Citation: | Yan Yuefang, Tao Rumao, Liu Yu, et al. Research progress and prospect of high power all-fiber coherent beam combination based on fiber combining devices[J]. High Power Laser and Particle Beams, 2023, 35: 041005. doi: 10.11884/HPLPB202335.220316 |
[1] |
Zervas M N, Codemard C A. High power fiber lasers: a review[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2014, 20: 0904123.
|
[2] |
Naeem M. Advances in drilling with fiber lasers[C]//Proceedings of SPIE 9657, Industrial Laser Applications Symposium (ILAS 2015). 2015: 965705.
|
[3] |
Clery D. Laser fusion, with a difference[J]. Science, 2015, 347(6218): 111-112. doi: 10.1126/science.347.6218.111
|
[4] |
Shi Wei, Schulzgen A, Amezcua R, et al. Fiber lasers and their applications: introduction[J]. Journal of the Optical Society of America B, 2017, 34(3): FLA1. doi: 10.1364/JOSAB.34.00FLA1
|
[5] |
杨昌盛, 徐善辉, 周军, 等. 大功率光纤激光材料与器件关键技术研究进展[J]. 中国科学:技术科学, 2017, 47(10):1038-1048 doi: 10.1360/N092016-00437
Yang Changsheng, Xu Shanhui, Zhou Jun, et al. Research advance on the key technology of high-power fiber laser materials and components[J]. CIENTIA SINICA Technologica, 2017, 47(10): 1038-1048 doi: 10.1360/N092016-00437
|
[6] |
周朴, 黄良金, 冷进勇, 等. 高功率双包层光纤激光器: 30周年的发展历程[J]. 中国科学:技术科学, 2020, 50(2):123-135 doi: 10.1360/N092018-00409
Zhou Pu, Huang Liangjin, Leng Jinyong, et al. High-power double-cladding fiber lasers: a 30-year overview[J]. SCIENTIA SINICA Technologica, 2020, 50(2): 123-135 doi: 10.1360/N092018-00409
|
[7] |
党文佳, 李哲, 李玉婷, 等. 高功率连续波掺镱光纤激光器研究进展[J]. 中国光学, 2020, 13(4):676-694 doi: 10.37188/CO.2019-0208
Dang Wenjia, Li Zhe, Li Yuting, et al. Recent advances in high-power continuous-wave ytterbium-doped fiber lasers[J]. Chinese Optics, 2020, 13(4): 676-694 doi: 10.37188/CO.2019-0208
|
[8] |
肖起榕, 田佳丁, 李丹, 等. 级联泵浦高功率掺镱光纤激光器: 进展与展望[J]. 中国激光, 2021, 48:1501004 doi: 10.3788/CJL202148.1501004
Xiao Qirong, Tian Jiading, Li Dan, et al. Tandem-pumped high-power ytterbium-doped fiber lasers: progress and opportunities[J]. Chinese Journal of Lasers, 2021, 48: 1501004 doi: 10.3788/CJL202148.1501004
|
[9] |
Shiner B. The impact of fiber laser technology on the world wide material processing market[C]//Proceedings of the CLEO: Science and Innovations 2013. 2013: AF2J. 1.
