Citation: | Tian Boyu, Peng Yingnan, Hu Qiqi, et al. Review of optical phased array technology and its applications[J]. High Power Laser and Particle Beams, 2023, 35: 041001. doi: 10.11884/HPLPB202335.220305 |
[1] |
徐龙道. 物理学词典[M]. 北京: 科学出版社, 2004
Xu Longdao. Dictionary of physics[M]. Beijing: Science Press, 2004
|
[2] |
Mahan A I, Bitterli C V, Cannon S M. Far-field diffraction patterns of single and multiple apertures bounded by arcs and radii of concentric circles[J]. Journal of the Optical Society of America, 1964, 54(6): 721-732. doi: 10.1364/JOSA.54.000721
|
[3] |
Friis H T, Feldman C B. A multiple unit steerable antenna for short-wave reception[J]. Proceedings of the Institute of Radio Engineers, 1937, 25(7): 841-917.
|
[4] |
赵志超. 导弹防御雷达网数据融合技术研究[D]. 长沙: 国防科技大学, 2010
Zhao Zhichao. Study on data fusion techniques of missile defense radar network[D]. Changsha: National University of Defense Technology, 2010
|
[5] |
Meyer R A. Optical beam steering using a multichannel lithium tantalate crystal[J]. Applied Optics, 1972, 11(3): 613-616. doi: 10.1364/AO.11.000613
|
[6] |
Chang Shuo, Wang Zhaokun, Wang D N, et al. Tunable and dual-wavelength mode-locked Yb-doped fiber laser based on graded-index multimode fiber device[J]. Optics & Laser Technology, 2021, 140: 107081.
|
[7] |
Wu Bo, Zhang Bin, Liu Weijie, et al. Recoverable and rewritable waveguide beam splitters fabricated by tailored femtosecond laser writing of lithium tantalate crystal[J]. Optics & Laser Technology, 2022, 145: 107500.
|
[8] |
Zhu Shuangqi, Xu Zhentao, Zhang Hao, et al. Liquid crystal integrated metadevice for reconfigurable hologram displays and optical encryption[J]. Optics Express, 2021, 29(6): 9553-9564. doi: 10.1364/OE.419914
|
[9] |
Hsu C P, Li Boda, Solano-Rivas B, et al. A review and perspective on optical phased array for automotive LiDAR[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2021, 27: 8300416.
|
[10] |
Lu Ping, Xu Weihan, Zhu Chen, et al. Integrated multi-beam optical phased array based on a 4 × 4 Butler matrix[J]. Optics Letters, 2021, 46(7): 1566-1569. doi: 10.1364/OL.419828
|
[11] |
Fathi H, Närhi M, Gumenyuk R. Towards ultimate high-power scaling: coherent beam combining of fiber lasers[J]. Photonics, 2021, 8: 566. doi: 10.3390/photonics8120566
|
[12] |
Tang Mingyuan, Cao Jie, Hao Qun, et al. Wide range retina-like scanning based on liquid crystal optical phased array[J]. Optics and Lasers in Engineering, 2022, 151: 106885. doi: 10.1016/j.optlaseng.2021.106885
|
[13] |
耿超, 李枫, 黄冠, 等. 基于光纤自适应操控的激光相控阵技术研究进展(特邀)[J]. 红外与激光工程, 2018, 47:0103003 doi: 10.3788/IRLA201847.0103003
Geng Chao, Li Feng, Huang Guan, et al. Research Progress of laser phased array technique based on fiber adaptive manipulation (Invited)[J]. Infrared and Laser Engineering, 2018, 47: 0103003 doi: 10.3788/IRLA201847.0103003
|
[14] |
DeHainaut C R, Duneman D C, Dymale R C, et al. Wide field performance of a phased array telescope[J]. Optical Engineering, 1995, 34(3): 876-880. doi: 10.1117/12.196461
|
[15] |
Qin Qi, Yan Fengping, Liu Yan, et al. Multi-wavelength thulium-doped fiber laser via a polarization-maintaining Sagnac loop mirror with a theta-shaped configuration[J]. Journal of Lightwave Technology, 2021, 39(13): 4517-4524. doi: 10.1109/JLT.2021.3072226
|
[16] |
Ma Pengfei, Chang Hongxiang, Ma Yanxing, et al. 7.1 kW coherent beam combining system based on a seven-channel fiber amplifier array[J]. Optics & Laser Technology, 2021, 140: 107016.
|
[17] |
Van Acoleyen K, Bogaerts W, Jágerská J, et al. Off-chip beam steering with a one-dimensional optical phased array on silicon-on-insulator[J]. Optics Letters, 2009, 34(9): 1477-1479. doi: 10.1364/OL.34.001477
|
[18] |
Wang Ke, Yuan Zeshi, Wong E, et al. Experimental demonstration of indoor infrared optical wireless communications with a silicon photonic integrated circuit[J]. Journal of Lightwave Technology, 2019, 37(2): 619-626. doi: 10.1109/JLT.2018.2889252
|
[19] |
He Jingwen, Dong Tao, Xu Yue. Review of photonic integrated optical phased arrays for space optical communication[J]. IEEE Access, 2020, 8: 188284-188298. doi: 10.1109/ACCESS.2020.3030627
|
[20] |
Kendrick R L, Aubrun J N, Bell R, et al. Wide-field Fizeau imaging telescope: experimental results[J]. Applied Optics, 2006, 45(18): 4235-4240. doi: 10.1364/AO.45.004235
|
[21] |
Corcoran C J, Pasch K A. Modal analysis of a self-Fourier laser cavity[J]. Journal of Optics A: Pure and Applied Optics, 2005, 7(5): L1. doi: 10.1088/1464-4258/7/5/L01
|
[22] |
Minden M L. Passive coherent combining of fiber oscillators[C]//Proceedings of SPIE 6453, Fiber Lasers IV: Technology, Systems, and Applications. 2007: 6453.
