Zhang Hongwei, Liu Chaoyang, Yu Zhihua, et al. Design of high power self-rotating beam scanning antenna with no phase shifter[J]. High Power Laser and Particle Beams, 2018, 30: 073008. doi: 10.11884/HPLPB201830.170531
Citation: Gao Heng, Li Binglin, Yang Yifeng, et al. Performance of multi-frequency dithering algorithm in coherent beam combination[J]. High Power Laser and Particle Beams, 2023, 35: 041009. doi: 10.11884/HPLPB202335.220285

Performance of multi-frequency dithering algorithm in coherent beam combination

doi: 10.11884/HPLPB202335.220285
  • Received Date: 2022-09-08
  • Accepted Date: 2023-01-06
  • Rev Recd Date: 2023-01-11
  • Available Online: 2023-03-28
  • Publish Date: 2023-03-30
  • The principle of the multi-frequency dithering algorithm is analyzed. The 2-11 channel coherent combining system is simulated as a mathematical model based on the principle of wave optics. The dynamic noise model is introduced, and the root-mean-square (RMS) phase error of the totally combined beam is taken as the evaluation function. The effects of noise frequency and amplitude on the phase locking effect of coherent combining system with different arrays are analyzed. When the noise frequency or amplitude is very large, the algorithm can no longer compensate the phase noise, the phase locking will fail. It is proved that there is an optimal interval between the gain coefficient and the modulation amplitude and only within this interval can phase locking be completed quickly. By introducing the concept of effective bandwidth control, the phase-locking performance of the multi-frequency algorithm has been evaluated intuitively. The research shows that the effective control bandwidth is directly proportional to the sampling frequency and the first-way modulation frequency, and inversely proportional to the noise amplitude, and the effective control bandwidth decreases with the increase of array size.
  • [1]
    Fan T Y. Laser beam combining for high-power, high-radiance sources[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2005, 11(3): 567-577. doi: 10.1109/JSTQE.2005.850241
    [2]
    周朴, 粟荣涛, 马阎星, 等. 激光相干合成的研究进展: 2011—2020[J]. 中国激光, 2021, 48:0401003 doi: 10.3788/CJL202148.0401003

    Zhou Pu, Su Rongtao, Ma Yanxing, et al. Review of coherent laser beam combining research progress in the past decade[J]. Chinese Journal of Lasers, 2021, 48: 0401003 doi: 10.3788/CJL202148.0401003
    [3]
    Huo Yanming, Cheo P K, King G G. Fundamental mode operation of a 19-core phase-locked Yb-doped fiber amplifier[J]. Optics Express, 2004, 12(25): 6230-6239. doi: 10.1364/OPEX.12.006230
    [4]
    Yang Yifeng, Liu Houkang, Zheng Ye, et al. Dammann-grating-based passive phase locking by an all-optical feedback loop[J]. Optics Letters, 2014, 39(3): 708-710. doi: 10.1364/OL.39.000708
    [5]
    Goodno G D, Asman C P, Anderegg J, et al. Brightness-scaling potential of actively phase-locked solid-state laser arrays[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2007, 13(3): 460-472. doi: 10.1109/JSTQE.2007.896618
    [6]
    宋纪坤. 光纤激光相干合成主动相位控制算法研究[D]. 长春: 中国科学院大学(中国科学院长春光学精密机械与物理研究所), 2020: 52-56

    Song Jikun. Research on active phase control algorithm for fiber laser coherent combining[D]. Changchun: University of Chinese Academy of Sciences (Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences), 2020: 52-56
    [7]
    Shay T M. Theory of electronically phased coherent beam combination without a reference beam[J]. Optics Express, 2006, 14(25): 12188-12195. doi: 10.1364/OE.14.012188
    [8]
    Shay T M, Benham V, Baker J T, et al. First experimental demonstration of self-synchronous phase locking of an optical array[J]. Optics Express, 2006, 14(25): 12015-12021. doi: 10.1364/OE.14.012015
    [9]
    刘泽金, 周朴, 侯静, 等. 主动相位控制光纤激光相干合成的研究[J]. 中国激光, 2009, 36(3):518-524 doi: 10.3788/CJL20093603.0518

    Liu Zejin, Zhou Pu, Hou Jing, et al. Research on coherent beam combining using active phase-controlling[J]. Chinese Journal of Lasers, 2009, 36(3): 518-524 doi: 10.3788/CJL20093603.0518
    [10]
    刘泽金, 王小林, 周朴, 等. 9路光纤激光相干合成实现1.56kW高功率输出[J]. 中国激光, 2011, 38:0705008