|
[10] |
Lin Honghuan, Xu Lixin, Li Chengyu, et al. 10.6 kW high-brightness cascade-end-pumped monolithic fiber lasers directly pumped by laser diodes in step-index large mode area double cladding fiber[J]. Results in Physics, 2019, 14: 102479. doi: 10.1016/j.rinp.2019.102479
|
[11] |
Liu Zejin, Jin Xiaoxi, Su Rongtao, et al. Development status of high power fiber lasers and their coherent beam combination[J]. Science China Information Sciences, 2019, 62: 41301. doi: 10.1007/s11432-018-9742-0
|
[12] |
陈晓龙, 楼风光, 何宇, 等. 高效率全国产化10 kW光纤激光器[J]. 光学学报, 2019, 39:0336001 doi: 10.3788/AOS201939.0336001
Chen Xiaolong, Lou Fengguang, He Yu, et al. Home-made 10kW fiber laser with high efficiency[J]. Acta Optica Sinica, 2019, 39: 0336001 doi: 10.3788/AOS201939.0336001
|
[13] |
林傲祥, 肖起榕, 倪力, 等. 国产YDF有源光纤实现单纤20 kW激光输出[J]. 中国激光, 2021, 48:0916003
Lin Aoxiang, Xiao Qirong, Ni Li, et al. Home-made YDF active fiber realizes single fiber 20 kW laser output[J]. Chinese Journal of Lasers, 2021, 48: 0916003
|
[14] |
肖虎, 潘志勇, 陈子伦, 等. 基于自研光纤和器件实现20kW高光束质量激光稳定输出[J]. 中国激光, 2022, 49:1616002
Xiao Hu, Pan Zhiyong, Chen Zilun, et al. Based on self-developed optical fibers and devices to achieve stable output of 20kW high beam quality laser[J]. Chinese Journal of Lasers, 2022, 49: 1616002
|
[15] |
王鹏, 奚小明, 张汉伟, 等. LD泵浦光纤激光放大器实现13 kW高光束质量输出[J]. 强激光与粒子束, 2022, 35:121001
Wang Peng, Xi Xiaoming, Zhang Hanwei, et al. Laser-diode-pumped fiber laser amplifier for 13 kW high-beam-quality output[J]. High Power Laser and Particle Beams, 2022, 35: 121001
|
[16] |
Dawson J W, Messerly M J, Beach R J, et al. Analysis of the scalability of diffraction-limited fiber lasers and amplifiers to high average power[J]. Optics Express, 2008, 16(17): 13240-13266. doi: 10.1364/OE.16.013240
|
[17] |
Zhu Jiajian, Zhou Pu, Ma Yanxing, et al. Power scaling analysis of tandem-pumped Yb-doped fiber lasers and amplifiers[J]. Optics Express, 2011, 19(19): 18645-18654. doi: 10.1364/OE.19.018645
|
[18] |
Tao Rumao, Wang Xiaolin, Zhou Pu. Comprehensive theoretical study of mode instability in high-power fiber lasers by employing a universal model and its implications[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2018, 24: 0903319.
|
[19] |
Zervas M N. Transverse mode instability, thermal lensing and power scaling in Yb3+-doped high-power fiber amplifiers[J]. Optics Express, 2019, 27(13): 19019-19041. doi: 10.1364/OE.27.019019
|
[20] |
王建军, 刘玙, 李敏, 等. 光纤激光模式不稳定研究十年回顾与展望[J]. 强激光与粒子束, 2020, 32:121003
Wang Jianjun, Liu Yu, Li Min, et al. Ten-year review and prospect on mode instability research of fiber lasers[J]. High Power Laser and Particle Beams, 2020, 32: 121003
|
[21] |
林傲祥, 彭昆, 俞娟, 等. 高功率连续光纤激光系统热效应及其抑制措施[J]. 强激光与粒子束, 2022, 34:011005
Lin Aoxiang, Peng Kun, Yu Juan, et al. Thermal effect and its suppression in high-power continuous-wave fiber laser system[J]. High Power Laser and Particle Beams, 2022, 34: 011005
|
[22] |
张春, 谢亮华, 楚秋慧, 等. 高功率光纤激光受激拉曼散射效应研究新进展[J]. 强激光与粒子束, 2022, 34:021002
Zhang Chun, Xie Lianghua, Chu Qiuhui, et al. Research progress of stimulated Raman scattering effect in high power fiber lasers[J]. High Power Laser and Particle Beams, 2022, 34: 021002
|
[23] |
Jauregui C, Limpert J, Tünnermann A. High-power fibre lasers[J]. Nature Photonics, 2013, 7(11): 861-867. doi: 10.1038/nphoton.2013.273
