Li Min, Li Weilong, Kang Xincai, et al. Radial probe detector system in the cyclotron of Heavy Ion Medical Machine[J]. High Power Laser and Particle Beams, 2023, 35: 104004. doi: 10.11884/HPLPB202335.220311
Citation: Li Min, Li Weilong, Kang Xincai, et al. Radial probe detector system in the cyclotron of Heavy Ion Medical Machine[J]. High Power Laser and Particle Beams, 2023, 35: 104004. doi: 10.11884/HPLPB202335.220311

Radial probe detector system in the cyclotron of Heavy Ion Medical Machine

doi: 10.11884/HPLPB202335.220311
Funds:  National Natural Science Foundation of China (11905271; 12105336)
More Information
  • Author Bio:

    Li Min, limin@impcas.ac.cn

  • Corresponding author: Kang Xincai, kangxincai@impcas.ac.cn
  • Received Date: 2022-12-31
  • Accepted Date: 2023-09-02
  • Rev Recd Date: 2023-08-23
  • Available Online: 2023-09-14
  • Publish Date: 2023-10-08
  • The cyclotron is designed as the injector of the Heavy Ion Medical Machines (HIMMs) in Wuwei city and Lanzhou city, China. It provides 10 µA carbon ion beams to fulfill the accumulation requirement in the following synchrotron. Four picoammeters acquire the beam current signals gathered by the radial detectors; meanwhile, the beam time structure is measured with Field Programmable Gate Arrays and a real-time operating system. This paper introduces the mechanical design of the radial detectors and further provides the thermal structure analysis result of probe tips with and without water cooling. Moreover, the hardware and software architecture of the control system for this detector is described, including the motion control and data acquisition system, which can implement simultaneous acquisition of beam current data and position at more than 10 kS/s. At last, the laboratory test and acceptance scheme of both mechanical and control systems are listed, and the beam current and turn pattern measurement results at HIMMs are presented in this paper.

  • [1]
    Yang Jiancheng, Shi Jianchun, Chai Weiping, et al. Design of a compact structure cancer therapy synchrotron[J]. Nuclear Instruments and Methods in Physics Research Section A:Accelerators, Spectrometers, Detectors and Associated Equipment, 2014, 756: 19-22.
    [2]
    Chai Weiping, Yang Jiancheng, Xia Jiawen, et al. Stripping accumulation and optimization of HIMM synchrotron[J]. Nuclear Instruments and Methods in Physics Research Section A:Accelerators, Spectrometers, Detectors and Associated Equipment, 2014, 763: 272-277. doi: 10.1016/j.nima.2014.05.117
    [3]
    Shi Jian, Yang Jiancheng, Xia J W, et al. Heavy ion medical machine (HIMM) slow extraction commissioning[J]. Nuclear Instruments and Methods in Physics Research Section A:Accelerators, Spectrometers, Detectors and Associated Equipment, 2019, 918: 76-81.
    [4]
    Hao Huanfeng. Design and development of a 7MeV/U heavy ion cyclotron[D]. Lanzhou: University of Chinese Academy of Sciences, 2014
    [5]
    Kleeven W. Some examples of recent progress of beam-dynamics studies for cyclotrons[C]//Proceedings of the 21st International Conference on Cyclotrons and Their Applications. 2016: 244-250.
    [6]
    Baumgarten C. Beam based calibration measurements at the PSI cyclotron facility[C]//Proceedings of the 21st International Conference on Cyclotrons and Their Applications. 2016: 342-344.
    [7]
    Sakamoto N, Fukunishi N, Kase M, et al. Acceleration of polarized deuteron beams with RIBF cyclotrons[C]//Proceedings of the 21st International Conference on Cyclotrons and Their Applications. 2016: 145-148.
    [8]
    Guan Fengping, Xie Huaidong, Wen Lipeng, et al. The development of radial probe for CYCIAE-100[C]//Proceedings of the 20th International Conference on Cyclotrons and Their Applications. 2013: 165-167.
    [9]
    Rao S S. Formulation and solution procedure[M]//Rao S S. The Finite Element Method in Engineering. 6th ed. Amsterdam: Elsevier, 2017: 505-522.
    [10]
    [11]
    NI. NI LabVIEW for CompactRIO developer’s guide[EB/OL]. (2023-08-06). https://www.ni.com/pdf/products/us/fullcriodevguide.pdf.
    [12]
    NI. cRIO-9075 and cRIO-9076 user manual and specifications[EB/OL]. (2023-06-27). https://www.ni.com/docs/zh-CN/bundle/crio-9075-9076-seri/resource/375650d.pdf.
    [13]
    NI. cRIO-9065 specifications[EB/OL]. (2023-08-14). https://www.ni.com/docs/zh-CN/bundle/crio-9065-specs/page/specs.html.
    [14]
    NI. NI-9215 specifications[EB/OL]. (2023-08-14). https://www.ni.com/docs/zh-CN/bundle/ni-9215-specs/page/specs.html.
    [15]
    NI. NI-9411 specifications[EB/OL]. (2023-07-20). https://www.ni.com/docs/zh-CN/bundle/ni-9411-specs/page/specs.html.
    [16]
    [17]
    Li Min. The design and implementation of front-end control system of beam diagnostics for HIMM[D]. Lanzhou: Institute of Modern Physics, University of Chinese Academy of Sciences, 2015
    [18]
    Huang Rui. Research on key technology of PLC programming environment development supporting client-edge-cloud collaboration[D]. Wuhan: Huazhong University of Science and Technology, 2022
    [19]
    Wu Jianxin. Design and implementation of satellite telemetry data processing system based on XML technology[D]. Xi’an: Xidian University, 2019
    [20]
    Huang Zhixin. Design and implementation of an information collection subsystem for operator cloud[D]. Beijing: Beijing University of Posts and Telecommunications, 2020
  • Relative Articles