    Liu Zejin, Wang Xiaolin, Zhou Pu, et al. Coherent synthesis of 9-channel fiber lasers to achieve high power output of 1.56kW[J]. Chinese Journal of Lasers, 2011, 38: 0705008
    [11]
    McNaught S J, Thielen P A, Adams L N, et al. Scalable coherent combining of kilowatt fiber amplifiers into a 2.4-kW beam[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2014, 20(5): 174-181. doi: 10.1109/JSTQE.2013.2296771
    [12]
    Flores A, Ehrehreich T, Holten R, et al. Multi-kW coherent combining of fiber lasers seeded with pseudo random phase modulated light[C]//Proceedings of SPIE 9728, Fiber Lasers XIII: Technology, Systems, and Applications. 2016: 97281Y.
    [13]
    Müller M, Klenke A, Steinkopff A, et al. 3.5 kW coherently combined ultrafast fiber laser[J]. Optics Letters, 2018, 43(24): 6037-6040. doi: 10.1364/OL.43.006037
    [14]
    Müller M, Aleshire C, Klenke A, et al. 10.4 kW coherently combined ultrafast fiber laser[J]. Optics Letters, 2020, 45(11): 3083-3086. doi: 10.1364/OL.392843
    [15]
    Ma Yanxing, Zhou Pu, Wang Xiaolin, et al. Coherent beam combination with single frequency dithering technique[J]. Optics Letters, 2010, 35(9): 1308-1310. doi: 10.1364/OL.35.001308
    [16]
    Shay T M, Baker J T, Sanchez A D, et al. High-power phase locking of a fiber amplifier array[C]//Proceedings of SPIE. 2009: 7195M.
    [17]
    宋昭远, 姚桂彬, 张磊磊, 等. 单频光纤激光器相位噪声的影响因素[J]. 红外与激光工程, 2017, 46:0305005

    Song Zhaoyuan, Yao Guibin, Zhang Leilei, et al. Influencing factors of phase noise of single frequency fiber laser[J]. Infrared and Laser Engineering, 2017, 46: 0305005
    [18]
    张天松. 基于多抖动法锁相的超短脉冲时域相干合成技术研究[D]. 北京: 北京工业大学, 2019: 25-26

    Zhang Tiansong. Study on time-domain coherent beam combination of ultra-short pulse based on multi-dithering technology[D]. Beijing: Beijing University of Technology, 2019: 25-26
    [19]
    马阎星. 多抖动法光纤MOPA链的相干合成[D]. 长沙: 国防科学技术大学, 2008: 20-22

    Ma Yanxing. Coherent combining of MOPA with multi-dithering technique[D]. Changsha: National University of Defense Technology, 2008: 20-22
  • Relative Articles