|
[24] |
周朴, 冷进勇, 肖虎, 等. 高平均功率光纤激光的研究进展与发展趋势[J]. 中国激光, 2021, 48:2000001 doi: 10.3788/CJL202148.2000001
Zhou Pu, Leng Jinyong, Xiao Hu, et al. High average power fiber lasers: research progress and future prospect[J]. Chinese Journal of Lasers, 2021, 48: 2000001 doi: 10.3788/CJL202148.2000001
|
[25] |
楼祺洪, 何兵, 周军. 光纤激光器及其相干组束[J]. 红外与激光工程, 2007, 36(2):155-159 doi: 10.3969/j.issn.1007-2276.2007.02.003
Lou Qihong, He Bing, Zhou Jun. Fiber lasers and it's coherent beam combination[J]. Infrared and Laser Engineering, 2007, 36(2): 155-159 doi: 10.3969/j.issn.1007-2276.2007.02.003
|
[26] |
Flores A, Dajani I, Holten R, et al. Multi-kilowatt diffractive coherent combining of pseudorandom-modulated fiber amplifiers[J]. Optical Engineering, 2016, 55: 096101. doi: 10.1117/1.OE.55.9.096101
|
[27] |
Liu Zejin, Ma Pengfei, Su Rongtao, et al. High-power coherent beam polarization combination of fiber lasers: progress and prospect [Invited][J]. Journal of the Optical Society of America B, 2017, 34(3): A7-A14. doi: 10.1364/JOSAB.34.0000A7
|
[28] |
王小林, 周朴, 粟荣涛, 等. 高功率光纤激光相干合成的现状、趋势与挑战[J]. 中国激光, 2017, 44:0201001 doi: 10.3788/CJL201744.0201001
Wang Xiaolin, Zhou Pu, Su Rongtao, et al. Current situation, tendency and challenge of coherent combining of high power fiber lasers[J]. Chinese Journal of Lasers, 2017, 44: 0201001 doi: 10.3788/CJL201744.0201001
|
[29] |
Klenke A, Müller M, Stark H, et al. Coherent beam combination of ultrafast fiber lasers[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2018, 24: 0902709.
|
[30] |
Ma Pengfei, Chang Hongxiang, Ma Yanxing, et al. 7.1 kW coherent beam combining system based on a seven-channel fiber amplifier array[J]. Optics & Laser Technology, 2021, 140: 107016.
|
[31] |
吴坚, 马阎星, 马鹏飞, 等. 光纤激光相干合成20 kW级高功率输出[J]. 红外与激光工程, 2021, 50:20210621 doi: 10.3788/IRLA20210621
Wu Jian, Ma Yanxing, Ma Pengfei, et al. Fiber laser coherent beam combination of 20 kW class high power output[J]. Infrared and Laser Engineering, 2021, 50: 20210621 doi: 10.3788/IRLA20210621
|
[32] |
周朴, 粟荣涛, 马阎星, 等. 激光相干合成的研究进展: 2011—2020[J]. 中国激光, 2021, 48:0401003 doi: 10.3788/CJL202148.0401003
Zhou Pu, Su Rongtao, Ma Yanxing, et al. Review of coherent laser beam combining research progress in the past decade[J]. Chinese Journal of Lasers, 2021, 48: 0401003 doi: 10.3788/CJL202148.0401003
|
[33] |
Ma Yanxing, Wang Xiaolin, Leng Jinyong, et al. Coherent beam combination of 1.08 kW fiber amplifier array using single frequency dithering technique[J]. Optics Letters, 2011, 36(6): 951-953. doi: 10.1364/OL.36.000951
|
[34] |
Müller M, Aleshire C, Klenke A, et al. 10.4 kW coherently combined ultrafast fiber laser[J]. Optics Letters, 2020, 45(11): 3083-3086. doi: 10.1364/OL.392843
|
[35] |
Goodno G D, Weiss S B. Automated co-alignment of coherent fiber laser arrays via active phase-locking[J]. Optics Express, 2012, 20(14): 14945-14953. doi: 10.1364/OE.20.014945
|
[36] |
Zhi Dong, Ma Pengfei, Ma Yanxing, et al. Novel adaptive fiber-optics collimator for coherent beam combination[J]. Optics Express, 2014, 22(25): 31520-31528. doi: 10.1364/OE.22.031520
|
[37] |
Mueller M, Klenke A, Steinkopff A, et al. 3.5 kW coherently combined ultrafast fiber laser[C]//Proceedings of SPIE 10897, Fiber Lasers XVI: Technology and Systems. 2019: 1089719.