|
[23] |
Daniault L, Hanna M, Papadopoulos D N, et al. Passive coherent beam combining of two femtosecond fiber chirped-pulse amplifiers[J]. Optics Letters, 2011, 36(20): 4023-4025. doi: 10.1364/OL.36.004023
|
[24] |
Kurtz R M, Pradhan R D, Tun N, et al. Mutual injection locking: a new architecture for high-power solid-state laser arrays[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2005, 11(3): 578-586. doi: 10.1109/JSTQE.2005.850240
|
[25] |
Wickham M, Anderegg J, Brosnan S, et al. Coherently coupled high power fiber arrays[C]//Advanced Solid-State Photonics 2004. 2004: 202-206.
|
[26] |
Shay T M. Theory of electronically phased coherent beam combination without a reference beam[J]. Optics Express, 2006, 14(25): 12188-12195. doi: 10.1364/OE.14.012188
|
[27] |
Yu C X, Kansky J E, Shaw S E J, et al. Coherent beam combining of a large number of PM fibers in a 2D fiberarray[C]//2006 Conference on Lasers and Electro-optics and 2006 Quantum Electronics and Laser Science Conference. 2006: 1-2.
|
[28] |
Stockley J, Serati S. Advances in liquid crystal beam steering[C]//Proceedings of SPIE 5550, Free-Space Laser Communications IV. 2004: 32.
|
[29] |
Wight D R, Heaton J M, Hughes B T, et al. Novel phased array optical scanning device implemented using GaAs/AlGaAs technology[J]. Applied Physics Letters, 1991, 59(8): 899-901. doi: 10.1063/1.105270
|
[30] |
Van Acoleyen K, Rogier H, Baets R. Two-dimensional optical phased array antenna on silicon-on-insulator[J]. Optics Express, 2010, 18(13): 13655-13660. doi: 10.1364/OE.18.013655
|
[31] |
Koh K H, Lee C. A two-dimensional MEMS scanning mirror using hybrid actuation mechanisms with low operation voltage[J]. Journal of Microelectromechanical Systems, 2012, 21(5): 1124-1135. doi: 10.1109/JMEMS.2012.2196497
|
[32] |
Seldin J H, Paxman R G, Zarifis V G, et al. Closed-loop wavefront sensing for a sparse-aperture multitelescope array using broadband phase diversity[C]//Proceedings of SPIE 4091, Imaging Technology and Telescopes. 2000: 48-63.
|
[33] |
Hill J M, Salinari P. The large binocular telescope project[C]//Proceedings of SPIE 5489, Ground-based Telescopes. 1998.
|
[34] |
马阎星. 光纤激光抖动法相干合成技术研究[D]. 长沙: 国防科学技术大学, 2014
Ma Yanxing. Study on coherent beam combination of fiber laser based on dithering phase locking technology[D]. Changsha: National University of Defense Technology, 2014
|
[35] |
Seifert L, Liesener J, Tiziani H J. Adaptive Shack-Hartmann sensor[C]//Proceedings of SPIE 5144, Optical Measurement Systems for Industrial Inspection III. 2003: 250-258.
|
[36] |
Zhang Xiaofang, Guo Jing, Ren Xiaofeng, et al. The wavefront sensorless adaptive optics correction for a wide field of view optics system based on the SPGD algorithm[C]//Proceedings of SPIE 7849, Optical Design and Testing IV. 2010: 78492H.
|
[37] |
Vorontsov M. Adaptive photonics phase-locked elements (APPLE): system architecture and wavefront control concept[C]//Proceedings of SPIE 5895, Target-in-the-Loop: Atmospheric Tracking, Imaging, and Compensation II. 2005.
|
[38] |
Dorschner T A. Adaptive photonic phase locked elements: an overview[C]//MTO Symposium. 2007.
|
[39] |
刘泽金, 周朴, 许晓军, 等. 高平均功率光纤激光相干合成[M]. 长沙: 国防工业出版社, 2016
Liu Zejing, Zhou Pu, Xu Xiaojun, et al. Coherent beam combining of high average power fiber lasers[M]. Changsha: National Defense Industry Press, 2016
|
[40] |
Coffey V. High-energy lasers: new advances in defense applications[J]. Optics and Photonics News, 2014, 25(10): 28-35. doi: 10.1364/OPN.25.10.000028
|
[41] |
Optics. org. DARPA extends laser weapon range[EB/OL]. (2014-03-11). https://optics.org/news/5/3/13.
|
[42] |
Di Pengcheng, Li Xuepeng, Yang Jing, et al. High-power VCSEL-pumped slab laser with temperature fluctuation adaptability[J]. IEEE Photonics Technology Letters, 2021, 33(8): 395-398. doi: 10.1109/LPT.2021.3065510
|
[43] |
Mi Shuyi, Li Junhui, Wei Disheng, et al. 105 W continuous-wave diode-pumped Tm: YAP slab laser with high beam quality[J]. Optics & Laser Technology, 2021, 138: 106847.