    [1]Wei Yihong, Li Xiangqiang, Su Yiyu, Zhang Jianqiong, Wang Qingfeng. Design and experiment of open waveguide array antenna with high power and high efficiency[J]. High Power Laser and Particle Beams, 2024, 36(7): 073005. doi: 10.11884/HPLPB202436.230421
    [2]Li Yi, Wang Haomiao, Zhang Liang, He Yuwen, Zhou Kun, Du Weichuan, He Linan, Hu Yao, Wu Deyong, Gao Songxin, Tang Chun. High power semiconductor lasers with output power over 16 W for single emitter and 180 W for bar operation at 780 nm under CW operation[J]. High Power Laser and Particle Beams, 2023, 35(11): 111002. doi: 10.11884/HPLPB202335.230073
    [3]Zhou Hao, Cai Weihong, Wang Jiaoyin, Li Tianming. Research on mechanism of transparent cathode in relativistic magnetron[J]. High Power Laser and Particle Beams, 2021, 33(7): 073007. doi: 10.11884/HPLPB202133.210089
    [4]Shi Difu, Qian Baoliang. Simulation study on relativistic magnetron with online switchable rotation direction of a circularly polarized TE11output mode[J]. High Power Laser and Particle Beams, 2021, 33(7): 073003. doi: 10.11884/HPLPB202133.210124
    [5]Chu Kairong, Sheng Xing, Li Dongfeng, Dou Yue, Zhong Yong, Zhang Shiqiao. Development of X-band 50MW klystron[J]. High Power Laser and Particle Beams, 2020, 32(10): 103012. doi: 10.11884/HPLPB202032.200211
    [6]Tan Weibing, Cao Yibing, Song Wei, Chen Changhua, Li Xiaoze, Zhang Ligang, Zhu Xiaoxin. A Ku band high efficiency coaxial relativistic backwardwave oscillator with low magnetic field[J]. High Power Laser and Particle Beams, 2016, 28(09): 093002. doi: 10.11884/HPLPB201628.151098
    [7]Liang Qinjin, Chen Shitao, Yu Chuan. Development of 1.2 kW C band solid-state high efficiency GaN microwave source[J]. High Power Laser and Particle Beams, 2014, 26(10): 103002. doi: 10.11884/HPLPB201426.103002
    [8]Liu Meiqin, Liu Chunliang, Wang Hongguang, Bao Rong, Li Yansong, Fan Zhuangzhuang. RF input technology in A6 magnetron with diffraction output[J]. High Power Laser and Particle Beams, 2013, 25(10): 2636-2642. doi: 10.3788/HPLPB20132510.2636
    [9]Zhang Xuehui, Jiang Menghua, Liu Bin, Hui Yongling, Lei Hong, Li Qiang. High efficiency Nd:YVO4/LBO critical phase matching green laser[J]. High Power Laser and Particle Beams, 2013, 25(11): 2831-2835. doi: 10.3788/HPLPB20132511.2831
    [10]Tang Yongfu, Meng Lin, Li Hailong, Wang Bin, Yin Yong, Zhang Feina. Particle simulation of high-efficiency X-band dual-frequency coaxial relativistic backward-wave oscillator[J]. High Power Laser and Particle Beams, 2012, 24(10): 2415-2419. doi: 10.3788/HPLPB20122410.2415
    [11]su li, li tianming, li jiayin. Simulation and experiment on transparent cathode for relativistic magnetron[J]. High Power Laser and Particle Beams, 2011, 23(11): 0- .
    [12]zhang zhengquan, liu qingxiang, wu zhipeng, yang he. Series resonant converter based on HF AC-link technology[J]. High Power Laser and Particle Beams, 2011, 23(11): 0- .
    [13]li tianming, li jiayin, dong feifei, yu xiuyun, wang haiyang, li hao, zhou yihong. Self-magnetic field in relativistic magnetron[J]. High Power Laser and Particle Beams, 2010, 22(11): 0- .
    [14]yu xinhua, meng lin, niu xinjian. Design of 94 GHz second-harmonic complex cavity gyrotron with gradual transition[J]. High Power Laser and Particle Beams, 2010, 22(09): 0- .
    [15]zhang zhengquan, liu qingxiang, xiang xin, zhang pengpeng, wu zhipeng. High-frequency rectifying commutated converter[J]. High Power Laser and Particle Beams, 2010, 22(04): 0- .
    [16]he hu. Analysis of L-band high-efficiency gap-current magnetically insulated transmission line oscillator[J]. High Power Laser and Particle Beams, 2009, 21(06): 0- .
    [17]li tian-ming, li jia-yin, ma wen-duo, zhang bing, yu xiu-yun, li hao, wang hai-yang, zhou yi-hong, zhang ting-wei, zou huan. An experimental invesigation of frequency-agile relativistic magnetron[J]. High Power Laser and Particle Beams, 2006, 18(05): 0- .
    [18]zou huan, li jia-yin, li tian-ming, wang hai-yang, zhang ting-wei, li hao, yu xiu-yun. Optimization of tunable bandwidth of agile relativistic magnetron[J]. High Power Laser and Particle Beams, 2005, 17(08): 0- .
    [19]li tian ming, li jia yin, sun da rui, yu xiu yun, wang hai yang, li hao, ge peng. Primary design of Sband tunable relativistic magnetron[J]. High Power Laser and Particle Beams, 2004, 16(03): 0- .
    [20]li tian-ming, li jia-yin, yu xiu-yun, ma wen-duo, ge peng. Prepulse effects on the characteristics of relativistic magnetron[J]. High Power Laser and Particle Beams, 2003, 15(07): 0- .
  • Cited by

    Periodical cited type(1)