    [1]Wang Zhanliang, Wang Huanyu, He Ziyuan, Lu Zhigang, Gong Huarong, Wang Shaomeng, Gong Yubin. S band radial beam coaxial grating backward wave oscillator[J]. High Power Laser and Particle Beams, 2023, 35(11): 113001. doi: 10.11884/HPLPB202335.230198
    [2]Zhang Gang, He Xiaozhong, Du Yang, Shi Jinshui, Yang Guojun. Beam dynamics calculation of cyclotron based on Geant4[J]. High Power Laser and Particle Beams, 2022, 34(7): 074002. doi: 10.11884/HPLPB202234.210458
    [3]Li Shilong, Cong Yan, Xu Shaofan, Zhang Ruifeng, Han Xiaodong, Yi Xiaoping. Heavy ion medical machine synchrotron RF signal source design based on Field-Programmable Gate Array[J]. High Power Laser and Particle Beams, 2018, 30(10): 105102. doi: 10.11884/HPLPB201830.180116
    [4]Chen Wenjun, Ma Lizhen, Cai Guozhu, Cui Zhiguo, Zhang Xiaoqi, Yuan Jiandong, Wang Shaoming, Hua Yongping, Chai Yiliang. Survey and alignment for cyclotron injection system of the Wuwei Heavy Ion Medical Machine[J]. High Power Laser and Particle Beams, 2016, 28(10): 106003. doi: 10.11884/HPLPB201628.160062
    [5]Zhang Jianchuan, Zhou Detai, Li Yunjie, Yin Jia, Li Lili, Su Jianjun, Wang Yanyu. Design of the interlock function for HIMM cyclotron control system[J]. High Power Laser and Particle Beams, 2016, 28(12): 125107. doi: 10.11884/HPLPB201628.160361
    [6]Tian Ruixia, Wang Xianwu, Jin Peng, Xu Zhe, Feng Yong. Design and analysis of positron emission tomography cyclotron RF cavity[J]. High Power Laser and Particle Beams, 2014, 26(10): 105104. doi: 10.11884/HPLPB201426.105104
    [7]Shi Leitai, Yuan Youjin, Zhang Ying, Li Xiaoni, Wang Bing, Hao Huanfeng. Simulation study of HIRFL-SFC using flattop acceleration system[J]. High Power Laser and Particle Beams, 2014, 26(08): 085101. doi: 10.11884/HPLPB201426.085101
    [8]Hao Huanfeng, Zhao Hongwei, Yao Qinggao, Wang Bing, Song Mingtao, Zhang Jinquan. Design of the extraction system of heavy ion medical cyclotron[J]. High Power Laser and Particle Beams, 2013, 25(11): 2991-2994. doi: 10.3788/HPLPB20132511.2991
    [9]Jia Xianlu, Zhang Tianjue, Wang Feng, Lü Yinlong, Wei Sumin, Bi Yuanjie, Song Guofang, Xie Huaidong. Beam dump system design for 100 MeV high intensity proton cyclotron[J]. High Power Laser and Particle Beams, 2013, 25(04): 977-980.
    [10]Yao Hongjuan, Zhang Tianjue, Zheng Xia, Lü Yinlong. Axial injection line design and central region beam matching study for CYCIAE-100[J]. High Power Laser and Particle Beams, 2013, 25(02): 471-476. doi: 10.3788/HPLPB20132502.0471
    [11]Pang Jian, He Xiaozhong, Jing Xiaobing, Ma Chaofan. Protection characteristic of shielding materials towards radiation of an 11 MeV positron emission tomography cyclotron[J]. High Power Laser and Particle Beams, 2013, 25(11): 2981-2985. doi: 10.3788/HPLPB20132511.2981