|
[38] |
Ma Yanxing, Luo Gen, He Shuyue, et al. Cantilevered adaptive fiber-optics collimator based on piezoelectric bimorph actuators[J]. Applied Optics, 2022, 61(11): 3195-3200. doi: 10.1364/AO.454250
|
[39] |
陈子伦, 周旋风, 王泽锋, 等. 高功率光纤激光器功率合束器的研究进展(特邀)[J]. 红外与激光工程, 2018, 47:0103005 doi: 10.3788/IRLA201847.0103005
Chen Zilun, Zhou Xuanfeng, Wang Zefeng, et al. Review of all-fiber signal combiner for high power fiber lasers [Invited][J]. Infrared and Laser Engineering, 2018, 47: 0103005 doi: 10.3788/IRLA201847.0103005
|
[40] |
Rockwell D A, Shkunov V V, Marciante J R. Semi-guiding high-aspect-ratio core (SHARC) fiber providing single-mode operation and an ultra-large core area in a compact coilable package[J]. Optics Express, 2011, 19(15): 14746-14762. doi: 10.1364/OE.19.014746
|
[41] |
Sun Jiapo, Liu Lie, Han Lianghua, et al. 100 kW ultra high power fiber laser[J]. Optics Continuum, 2022, 1(9): 1932-1938. doi: 10.1364/OPTCON.465836
|
[42] |
Shcherbakov E A, Fomin V V, Abramov A A, et al. Industrial grade 100 kW power CW fiber laser[C]//Proceedings of the Advanced Solid State Lasers. 2013: ATh4A. 2.
|
[43] |
Kozlov V A, Hernández-Cordero J, Morse T F. All-fiber coherent beam combining of fiber lasers[J]. Optics Letters, 1999, 24(24): 1814-1816. doi: 10.1364/OL.24.001814
|
[44] |
Wang Baishi, Mies E, Minden M, et al. All-fiber 50 W coherently combined passive laser array[J]. Optics Letters, 2009, 34(7): 863-865. doi: 10.1364/OL.34.000863
|
[45] |
Fotiadi A A, Antipov O L, Mégret P. Resonantly induced refractive index changes in Yb-doped fibers: the origin, properties and application for all-fiber coherent beam combining[M]//Pal B. Frontiers in Guided Wave Optics and Optoelectronics. Vukovar: InTech, 2010: 209-234.
|
[46] |
Wang Baishi, Sanchez A. All-fiber passive coherent beam combining of fiber lasers and challenges[C]//Proceedings of the Fiber Laser Applications 2012. 2012: FTh3A. 2.
|
[47] |
杨保来, 王小林, 周朴, 等. 全光纤结构的光纤环被动锁相相干合成研究[J]. 中国激光, 2014, 41:1005001 doi: 10.3788/CJL201441.1005001
Yang Baolai, Wang Xiaolin, Zhou Pu, et al. Research of all-fiber laser coherent combining system based on fiber-loop[J]. Chinese Journal of Lasers, 2014, 41: 1005001 doi: 10.3788/CJL201441.1005001
|
[48] |
Kambayashi Y, Yoshida M, Sasaki T, et al. All-fiber phase-control-free coherent-beam combining toward femtosecond-pulse amplification[J]. Optics Communications, 2017, 382: 556-558. doi: 10.1016/j.optcom.2016.08.029
|
[49] |
Takahashi Y, Yamazaki T, Yoshida M. Development of all-fiber coherent beam combining optical system toward higher output of the fiber laser[J]. Journal of Laser Applications, 2020, 32: 022077. doi: 10.2351/7.0000058
|
[50] |
Lhermite J, Desfarges-Berthelemot A, Kermene V, et al. Passive phase locking of an array of four fiber amplifiers by an all-optical feedback loop[J]. Optics Letters, 2007, 32(13): 1842-1844. doi: 10.1364/OL.32.001842
|
[51] |
Shakir S A, Culver B, Nelson B, et al. Power scaling of passively phased fiber amplifier arrays[C]//Proceedings of SPIE 7070, Optical Technologies for Arming, Safing, Fuzing, and Firing IV. 2008: 70700N.