|
[44] |
Machan J P, Long W H, Zamel J, et al. 5.4 kW diode-pumped, 2.4x diffraction-limited Nd: YAG laser for material processing[C]//Advanced Solid State Lasers 2002. 2002: PD1.
|
[45] |
McNaught S J, Komine H, Weiss S B, et al. 100 kW coherently combined slab MOPAs[C]//2009 Conference on Lasers and Electro-Optics and 2009 Conference on Quantum electronics and Laser Science Conference. 2009: 1-2.
|
[46] |
Wang Dan, Du Yinglei, Wu Yingchen, et al. 20kW class high-beam-quality CW laser amplifier chain based on a Yb: YAG slab at room temperature[J]. Optics Letters, 2018, 43(16): 3838-3841. doi: 10.1364/OL.43.003838
|
[47] |
Huang Lei, Zheng Yamin, Guo Yading, et al. 21.2 kW, 1.94 times diffraction-limit quasi-continuous-wave laser based on a multi-stage, power-scalable and adaptive optics controlled Yb: YAG master-oscillator-power-amplifier system[J]. Chinese Optics Letters, 2020, 18: 061402. doi: 10.3788/COL202018.061402
|
[48] |
郭亚丁. 高能固体激光自适应光学光束质量控制[C]//第四届大气光学及自适应光学技术发展研讨会. 2019
Guo Yading. Beam quality control technology for high energy solid laser system[C]//The Fourth Symposium on the Development of Atmospheric Optics and Adaptive Optics. 2019
|
[49] |
尚建力, 王君涛, 彭万敬, 等. 二极管泵浦高能激光研究进展和展望[J]. 强激光与粒子束, 2022, 34:011007 doi: 10.11884/HPLPB202234.210530
Shang Jianli, Wang Juntao, Peng Wanjing, et al. Research progress and prospects of laser diode pumped high-energy laser[J]. High Power Laser and Particle Beams, 2022, 34: 011007 doi: 10.11884/HPLPB202234.210530
|
[50] |
Koester C J, Snitzer E. Amplification in a fiber laser[J]. Applied Optics, 1964, 3(10): 1182-1186. doi: 10.1364/AO.3.001182
|
[51] |
Dominic V, MacCormack S, Waarts R, et al. 110 W fiber laser[C]//Conference on Lasers and Electro-Optics 1999. 1999: CPD11/1-CPD11/2.
|
[52] |
Jeong Y, Sahu J K, Payne D N, et al. Ytterbium-doped large-core fiber laser with 1.36 kW continuous-wave output power[J]. Optics Express, 2004, 12(25): 6088-6092. doi: 10.1364/OPEX.12.006088
|
[53] |
Ikoma S, Nguyen H K, Kashiwagi M, et al. 3 kW single stage all-fiber Yb-doped single-mode fiber laser for highly reflective and highly thermal conductive materials processing[C]//Proceedings of SPIE 10083, Fiber Lasers XIV: Technology and Systems. 2017: 100830Y.
|
[54] |
Yang Baolai, Shi Chen, Zhang Hanwei, et al. Monolithic fiber laser oscillator with record high power[J]. Laser Physics Letters, 2018, 15: 075106. doi: 10.1088/1612-202X/aac19f
|
[55] |
奚小明, 王鹏, 杨保来, 等. 全光纤激光振荡器输出功率突破7kW[J]. 中国激光, 2021, 48:0116001 doi: 10.3321/j.issn.0258-7025.2021.1.zgjg202101023
Xi Xiaoming, Wang Peng, Yang Baolai, et al. All-fiber laser oscillator reach 7kW output power[J]. Chinese Journal of Lasers, 2021, 48: 0116001 doi: 10.3321/j.issn.0258-7025.2021.1.zgjg202101023
|
[56] |
Shiner B. The impact of fiber laser technology on the world wide material processing market[C]//Proceedings of CLEO: Applications and Technology 2013. 2013.
|
[57] |
林傲祥, 湛欢, 彭昆, 等. 国产复合功能光纤实现万瓦激光输出[J]. 强激光与粒子束, 2018, 30:060101 doi: 10.11884/HPLPB201830.180110
Lin Aoxiang, Zhan Huan, Peng Kun, et al. 10 kW-level pump-gain integrated functional laser fiber[J]. High Power Laser and Particle Beams, 2018, 30: 060101 doi: 10.11884/HPLPB201830.180110
|
[58] |
陈晓龙, 楼风光, 何宇, 等. 高效率全国产化10 kW光纤激光器[J]. 光学学报, 2019, 39:0336001 doi: 10.3788/AOS201939.0336001
Chen XIaolong, Lou Fengguang, He Yu, et al. Home-made 10 kW fiber laser with high efficiency[J]. Acta Optica Sinica, 2019, 39: 0336001 doi: 10.3788/AOS201939.0336001
|
[59] |
Yang Baolai, Zhang Hanwei, Wang Xiaolin, et al. Mitigating transverse mode instability in a single-end pumped all-fiber laser oscillator with a scaling power of up to 2 kW[J]. Journal of Optics, 2016, 18: 105803. doi: 10.1088/2040-8978/18/10/105803
|
[60] |
Fang Qiang, Li Jinhui, Shi Wei, et al. 5 kW near-diffraction-limited and 8 kW high-brightness monolithic continuous wave fiber lasers directly pumped by laser diodes[J]. IEEE Photonics Journal, 2017, 9: 1506107.
