Volume 35 Issue 7
Jun.  2023
Turn off MathJax
Article Contents
Wang Shaowei, Wang Yichuan, Gong Jianye, et al. Analysis on radiological consequence in fuel handling accident for advanced small reactor based on ARCON methodology[J]. High Power Laser and Particle Beams, 2023, 35: 076002. doi: 10.11884/HPLPB202335.220315
Citation: Wang Shaowei, Wang Yichuan, Gong Jianye, et al. Analysis on radiological consequence in fuel handling accident for advanced small reactor based on ARCON methodology[J]. High Power Laser and Particle Beams, 2023, 35: 076002. doi: 10.11884/HPLPB202335.220315

Analysis on radiological consequence in fuel handling accident for advanced small reactor based on ARCON methodology

doi: 10.11884/HPLPB202335.220315
  • Received Date: 2022-09-29
  • Accepted Date: 2023-03-06
  • Rev Recd Date: 2023-03-06
  • Available Online: 2023-04-01
  • Publish Date: 2023-06-15
  • The accident source term and radiological consequence evaluation of small heating reactor at site boundary is the key content of nuclear and radiation safety review. According to the design characteristics of the advanced small reactor, the accident source term calculation model is established for fuel handling accident to study the release of radionuclides after the accident. Based on the experience of accident radiological consequence analysis of small reactor abroad and ARCON methodology in RG4.28, the atmospheric dispersion factor and individual dose at site boundary in fuel handling accident are analyzed. The results show that two hours after the accident, the radionuclides in the fuel cladding gap release into the environment, and the release amount of radionuclide in the environment reaches the radioactivity level of 1014 Bq. The release amount of inert gas is higher than that of iodine, and that of 133Xe is the largest. The individual effective dose and thyroid dose at the site boundary after 30 days of the fuel handling accident are within the dose limits and the maximum dose occurs at the east-north-east direction. The results of the accident source term and radiological consequence could provide technical support for offsite dose assessment and review of the advanced small reactor.
  • loading
  • [1]
    周涛, 张海龙, 刘文斌. 小型反应堆在综合能源系统中作用的研究[J]. 华电技术, 2021, 43(4):39-46

    Zhou Tao, Zhang Hailong, Liu Wenbin. Research on the role of small reactors in integrated energy systems[J]. Huadian Technology, 2021, 43(4): 39-46
    [2]
    常德健, 漆小玲, 王静, 等. 模块化小型堆用于集中供热的减排潜力分析[J]. 新能源进展, 2021, 9(1):76-84

    Chang Dejian, Qi Xiaoling, Wang Jing, et al. Analysis of emission reduction potential of small modular reactor for central heating[J]. Advances in New and Renewable Energy, 2021, 9(1): 76-84
    [3]
    陈文军, 姜胜耀. 中国发展小型堆核能系统的可行性研究[J]. 核动力工程, 2013, 34(2):153-156 doi: 10.3969/j.issn.0258-0926.2013.02.036

    Chen Wenjun, Jiang Shengyao. Feasibility study on development of small nuclear power reactors in China[J]. Nuclear Power Engineering, 2013, 34(2): 153-156 doi: 10.3969/j.issn.0258-0926.2013.02.036
    [4]
    周蓝宇, 齐实, 周涛. 小型模块化反应堆发展趋势及前景[J]. 科技创新与应用, 2017(21):195-196

    Zhou Lanyu, Qi Shi, Zhou Tao. Development trend and prospect of small modular reactor[J]. Technology Innovation and Application, 2017(21): 195-196
    [5]
    曲静原, 张琳, 黄挺. 小型堆研发及核应急准备进展[J]. 科技导报, 2013, 31(35):71-75

    Qu Jingyuan, Zhang Lin, Huang Ting. Emergency preparedness for small modular reactors[J]. Science & Technology Review, 2013, 31(35): 71-75
    [6]
    丁锡嘉, 周涛, 张家磊, 等. 小型模块化核反应堆技术安全性研究[J]. 科技创新与应用, 2019(34):19-21

    Ding Xijia, Zhou Tao, Zhang Jialei, et al. Study on technical safety of small modular nuclear reactor[J]. Technology Innovation and Application, 2019(34): 19-21
    [7]
    国家发展和改革委员会. 中华人民共和国国民经济和社会发展第十四个五年规划和2035年远景目标纲要[R]. 北京: 国家发展和改革委员会. 2021: 29-31

    National Development and Reform Commission. The 14th five-year plan for national economic and social development of the People's Republic of China and outline of the vision for 2035[R]. Beijing: National Development and Reform Commission, 2021: 29-31
    [8]
    GB 6249-2011核动力厂环境辐射防护规定[S]

    GB 6249-2011 Regulations for environmental radiation protection of nuclear power plant[S]
    [9]
    NRC. PHASE 6-NuScale DC final safety evaluation report (complete with appendices)[R/OL]. (2020-08-28)[2021-01-25]. https://www.nrc.gov/docs/ML2002/ML20023A318.html.
    [10]
    NRC. Use of ARCON methodology for calculation of accident-related offsite atmospheric dispersion factors, regulatory guide 4.28[R]. Washington: NRC, 2021.
    [11]
    Ramsdell J V Jr, Simonen C A. Atmospheric relative concentrations in building wakes[R]. NUREG/CR-6331, 1997.
    [12]
    NRC. Atmospheric relative concentrations for control room radiological habitability assessments at nuclear power plants, regulatory guide 1.194[R]. Washington: NRC, 2003.
    [13]
    NRC. Alternative radiological source terms for evaluating design basis accidents at nuclear power reactors, regulatory guide 1.183[R]. Washington: NRC, 2000.
    [14]
    GB 18871-2002电离辐射防护与辐射源安全基本标准[S]

    GB 18871-2002 Basic standards for protection against ionizing radiation and for the safety of radiation sources[S]
    [15]
    ICRP. Age-dependent doses to members of the public from intake of radionuclides: part 4 Inhalation dose coefficients[R]. Netherlands: ICRP, 1996.
    [16]
    国家核安全局. 小型压水堆核动力厂安全审评原则(试行)[R]. 北京: 国家核安全局, 2016

    National Nuclear Safety Administration. Principles for safety review of small pressurized water reactor nuclear power plants (trial)[R]. Beijing: National Nuclear Safety Administration, 2016
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)

    Article views (428) PDF downloads(55) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return