|
[52] |
Li Zhen, Zhou Jun, He Bing, et al. Impact of phase perturbation on passive phase-locking coherent beam combination[J]. IEEE Photonics Technology Letters, 2012, 24(8): 655-657. doi: 10.1109/LPT.2012.2185785
|
[53] |
Xue Yuhao, He Bing, Zhou Jun, et al. Array size scaling of passive coherent beam combination in fiber laser array[J]. Chinese Optics Letters, 2012, 10: 011401. doi: 10.3788/COL201210.011401
|
[54] |
Sabourdy D, Kermène V, Desfarges-Berthelemot A, et al. Power scaling of fibre lasers with all-fibre interferometric cavity[J]. Electronics Letters, 2002, 38(14): 692-693. doi: 10.1049/el:20020505
|
[55] |
Shirakawa A, Saitou T, Sekiguchi T, et al. Coherent addition of fiber lasers by use of a fiber coupler[J]. Optics Express, 2002, 10(21): 1167-1172. doi: 10.1364/OE.10.001167
|
[56] |
Sabourdy D, Kermène V, Desfarges-Berthelemot A, et al. Efficient coherent combining of widely tunable fiber lasers[J]. Optics Express, 2003, 11(2): 87-97. doi: 10.1364/OE.11.000087
|
[57] |
Wang Baishi, Sanchez A D. All-fiber passive coherent combining of high power lasers[J]. Optical Engineering, 2011, 50: 111606. doi: 10.1117/1.3613945
|
[58] |
Wu T W, Chang W Z, Galvanauskas A, et al. Model for passive coherent beam combining in fiber laser arrays[J]. Optics Express, 2009, 17(22): 19509-19518. doi: 10.1364/OE.17.019509
|
[59] |
Kouznetsov D, Bisson J F, Shirakawa A, et al. Limits of coherent addition of lasers: simple estimate[C]//2005 Pacific Rim Conference on Lasers and Electro-Optics. 2005: 1061-1063.
|
[60] |
Glova A F, Lysikov A Y, Musena E I. Phase locking of 2D laser arrays by the spatial filter method[J]. Quantum Electronics, 2002, 32(3): 277-278. doi: 10.1070/QE2002v032n03ABEH002179
|
[61] |
Glova A F. Phase locking of optically coupled lasers[J]. Quantum Electronics, 2003, 33(4): 283-306. doi: 10.1070/QE2003v033n04ABEH002415
|
[62] |
Goodno G D, Mcnaught S J, Rothenberg J E, et al. Active phase and polarization locking of a 1.4 kW fiber amplifier[J]. Optics Letters, 2010, 35(10): 1542-1544. doi: 10.1364/OL.35.001542
|
[63] |
Goodno G D, Mcnaught S J, Weber M E, et al. Multichannel polarization stabilization for coherently combined fiber laser arrays[J]. Optics Letters, 2012, 37(20): 4272-4274. doi: 10.1364/OL.37.004272
|
[64] |
来文昌, 马鹏飞, 肖虎, 等. 高功率窄线宽光纤激光技术[J]. 强激光与粒子束, 2020, 32:121001
Lai Wenchang, Ma Pengfei, Xiao Hu, et al. High-power narrow-linewidth fiber laser technology[J]. High Power Laser and Particle Beams, 2020, 32: 121001
|
[65] |
楚秋慧, 郭超, 颜冬林, 等. 高功率窄线宽光纤激光器的研究进展[J]. 强激光与粒子束, 2020, 32:121004
Chu Qiuhui, Guo Chao, Yan Donglin, et al. Recent progress of high power narrow linewidth fiber laser[J]. High Power Laser and Particle Beams, 2020, 32: 121004
|
[66] |
廖延彪. 光纤光学: 原理与应用[M]. 北京: 清华大学出版社, 2010
Liao Yanbiao. Fiber optics: principles and applications[M]. Beijing: Tsinghua University Press, 2010
|
[67] |
迟泽英. 光纤光学与光纤应用技术[M]. 北京: 电子工业出版社, 2014
Chi Zeying. Fiber optics, theories and applications[M]. Beijing: Publishing House of Electronics Industry, 2014
|
[68] |
Rothenberg J E, Goodno G D. Advances and limitations in beam combination of kilowatt fiber amplifiers[C]//Proceedings of SPIE 7686, Laser Technology for Defense and Security VI. 2010: 768613.