    1. 秦洪才,袁成卫,宁辉,孙云飞,张强,许亮,严鹏. 高功率平板波导螺旋阵列天线设计. 强激光与粒子束. 2021(02): 52-56 . 本站查看

    Other cited types(6)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-04010203040
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 21.8 %FULLTEXT: 21.8 %META: 75.1 %META: 75.1 %PDF: 3.0 %PDF: 3.0 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 8.4 %其他: 8.4 %其他: 4.3 %其他: 4.3 %Canton: 0.1 %Canton: 0.1 %China: 1.0 %China: 1.0 %India: 0.2 %India: 0.2 %Indianapolis: 0.2 %Indianapolis: 0.2 %Iran (ISLAMIC Republic Of): 0.4 %Iran (ISLAMIC Republic Of): 0.4 %Korea Republic of: 0.2 %Korea Republic of: 0.2 %Pakistan: 0.5 %Pakistan: 0.5 %Seongnam-si: 0.2 %Seongnam-si: 0.2 %United States: 0.9 %United States: 0.9 %Vleuten: 0.5 %Vleuten: 0.5 %[]: 1.8 %[]: 1.8 %三明: 0.1 %三明: 0.1 %上海: 0.9 %上海: 0.9 %东莞: 0.1 %东莞: 0.1 %中山: 0.1 %中山: 0.1 %丹东: 0.1 %丹东: 0.1 %丽水: 0.1 %丽水: 0.1 %伊斯坦布尔: 0.1 %伊斯坦布尔: 0.1 %佛山: 0.2 %佛山: 0.2 %保定: 0.1 %保定: 0.1 %兰州: 0.2 %兰州: 0.2 %北京: 3.1 %北京: 3.1 %南京: 0.3 %南京: 0.3 %博阿努瓦: 0.2 %博阿努瓦: 0.2 %台州: 0.7 %台州: 0.7 %哈尔科夫: 0.4 %哈尔科夫: 0.4 %哥伦布: 0.1 %哥伦布: 0.1 %孟买: 0.2 %孟买: 0.2 %安卡拉: 0.2 %安卡拉: 0.2 %安康: 0.1 %安康: 0.1 %宣城: 0.1 %宣城: 0.1 %宿州: 0.1 %宿州: 0.1 %密蘇里城: 0.2 %密蘇里城: 0.2 %岳阳: 0.1 %岳阳: 0.1 %巴黎: 0.2 %巴黎: 0.2 %广州: 0.1 %广州: 0.1 %张家口: 0.1 %张家口: 0.1 %成都: 1.0 %成都: 1.0 %扬州: 0.1 %扬州: 0.1 %无锡: 0.2 %无锡: 0.2 %昭通: 0.1 %昭通: 0.1 %普洱: 0.1 %普洱: 0.1 %杭州: 0.5 %杭州: 0.5 %株洲: 0.1 %株洲: 0.1 %格兰特县: 0.2 %格兰特县: 0.2 %桂林: 0.1 %桂林: 0.1 %武汉: 0.5 %武汉: 0.5 %汉堡: 0.2 %汉堡: 0.2 %沈阳: 0.1 %沈阳: 0.1 %泉州: 0.1 %泉州: 0.1 %济南: 0.2 %济南: 0.2 %海法: 0.2 %海法: 0.2 %深圳: 0.1 %深圳: 0.1 %湖州: 0.3 %湖州: 0.3 %湘西: 0.5 %湘西: 0.5 %漯河: 0.1 %漯河: 0.1 %烟台: 0.1 %烟台: 0.1 %石家庄: 0.1 %石家庄: 0.1 %福州: 0.1 %福州: 0.1 %秦皇岛: 0.1 %秦皇岛: 0.1 %绵阳: 0.6 %绵阳: 0.6 %肇庆: 0.1 %肇庆: 0.1 %芒廷维尤: 36.2 %芒廷维尤: 36.2 %芝加哥: 0.2 %芝加哥: 0.2 %苏州: 0.1 %苏州: 0.1 %莫斯科: 0.2 %莫斯科: 0.2 %衢州: 0.1 %衢州: 0.1 %襄阳: 0.1 %襄阳: 0.1 %西宁: 26.3 %西宁: 26.3 %西安: 0.7 %西安: 0.7 %贵阳: 0.2 %贵阳: 0.2 %贺州: 0.1 %贺州: 0.1 %运城: 1.1 %运城: 1.1 %邯郸: 0.1 %邯郸: 0.1 %郑州: 0.2 %郑州: 0.2 %重庆: 0.1 %重庆: 0.1 %长春: 0.1 %长春: 0.1 %长沙: 1.3 %长沙: 1.3 %长治: 0.1 %长治: 0.1 %阳泉: 0.1 %阳泉: 0.1 %阿什本: 0.1 %阿什本: 0.1 %首尔: 0.2 %首尔: 0.2 %其他其他CantonChinaIndiaIndianapolisIran (ISLAMIC Republic Of)Korea Republic ofPakistanSeongnam-siUnited StatesVleuten[]三明上海东莞中山丹东丽水伊斯坦布尔佛山保定兰州北京南京博阿努瓦台州哈尔科夫哥伦布孟买安卡拉安康宣城宿州密蘇里城岳阳巴黎广州张家口成都扬州无锡昭通普洱杭州株洲格兰特县桂林武汉汉堡沈阳泉州济南海法深圳湖州湘西漯河烟台石家庄福州秦皇岛绵阳肇庆芒廷维尤芝加哥苏州莫斯科衢州襄阳西宁西安贵阳贺州运城邯郸郑州重庆长春长沙长治阳泉阿什本首尔

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)

    Article views (883) PDF downloads(137) Cited by(7)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return