnetic attraction forming of sheet metals[J]. IEEE Access, 2020, 8: 92708-92717. doi: 10.1109/ACCESS.2020.2994212
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(4)

    Article views (627) PDF downloads(62) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return