|
[69] |
杨燕, 耿超, 李枫, 等. 基于3-dB光纤耦合器的级联式光纤激光相干合成方法研究[J]. 光学学报, 2015, 35:s106005 doi: 10.3788/AOS201535.s106005
Yang Yan, Geng Chao, Li Feng, et al. Research of cascaded coherent combining of fiber lasers based on 3-dB fiber couplers[J]. Acta Optica Sinica, 2015, 35: s106005 doi: 10.3788/AOS201535.s106005
|
[70] |
Yang Yan, Geng Chao, Li Feng, et al. Combining module based on coherent polarization beam combining[J]. Applied Optics, 2017, 56(7): 2020-2028. doi: 10.1364/AO.56.002020
|
[71] |
杨燕. 基于光纤器件相干合成的多孔径接收技术研究[D]. 成都: 中国科学院光电技术研究所, 2018
Yang Yan. Research on multi-aperture receiver with fiber-based coherent beam combining[D]. Chengdu: Institute of Optics and Electronics, Chinese Academy of Sciences, 2018
|
[72] |
耿超, 杨燕, 李枫, 等. 光纤激光相干合成研究进展[J]. 光电工程, 2018, 45:170692
Geng Chao, Yang Yan, Li Feng, et al. Research progress of fiber laser coherent combining[J]. Opto-Electronic Engineering, 2018, 45: 170692
|
[73] |
Ahn H K, Kong H J. Cascaded multi-dithering theory for coherent beam combining of multiplexed beam elements[J]. Optics Express, 2015, 23(9): 12407-12413. doi: 10.1364/OE.23.012407
|
[74] |
Freier C, Legge S, Roberts L, et al. Scalable all-fiber coherent beam combination using digital control[J]. Applied Optics, 2022, 61(15): 4543-4548. doi: 10.1364/AO.456360
|
[75] |
Birks T A, Gris-Sánchez I, Yerolatsitis S, et al. The photonic lantern[J]. Advances in Optics and Photonics, 2015, 7(2): 107-167. doi: 10.1364/AOP.7.000107
|
[76] |
Montoya J, Aleshire C, Hwang C, et al. Photonic lantern adaptive spatial mode control in LMA fiber amplifiers[J]. Optics Express, 2016, 24(4): 3405-3413. doi: 10.1364/OE.24.003405
|
[77] |
Aleshire C, Montoya J, Hwang C, et al. Photonic lantern mode control in few-moded fiber amplifiers using SPGD[C]//Proceedings of the CLEO: Science and Innovations 2016. 2016: SM2Q. 6.
|
[78] |
Montoya J, Hwang C, Martz D, et al. Photonic lantern kW-class fiber amplifier[J]. Optics Express, 2017, 25(22): 27543-27550. doi: 10.1364/OE.25.027543
|
[79] |
Montoya J, Aleshire C, Hwang C, et al. Transverse-mode instability mitigation using photonic-lantern adaptive spatial mode control[C]//Proceedings of the CLEO: Science and Innovations. 2017: SM1L. 6.