|
[61] |
Shima K, Ikoma S, Uchiyama K, et al. 5-kW single stage all-fiber Yb-doped single-mode fiber laser for materials processing[C]//Proceedings of SPIE 10512, Fiber Lasers XV: Technology and Systems. 2018: 105120C.
|
[62] |
Yang Baolai, Wang Peng, Zhang Hanwei, et al. 6 kW single mode monolithic fiber laser enabled by effective mitigation of the transverse mode instability[J]. Optics Express, 2021, 29(17): 26366-26374. doi: 10.1364/OE.433630
|
[63] |
Huang Zhimeng, Shu Qiang, Tao Rumao, et al. > 5kW record high power narrow linewidth laser from traditional step-index monolithic fiber amplifier[J]. IEEE Photonics Technology Letters, 2021, 33(21): 1181-1184. doi: 10.1109/LPT.2021.3112270
|
[64] |
Wang Xiaozhuo, Crump P, Wenzel H, et al. Root-cause analysis of peak power saturation in pulse-pumped 1100 nm broad area single emitter diode lasers[J]. IEEE Journal of Quantum Electronics, 2010, 46(5): 658-665. doi: 10.1109/JQE.2010.2047381
|
[65] |
Wenzel H, Crump P, Pietrzak A, et al. Theoretical and experimental investigations of the limits to the maximum output power of laser diodes[J]. New Journal of Physics, 2010, 12: 085007. doi: 10.1088/1367-2630/12/8/085007
|
[66] |
Morita T, Nagakura T, Torii K, et al. High-efficient and reliable broad-area laser diodes with a window structure[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2013, 19: 1502104. doi: 10.1109/JSTQE.2013.2245103
|
[67] |
Kaifuchi Y, Yamagata Y, Nogawa R, et al. Ultimate high power operation of 9xx-nm single emitter broad stripe laser diodes[C]//Proceedings of SPIE 10086, High-Power Diode Laser Technology XV. 2017: 100860D.
|
[68] |
Gapontsev V, Moshegov N, Berezin I, et al. Highly-efficient high-power pumps for fiber lasers[C]//Proceedings of SPIE 10086, High-Power Diode Laser Technology XV. 2017: 1008604.
|
[69] |
Ren Zhanqiang, Li Qingmin, Li Bo, et al. High wall-plug efficiency 808-nm laser diodes with a power up to 30.1 W[J]. Journal of Semiconductors, 2020, 41: 032901. doi: 10.1088/1674-4926/41/3/032901
|
[70] |
Virtanen H, Uusitalo T, Karjalainen M, et al. Narrow-Linewidth 780-nm DFB lasers fabricated using nanoimprint lithography[J]. IEEE Photonics Technology Letters, 2018, 30(1): 51-54. doi: 10.1109/LPT.2017.2772337
|
[71] |
Lewoczko-Adamczyk W, Pyrlik C, Häger J, et al. Ultra-narrow linewidth DFB-laser with optical feedback from a monolithic confocal Fabry-Perot cavity[J]. Optics Express, 2015, 23(8): 9705-9709. doi: 10.1364/OE.23.009705
|
[72] |
Codemard C A, Vukovic N T, Chan J S, et al. Resonant SRS filtering fiber for high power fiber laser applications[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2018, 24: 0901509.
|
[73] |
Liu T, Yang Z M, Xu S H, et al. Analytical investigation on transient thermal effects in pulse end-pumped short-length fiber laser[J]. Optics Express, 2009, 17(15): 12875-12890. doi: 10.1364/OE.17.012875
|
[74] |
Dawson J W, Messerly M J, Heebner J E, et al. Power scaling analysis of fiber lasers and amplifiers based on non-silica materials[C]//Proceedings of SPIE 7686, Laser Technology for Defense and Security VI. 2010: 768611.
|
[75] |
Augst S J, Fan T Y, Sanchez A. Coherent beam combining and phase noise measurements of ytterbium fiber amplifiers[J]. Optics Letters, 2004, 29(5): 474-476. doi: 10.1364/OL.29.000474
|
[76] |
Enloe L H, Rodda J L. Laser phase-locked loop[J]. Proceedings of the IEEE, 1965, 53(2): 165-166. doi: 10.1109/PROC.1965.3585
|
[77] |
Glova A F, Drobyazko S V, Likhanskii V V. Multi-beam CO2 lasers and theirs applications[C]//Proceedings of the 2nd International Conference on Advanced Optoelectronics and Lasers. 2005: 43-46.
|
[78] |
Abramski K M, Colley A D, Baker H J, et al. Phase-locked CO2 laser array using diagonal coupling of waveguide channels[J]. Applied Physics Letters, 1992, 60(5): 530-532. doi: 10.1063/1.106597
|
[79] |
Hornby A M, Baker H J, Colley A D, et al. Phase locking of linear arrays of CO2 waveguide lasers by the waveguide-confined Talbot effect[J]. Applied Physics Letters, 1993, 63(19): 2591-2593. doi: 10.1063/1.110440
|
[80] |
Bernard J M, Chodzko R A, Mirels H. Coupled multiline CW HF lasers—Experimental performance[J]. AIAA Journal, 1988, 26(11): 1369-1372. doi: 10.2514/3.10049
|
[81] |
Redmond S M, Kansky J E, Creedon K J, et al. Active coherent combination of >200 semiconductor amplifiers using a SPGD algorithm[C]//Laser Science to Photonic Applications. 2011: 1-2.
