Volume 35 Issue 7
Jun.  2023
Turn off MathJax
Article Contents
Yan Penghui, Zhang Baoling, Shi Yongxing, et al. Molecular dynamics simulation of helium damage in copper[J]. High Power Laser and Particle Beams, 2023, 35: 076001. doi: 10.11884/HPLPB202335.220302
Citation: Yan Penghui, Zhang Baoling, Shi Yongxing, et al. Molecular dynamics simulation of helium damage in copper[J]. High Power Laser and Particle Beams, 2023, 35: 076001. doi: 10.11884/HPLPB202335.220302

Molecular dynamics simulation of helium damage in copper

doi: 10.11884/HPLPB202335.220302
  • Received Date: 2022-12-28
  • Accepted Date: 2023-04-14
  • Rev Recd Date: 2023-03-28
  • Available Online: 2023-04-18
  • Publish Date: 2023-06-15
  • The helium radiation damage of copper was simulated by using the molecular dynamics method, and the change process of copper microstructure under helium irradiation was observed on the atomic scale. The changes of the microstructure and mechanical properties of copper induced by helium radiation were analyzed, and the single crystal copper and the polycrystalline copper were compared. It is found that, the number of defect pairs in single crystal copper increases first and then decreases with the increasing number of helium atoms, and the peak value increases continuously. The number of defect pairs of polycrystalline copper continues to increase, but the fluctuation rule is not obvious. The tensile property test shows that the yield strength of copper is reduced because of the helium radiation. When the helium atom content reaches 0.54%, the yield strength of single crystal copper and polycrystalline copper is reduced by 46.94% and 49.2% respectively.
  • loading
  • [1]
    Pitcher C S, Stangeby P C. Experimental divertor physics[J]. Plasma Physics and Controlled Fusion, 1997, 39(6): 779-930. doi: 10.1088/0741-3335/39/6/001
    [2]
    陶余强. EAST辐射偏滤器与高约束的兼容性研究[D]. 合肥: 中国科学技术大学, 2022

    Tao Yuqiang. Study on the compatibility of radiative divertor with high confinement in EAST tokamak[D]. Hefei: University of Science and Technology of China, 2022
    [3]
    郝嘉琨. 聚变堆材料[M]. 北京: 化学工业出版社, 2007

    Hao Jiakun. Fusion reactor materials[M]. Beijing: Chemical Industry Press, 2007
    [4]
    Khiara N, Onimus F, Jublot-Leclerc S, et al. In-situ TEM irradiation creep experiment revealing radiation induced dislocation glide in pure copper[J]. Acta Materialia, 2021, 216: 117096. doi: 10.1016/j.actamat.2021.117096
    [5]
    Li Min, Hou Qing, Cui Jiechao, et al. Comparative studies of helium behavior in copper and tungsten using molecular dynamics simulations[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2020, 463: 30-39.
    [6]
    Yang Yun, Frazer D, Balooch M, et al. Irradiation damage investigation of helium implanted polycrystalline copper[J]. Journal of Nuclear Materials, 2018, 512: 137-143. doi: 10.1016/j.jnucmat.2018.09.022
    [7]
    李博. 金属铜中辐照损伤的分子动力学模拟[D]. 合肥: 中国科学技术大学, 2016

    Li Bo. Molecular dynamics simulation of irradiation damage in Cu[D]. Hefei: University of Science and Technology of China, 2016
    [8]
    王建国. 铜辐照碰撞级联过程的分子动力学仿真[D]. 合肥: 合肥工业大学, 2003

    Wang Jianguo. Molecular dynamics modeling of radiation collision cascades course in copper[D]. Hefei: Hefei University of Technology, 2003
    [9]
    Rowcliffe A F, Garrison L M, Yamamoto Y, et al. Materials challenges for the fusion nuclear science facility[J]. Fusion Engineering and Design, 2018, 135: 290-301. doi: 10.1016/j.fusengdes.2017.07.012
    [10]
    Cottrell G A. A survey of plasma facing materials for fusion power plants[J]. Materials Science and Technology, 2006, 22(8): 869-880. doi: 10.1179/174328406X111110
    [11]
    张崇宏. 聚变堆候选金属材料的惰性气体离子辐照损伤的研究[J]. 原子核物理评论, 2006, 23(2):167-169 doi: 10.3969/j.issn.1007-4627.2006.02.019

    Zhang Chonghong. Damage production by inert-gas-ion irradiation in some candidate materials to fusion reactors[J]. Nuclear Physics Review, 2006, 23(2): 167-169 doi: 10.3969/j.issn.1007-4627.2006.02.019
    [12]
    Harrison R W, Greaves G, Hinks J A, et al. A study of the effect of helium concentration and displacement damage on the microstructure of helium ion irradiated tungsten[J]. Journal of Nuclear Materials, 2017, 495: 492-503. doi: 10.1016/j.jnucmat.2017.08.033
    [13]
    Kittel C. Introduction to solid state physics[M]. 8th ed. New York: John Wiley & Sons, 2004.
    [14]
    Zhou X W, Johnson R A, Wadley H N G. Misfit-energy-increasing dislocations in vapor-deposited CoFe/NiFe multilayers[J]. Physical Review B, 2004, 69: 144113. doi: 10.1103/PhysRevB.69.144113
    [15]
    Chizmeshya A, Zaremba E. The interaction of rare gas atoms with metal surfaces: a scattering theory approach[J]. Surface Science, 1992, 268(1/3): 432-456.
    [16]
    Stukowski A. Visualization and analysis of atomistic simulation data with OVITO-the open visualization tool[J]. Modelling and Simulation in Materials Science and Engineering, 2010, 18: 015012. doi: 10.1088/0965-0393/18/1/015012
    [17]
    Zhang Baoling, Fang Shuoyang, Wang Jun, et al. Study on helium bubble coalescence in the slip plane of titanium[J]. Fusion Science and Technology, 2021, 77(6): 437-445. doi: 10.1080/15361055.2021.1927583
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)

    Article views (429) PDF downloads(66) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return