    [12]Wang Tao, Pang Jian, Zhao Liangchao, He Xiaozhong, Jing Xiaobing, Zhang Kaizhi, Zhang Linwen. Experimental investigation on induced radioactivity in beam probe for compact cyclotron[J]. High Power Laser and Particle Beams, 2013, 25(07): 1779-1782. doi: 10.3788/HPLPB20132507.1779
    [13]ma guo-wu, chen hong-bin, hu lin-lin, meng fan-bao. Simulation of cyclotron device with superradiance characteristic[J]. High Power Laser and Particle Beams, 2007, 19(06): 0- .
    [14]qin bin, fan ming-wu, chen de-zhi. Magnet design and shimming of cyclotrons based on virtual prototyping[J]. High Power Laser and Particle Beams, 2007, 19(04): 0- .
  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-04020406080
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 20.1 %FULLTEXT: 20.1 %META: 74.1 %META: 74.1 %PDF: 5.8 %PDF: 5.8 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 5.7 %其他: 5.7 %Boydton: 0.3 %Boydton: 0.3 %Falls Church: 1.7 %Falls Church: 1.7 %Rochester: 0.7 %Rochester: 0.7 %Seattle: 0.3 %Seattle: 0.3 %上海: 1.2 %上海: 1.2 %丹东: 0.1 %丹东: 0.1 %保定: 0.3 %保定: 0.3 %兰州: 2.2 %兰州: 2.2 %北京: 2.3 %北京: 2.3 %南京: 0.1 %南京: 0.1 %南宁: 0.3 %南宁: 0.3 %南昌: 0.2 %南昌: 0.2 %台州: 1.3 %台州: 1.3 %合肥: 1.0 %合肥: 1.0 %咸阳: 0.1 %咸阳: 0.1 %哈尔滨: 0.3 %哈尔滨: 0.3 %哥伦布: 0.3 %哥伦布: 0.3 %嘉兴: 0.1 %嘉兴: 0.1 %大阪: 0.5 %大阪: 0.5 %大阪府: 0.1 %大阪府: 0.1 %天津: 0.1 %天津: 0.1 %宣城: 0.1 %宣城: 0.1 %尼斯: 0.3 %尼斯: 0.3 %常德: 0.5 %常德: 0.5 %广州: 0.8 %广州: 0.8 %庆阳: 0.1 %庆阳: 0.1 %张家口: 0.2 %张家口: 0.2 %德州: 0.1 %德州: 0.1 %惠州: 0.2 %惠州: 0.2 %成都: 1.2 %成都: 1.2 %晋城: 0.1 %晋城: 0.1 %朝阳: 0.3 %朝阳: 0.3 %杭州: 1.0 %杭州: 1.0 %武汉: 0.2 %武汉: 0.2 %江门: 0.3 %江门: 0.3 %沈阳: 0.1 %沈阳: 0.1 %泉州: 0.2 %泉州: 0.2 %法兰克福: 0.3 %法兰克福: 0.3 %泸州: 0.1 %泸州: 0.1 %淄博: 0.3 %淄博: 0.3 %深圳: 0.1 %深圳: 0.1 %湖州: 0.7 %湖州: 0.7 %滨海阿尔卑斯省: 0.3 %滨海阿尔卑斯省: 0.3 %漯河: 0.2 %漯河: 0.2 %潜江: 0.1 %潜江: 0.1 %烟台: 0.1 %烟台: 0.1 %石家庄: 0.1 %石家庄: 0.1 %秦皇岛: 0.1 %秦皇岛: 0.1 %纽约: 0.1 %纽约: 0.1 %绵阳: 1.3 %绵阳: 1.3 %芒廷维尤: 53.0 %芒廷维尤: 53.0 %芝加哥: 0.5 %芝加哥: 0.5 %苏州: 0.9 %苏州: 0.9 %衢州: 0.9 %衢州: 0.9 %西宁: 6.3 %西宁: 6.3 %西安: 0.2 %西安: 0.2 %诺沃克: 4.2 %诺沃克: 4.2 %贵阳: 0.2 %贵阳: 0.2 %费利蒙: 0.1 %费利蒙: 0.1 %运城: 1.3 %运城: 1.3 %遵义: 0.3 %遵义: 0.3 %邯郸: 0.1 %邯郸: 0.1 %郑州: 0.2 %郑州: 0.2 %重庆: 0.7 %重庆: 0.7 %长春: 0.1 %长春: 0.1 %长沙: 0.2 %长沙: 0.2 %阿布扎比: 0.3 %阿布扎比: 0.3 %青岛: 0.5 %青岛: 0.5 %其他BoydtonFalls ChurchRochesterSeattle上海丹东保定兰州北京南京南宁南昌台州合肥咸阳哈尔滨哥伦布嘉兴大阪大阪府天津宣城尼斯常德广州庆阳张家口德州惠州成都晋城朝阳杭州武汉江门沈阳泉州法兰克福泸州淄博深圳湖州滨海阿尔卑斯省漯河潜江烟台石家庄秦皇岛纽约绵阳芒廷维尤芝加哥苏州衢州西宁西安诺沃克贵阳费利蒙运城遵义邯郸郑州重庆长春长沙阿布扎比青岛

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)  / Tables(1)

    Article views (635) PDF downloads(59) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return