|
[82] |
Albrodt P, Niemeyer M, Crump P, et al. Coherent beam combining of high power quasi continuous wave tapered amplifiers[J]. Optics Express, 2019, 27(20): 27891-27901. doi: 10.1364/OE.27.027891
|
[83] |
Bogatov A P, Drakin A E, Mikaelyan G T. Coherent combining of diode laser beams in a master oscillator – zigzag slab power amplifier system[J]. Quantum Electronics, 2019, 49(11): 1014-1018. doi: 10.1070/QEL17086
|
[84] |
Schimmel G, Doyen I, Janicot S, et al. Passive coherent combining of two tapered laser diodes in an interferometric external cavity[C]//2015 IEEE High Power Diode Lasers and Systems Conference. 2015: 11-12.
|
[85] |
Huang R K, Chann B, Burgess J, et al. Teradiode's high brightness semiconductor lasers[C]//Proceedings of SPIE 9730, Components & Packaging for Laser Systems II. 2016: 97300C.
|
[86] |
Oka M, Masuda H, Kaneda Y, et al. Laser-diode-pumped phase-locked Nd: YAG laser arrays[J]. IEEE Journal of Quantum Electronics, 1992, 28(4): 1142-1147. doi: 10.1109/3.135239
|
[87] |
Kono Y, Takeoka M, Uto K, et al. A coherent all-solid-state laser array using the Talbot effect in a three-mirror cavity[J]. IEEE Journal of Quantum Electronics, 2000, 36(5): 607-614. doi: 10.1109/3.842103
|
[88] |
Marmo J, Injeyan H, Komine H, et al. Joint high power solid state laser program advancements at Northrop Grumman[C]//Proceedings of SPIE 7195, Fiber Lasers VI: Technology, Systems, and Applications. 2009: 719507.
|
[89] |
Kienel M, Müller M, Demmler S, et al. Coherent beam combination of Yb: YAG single-crystal rod amplifiers[J]. Optics Letters, 2014, 39(11): 3278-3281. doi: 10.1364/OL.39.003278
|
[90] |
Huang Zhimeng, Tang Xuan, Zhang Dayong, et al. Phase locking of slab laser amplifiers via square wave dithering algorithm[J]. Applied Optics, 2014, 53(10): 2163-2169. doi: 10.1364/AO.53.002163
|
[91] |
Bourderionnet J, Bellanger C, Primot J, et al. Collective coherent phase combining of 64 fibers[J]. Optics Express, 2011, 19(18): 17053-17058. doi: 10.1364/OE.19.017053
|
[92] |
常洪祥, 常琦, 侯天悦, 等. 百束规模光纤激光相干合成[J]. 中国激光, 2020, 47:0916002.
|
[93] |
Ma Yanxing, Wang Xiaolin, Zhou Pu, et al. Coherent beam combination of 1.08 kW fiber amplifier array using single frequency dithering technique[J]. Optics and Lasers in Engineering, 2011, 49(8): 1089-1092. doi: 10.1016/j.optlaseng.2011.03.001
|
[94] |
Yu C X, Augst S J, Redmond S M, et al. Coherent combining of a 4 kW, eight-element fiber amplifier array[J]. Optics Letters, 2011, 36(14): 2686-2688. doi: 10.1364/OL.36.002686
|
[95] |
Huang Zhimeng, Tang Xuan, Luo Yongquan, et al. Active phase locking of thirty fiber channels using multilevel phase dithering method[J]. Review of Scientific Instruments, 2016, 87: 033109. doi: 10.1063/1.4943666
|
[96] |
Peng Yingnan, Hu Qiqi, Duan Jiazhu, et al. Active phase locking of laser coherent beam combination using square wave dithering algorithm[J]. Journal of Russian Laser Research, 2022, 43(5): 626-633. doi: 10.1007/s10946-022-10089-4
|
[97] |
Peng Y, Hu Q, Duan J, et al. Numerical and experimental study on rapidly varying phase-distortion correction using modified square wave dithering algorithm[J]. Laser Physics
|
[98] |
彭英楠, 胡奇琪, 段佳著, 等. 基于光斑二阶矩的阵列光束倾斜相差自适应控制方法[J]. 强激光与粒子束, 2023, 35:041010 doi: 10.11884/HPLPB202335.220312
Peng Yingnan, Hu Qiqi, Duan Jiazhu, et al. Self-adaptiue tilt control method based on second order moment of beam for laser array[J]. High Power Laser and Particle Beams, 2023, 35: 041010 doi: 10.11884/HPLPB202335.220312
|
[99] |
任国光, 伊炜伟, 齐予, 等. 美国战区和战略无人机载激光武器[J]. 激光与光电子学进展, 2017, 54:100002
Ren Guoguang, Yi Weiwei, Qi Yu, et al. U. S. Theater and strategic UVA-borne laser weapon[J]. Laser & Optoelectronics Progress, 2017, 54: 100002
|
[100] |
Li Feng, Geng Chao, Huang Guan, et al. Experimental demonstration of coherent combining with tip/tilt control based on adaptive space-to-fiber laser beam coupling[J]. IEEE Photonics Journal, 2017, 9: 7102812.
|
[101] |
Hou Tianyue, An Yi, Chang Qi, et al. Deep learning-based phase control method for coherent beam combining and its application in generating orbital angular momentum beams[J]. arXiv: 2019, 1903: 03986.
|
[102] |
Azarian A, Bourdon P, Lombard L, et al. Orthogonal coding methods for increasing the number of multiplexed channels in coherent beam combining[J]. Applied Optics, 2014, 53(8): 1493-1502. doi: 10.1364/AO.53.001493
|
[103] |
McNaught S J, Thielen P A, Adams L N, et al. Scalable coherent combining of kilowatt fiber amplifiers into a 2.4-kW beam[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2014, 20: 0901008.
|
[104] |
Shekel E, Vidne Y, Urbach B. 16kW single mode CW laser with dynamic beam for material processing[C]//Proceedings of SPIE 11260, Fiber Lasers XVII: Technology and Systems. 2020: 1126021.
|
[105] |
胡贞, 姜会林, 佟首峰, 等. 空间激光通信终端ATP技术与系统研究[J]. 兵工学报, 2011, 32(6):752-757
Hu Zhen, Jiang Huilin, Tong Shoufeng, et al. Research on ATP system technology of laser communication terminal in space[J]. Acta Armamentarii, 2011, 32(6): 752-757
|
[106] |
Haellstig E, Stigwall J, Lindgren M, et al. Laser beam steering and tracking using a liquid crystal spatial light modulator[C]//Proceedings of SPIE 5087, Laser Systems Technology. 2003.
|
[107] |
Apter B, Efron U, Bahat-Treidel E. On the fringing-field effect in liquid-crystal beam-steering devices[J]. Applied Optics, 2004, 43(1): 11-19. doi: 10.1364/AO.43.000011
|
[108] |
Abe H, Takeuchi M, Takeuchi G, et al. Two-dimensional beam-steering device using a doubly periodic Si photonic-crystal waveguide[J]. Optics Express, 2018, 26(8): 9389-9397. doi: 10.1364/OE.26.009389
|
[109] |
Tuantranont A, Bright V M, Zhang J, et al. Optical beam steering using MEMS-controllable microlens array[J]. Sensors and Actuators A: Physical, 2001, 91(3): 363-372. doi: 10.1016/S0924-4247(01)00609-4
|
[110] |
Mcmanamon P F, Dorschner T A, Corkum D L, et al. Optical phased array technology[J]. Proceedings of the IEEE, 1996, 84(2): 268-298. doi: 10.1109/5.482231
|
[111] |
Resler D P, Hobbs D S, Sharp R C, et al. High-efficiency liquid-crystal optical phased-array beam steering[J]. Optics Letters, 1996, 21(9): 689-691. doi: 10.1364/OL.21.000689
|
[112] |
徐林. 液晶光学相控阵相位延迟及衍射效率研究[D]. 哈尔滨: 哈尔滨工业大学, 2008
Xu Lin. Research on phase delay and diffraction efficiency of liquid crystal optical phased array[D]. Harbin: Harbin Institute of Technology, 2008
|
[113] |
Khan S A, Riza N A. Demonstration of 3-dimensional wide-angle no-moving-parts laser beam steering[C]//Proceedings of SPIE 5550, Free-Space Laser Communications IV. 2004.
|
[114] |
Riza N A, Arain M A. Code-multiplexed optical scanner[J]. Applied Optics, 2003, 42(8): 1493-1502. doi: 10.1364/AO.42.001493
|
[115] |
Kim J, Oh C, Escuti M J, et al. Wide-angle nonmechanical beam steering using thin liquid crystal polarization gratings[C]//Proceedings of SPIE, 2008: 709302.
|
[116] |
Whitaker B, Harris S R. A preliminary investigation into the effects of high-power illumination on optical phased arrays[R]. AFRL, 2010.
|
[117] |
Gu D, Wen B, Mahajan M, et al. High power liquid crystal spatial light modulators[C]//Proceedings of SPIE 6306, Advanced Wavefront Control: Methods, Devices, and Applications IV. 2006: 630602.
|
[118] |
汪相如, 周庄奇. 液晶光学相控阵在高功率激光应用中的研究进展[J]. 红外与激光工程, 2018, 47:103006 doi: 10.3788/IRLA201847.0103006
Wang Xiangru, Zhou Zhuangqi. Research progress of liquid crystal optical phased array in high power laser applications (invited)[J]. Infrared and Laser Engineering, 2018, 47: 103006 doi: 10.3788/IRLA201847.0103006
|
[119] |
李阳龙, 王伟平, 骆永全, 等. 1 064 nm激光对氧化铟锡薄膜的损伤研究[J]. 高压物理学报, 2012, 26(1):107-112 doi: 10.11858/gywlxb.2012.01.016
Li Yanglong, Wang Weiping, Luo Yongquan, et al. 1 064 nm laser damage on indium tin oxide films[J]. Chinese Journal of High Pressure Physics, 2012, 26(1): 107-112 doi: 10.11858/gywlxb.2012.01.016
|
[120] |
罗飞, 骆永全, 张大勇, 等. ITO薄膜电极激光损伤形貌的多重分形研究[J]. 应用激光, 2010, 30(2):86-90 doi: 10.3788/AL20103002.0086
Luo Fei, Luo Yongquan, Zhang Dayong, et al. Analysis of multi-fractal patterns of ITO films radiated by laser[J]. Applied Laser, 2010, 30(2): 86-90 doi: 10.3788/AL20103002.0086
|
[121] |
骆永全, 张大勇, 张翠娟, 等. 液晶光学器件激光损伤研究[J]. 激光技术, 2010, 34(3):392-394
Luo Yongquan, Zhang Dayong, Zhang Cuijuan, et al. Research of laser damage on liquid crystal optical elements[J]. Laser Technology, 2010, 34(3): 392-394
|
[122] |
骆永全, 王伟平, 罗飞. 连续激光辐照下二氧化钒薄膜热致相变实验研究[J]. 强激光与粒子束, 2006, 18(5):713-716
Luo Yongquan, Wang Weiping, Luo Fei. Experimental study on heating-induced phase transition of vanadium dioxide thin films irradiated by CW laser[J]. High Power Laser and Particle Beams, 2006, 18(5): 713-716
|
[123] |
Wang Haifeng, Huang Zhimeng, Zhang Dayong, et al. Thickness effect on laser-induced-damage threshold of indium-tin oxide films at 1064 nm[J]. Journal of Applied Physics, 2011, 110: 113111. doi: 10.1063/1.3665715
|
[124] |
Zhao Xiangjie, Liu Cangli, Duan Jiazhu, et al. Morphology effect on the light scattering and dynamic response of polymer network liquid crystal phase modulator[J]. Optics Express, 2014, 22(12): 14757-14768. doi: 10.1364/OE.22.014757
|
[125] |
Zhao Xiangjie, Liu Cangli, Zhang Dayong, et al. Direct investigation and accurate control of phase profile in liquid-crystal optical-phased array for beam steering[J]. Applied Optics, 2013, 52(29): 7109-7116. doi: 10.1364/AO.52.007109
|
[126] |
Zhao Xiangjie, Zhang Dayong, Luo Yongquan, et al. Numerical analysis and design of patterned electrode liquid crystal microlens array with dielectric slab[J]. Optics & Laser Technology, 2012, 44(6): 1834-1839.
|
[127] |
Zhao Xiangjie, Liu Cangli, Zhang Dayong, et al. Modeling and design of an optimized patterned electrode liquid crystal microlens array with dielectric slab[J]. Optik, 2013, 124(23): 6132-6139. doi: 10.1016/j.ijleo.2013.04.082
|
[128] |
陈一波, 沈浩, 段佳著, 等. 用于高功率密度光束控制的光寻址光阀研制[J]. 强激光与粒子束, 2023, 35:041012 doi: 10.11884/HPLPB202335.220203
Chen Yibo, Shen Hao, Duan Jiazhu, et al. Development of optically addressed liquid crystal light valve for high power density beam control[J]. High Power Laser and Particle Beams, 2023, 35: 041012 doi: 10.11884/HPLPB202335.220203
|
[129] |
Jalali B, Fathpour S. Silicon photonics[J]. Journal of Lightwave Technology, 2007, 24(12): 4600-4615.
|
[130] |
Trinh P D, Yegnanarayanan S, Coppinger F, et al. Silicon-on-insulator (SOI) phased-array wavelength multi/demultiplexer with extremely low-polarization sensitivity[J]. IEEE Photonics Technology Letters, 1997, 9(7): 940-942. doi: 10.1109/68.593358
|
[131] |
Phare C T, Shin M C, Miller S A, et al. Silicon optical phased array with high-efficiency beam formation over 180 degree field of view[J]. arXiv: , 1802, 04624: 2018.
|
[132] |
Yaacobi A, Sun Jie, Moresco M, et al. Integrated phased array for wide-angle beam steering[J]. Optics Letters, 2014, 39(15): 4575-4578. doi: 10.1364/OL.39.004575
|
[133] |
Writers S. SWEEPER demonstrates wide-angle optical phased array technology[EB/OL]. (2015-05-25). https://www.spacedaily.com/reports/SWEEPER_Demonstrates_Wide_Angle_Optical_Phased_Array_Technology_999.html.
|
[134] |
Chung S W, Abediasl H, Hashemi H. A monolithically integrated large-scale optical phased array in silicon-on-insulator CMOS[J]. IEEE Journal of Solid-State Circuits, 2018, 53(1): 275-296. doi: 10.1109/JSSC.2017.2757009
|
[135] |
Ma Weichao, Tan Su, Wang Kuankuan, et al. Practical two-dimensional beam steering system using an integrated tunable laser and an optical phased array[J]. Applied Optics, 2020, 59(32): 9985-9994. doi: 10.1364/AO.403314
|
[136] |
Yoo B W, Megens M, Sun Tianbo, et al. A 32 × 32 optical phased array using polysilicon sub-wavelength high-contrast-grating mirrors[J]. Optics Express, 2014, 22(16): 19029-19039. doi: 10.1364/OE.22.019029
|
[137] |
Poulton C V, Byrd M J, Moss B, et al. 8192-element optical phased array with 100° steering range and flip-chip CMOS[C]//CLEO: Applications and Technology 2020. 2020: JTh4A. 3.
|
[138] |
Zhang Xiaosheng, Kwon K, Henriksson J, et al. A large-scale microelectromechanical-systems-based silicon photonics LiDAR[J]. Nature, 2022, 603(7900): 253-258. doi: 10.1038/s41586-022-04415-8
|
[139] |
姜文汉. 自适应光学技术[J]. 自然杂志, 2006, 28(1):7-13 doi: 10.3969/j.issn.0253-9608.2006.01.002
Jiang Wenhan. Adaptive optical technology[J]. Chinese Journal of Nature, 2006, 28(1): 7-13 doi: 10.3969/j.issn.0253-9608.2006.01.002
|
[140] |
Israel D J. Laser communications relay demonstration: introduction for experimenters[R]. NASA, 2017.
|
[141] |
闻传花, 李玉权. 星地激光通信中的自适应光学研究[C]//2006北京地区高校研究生学术交流会——通信与信息技术会议论文集(上). 2006
Wen Chuanhua, Li Yuquan. Research on adaptive optics in satellite-to-ground laser communication[C]//2006 Academic Meeting for Postgraduates in Beijing Area—Communication and Information Technology Conference Proceedings. 2006
|
[142] |
Bridges W B, Brunner P T, Lazzara S P, et al. Coherent optical adaptive techniques[J]. Applied Optics, 1974, 13(2): 291-300. doi: 10.1364/AO.13.000291
|
[143] |
Vorontsov M A, Kolosov V. Target-in-the-loop beam control: basic considerations for analysis and wave-front sensing[J]. Journal of the Optical Society of America A, 2005, 22(1): 126-141. doi: 10.1364/JOSAA.22.000126
|
[144] |
Weyrauch T, Vorontsov M A, Carhart G W, et al. Experimental demonstration of coherent beam combining over a 7 km propagation path[J]. Optics Letters, 2011, 36(22): 4455-4457. doi: 10.1364/OL.36.004455
|
[145] |
Weyrauch T, Vorontsov M, Mangano J, et al. Deep turbulence effects mitigation with coherent combining of 21 laser beams over 7 km[J]. Optics Letters, 2016, 41(4): 840-843. doi: 10.1364/OL.41.000840
|
[146] |
Ma Yanxing, Zhou Pu, Tao Rumao, et al. Target-in-the-loop coherent beam combination of 100 W level fiber laser array based on an extended target with a scattering surface[J]. Optics Letters, 2013, 38(7): 1019-1021. doi: 10.1364/OL.38.001019
|
[147] |
支冬. 光纤激光目标在回路相干合成技术研究[D]. 长沙: 国防科学技术大学, 2018
Zhi Dong. Study on the target-in-the-loop coherent beam combination technology of fiber lasers[D]. Changsha: National University of Defense Technology, 2018
|
[148] |
李枫, 邹凡, 姜佳丽, 等. 57孔径光纤激光相控阵自适应光学系统实现经2 km大气传输的目标在回路相干合成[J]. 中国激光, 2022, 49:0616002
Li Feng, Zou Fan, Jiang Jiali, et al. Target-in-the-Loop in 2 km atmosphere based on 57-channel adaptive fiber laser optical phased array system[J]. Chinese Journal of Lasers, 2022, 49: 0616002
|
[149] |
Meinel A B. Cost-scaling laws applicable to very large optical telescopes[J]. Optical Engineering, 1979, 18: 186645.
|
[150] |
王海涛, 周必方. 光学综合孔径干涉成像技术[J]. 光学 精密工程, 2002, 10(5):434-442
Wang Haitao, Zhou Bifang. Optical synthesis aperture interference image technology[J]. Optics and Precision Engineering, 2002, 10(5): 434-442
|
[151] |
Giesen P, Ouwerkerk B, van Brug H, et al. Mechanical setup for optical aperture synthesis for wide-field imaging[C]//Proceedings of SPIE 5528, Space Systems Engineering and Optical Alignment Mechanisms. 2004: 361-371.
|
[152] |
明名, 王建立, 张景旭, 等. 大口径望远镜光学系统的误差分配与分析[J]. 光学 精密工程, 2009, 17(1):104-108
Ming Wang, Wang Jianli, Zhang Jingxu, et al. Error budget and analysis for optical system in large telescope[J]. Optics and Precision Engineering, 2009, 17(1): 104-108
|
[153] |
Carrara W G, Goodman R S, Majewski R M, Spotlight synthetic aperture radar: signal processing algorithms [J]. Journal of Atmospheric and Solar-Terrestrial Physics, 1997, 59(5): 597-599.
|
[154] |
Hege E K, Beckers J M, Strittmatter P A, et al. Multiple mirror telescope as a phased array telescope[J]. Applied Optics, 1985, 24(16): 2565-2576. doi: 10.1364/AO.24.002565
|
[155] |
Beckers J M. VLT interferometer: III. Factors affecting wide field-of-view operation[C]//Proceedings of SPIE 1236, Advanced Technology Optical Telescopes IV. 1990.
|
[156] |
Hill J M, Ashby D S, Brynnel J G, et al. The Large Binocular Telescope: binocular all the time[C]//Proceedings of SPIE 9145, Ground-based and Airborne Telescopes V. 2014: 914502.
|
[157] |
Ricklin J, Schumm B, Dierking M, et al. Synthetic aperture ladar for tactical imaging (SALTI) (Briefing Charts)[R]. DARPA, 2007.
|
[158] |
Krause B W, Buck J, Ryan C, et al. Synthetic aperture ladar flight demonstration[C]//CLEO: Applications and Technology 2011. 2011: PDPB7.
|
[159] |
Tian He, Liu Zheng, Zeng Zheng, et al. An airborne inverse synthetic aperture ladar imaging method based on sparse sampling[J]. Procedia Computer Science, 2020, 174: 694-699. doi: 10.1016/j.procs.2020.06.144
|
[160] |
Lu Tianan, Huang Fei, Li Hongping. Neural network based synthetic aperture ladar imaging through marine atmosphere[J]. Optik, 2020, 219: 164975. doi: 10.1016/j.ijleo.2020.164975
|