|
[80] |
Noordegraaf D, Skovgaard P M W, Maack M D, et al. Multi-mode to single-mode conversion in a 61 port Photonic Lantern[J]. Optics Express, 2010, 18(5): 4673-4678. doi: 10.1364/OE.18.004673
|
[81] |
Noordegraaf D, Skovgaard P M W, Sandberg R H, et al. Nineteen-port photonic lantern with multimode delivery fiber[J]. Optics Letters, 2012, 37(4): 452-454. doi: 10.1364/OL.37.000452
|
[82] |
Lu Yao, Liu Wenguang, Chen Zilun, et al. Spatial mode control based on photonic lanterns[J]. Optics Express, 2021, 29(25): 41788-41797. doi: 10.1364/OE.440326
|
[83] |
Lu Yao, Chen Zilun, Liu Wenguang, et al. Stable single transverse mode excitation in 50 µm core fiber using a photonic-lantern-based adaptive control system[J]. Optics Express, 2022, 30(13): 22435-22441. doi: 10.1364/OE.458997
|
[84] |
Wang Baishi, Mies E. Review of fabrication techniques for fused fiber components for fiber lasers[C]//Proceedings of SPIE 7195, Fiber Lasers VI: Technology, Systems, and Applications. 2009: 71950A.
|
[85] |
Rothenberg J E, Cheung E C T. Integrated spectral and all-fiber coherent beam combination: 8184361[P]. 2012-05-22.
|
[86] |
Rothenberg J E. All-fiber integrated high power coherent beam combination: 8184363B2[P]. 2012-05-22.
|
[87] |
Shamir Y, Zuitlin R, Sintov Y, et al. 3kW-level incoherent and coherent mode combining via all-fiber fused Y-couplers[C]//Proceedings of the Frontiers in Optics 2012. 2012: FW6C. 1.
|
[88] |
Shekel E, Vidne Y, Urbach B. 16kW single mode CW laser with dynamic beam for material processing[C]//Proceedings of SPIE 11260, Fiber Lasers XVII: Technology and Systems. 2020: 1126021
|
[89] |
Li Jie, Zhao Haichuan, Chen Zilun, et al. All-fiber active coherent combining via a fiber combiner[J]. Optics Communications, 2013, 286: 273-276. doi: 10.1016/j.optcom.2012.08.074
|
[90] |
Yang Baolai, Wang Xiaolin, Ma Pengfei, et al. Active phase locking of four Yb-doped fiber amplifiers with a multi-mode fiber combiner[C]//Proceedings of the Fiber-Based Technologies and Applications 2014. 2014: JF2A. 6.
|
[91] |
杨保来. 全光纤结构光纤激光主被动相干合成技术研究[D]. 长沙: 国防科学技术大学, 2014
Yang Baolai. Study on active and passive coherent combining of fiber lasers in all-fiber configuration[D]. Changsha: National University of Defense Technology, 2014
|
[92] |
Uberna R, Bratcher A, Alley T G, et al. Coherent combination of high power fiber amplifiers in a two-dimensional re-imaging waveguide[J]. Optics Express, 2010, 18(13): 13547-13553. doi: 10.1364/OE.18.013547
|
[93] |
Tao Rumao, Si Lei, Ma Yanxing, et al. Coherent beam combination of fiber lasers with a strongly confined waveguide: numerical model[J]. Applied Optics, 2012, 51(24): 5826-5833. doi: 10.1364/AO.51.005826
|
[94] |
Tao Rumao, Wang Xiaolin, Xiao Hu, et al. Coherent beam combination of fiber lasers with a strongly confined tapered self-imaging waveguide: theoretical modeling and simulation[J]. Photonics Research, 2013, 1(4): 186-196. doi: 10.1364/PRJ.1.000186
|
[95] |
Haynes J R, Baggett J C, Monro T M, et al. Square core jacketed air-clad fiber[C]//2006 Optical Fiber Communication Conference and the National Fiber Optic Engineers Conference. 2006.
|
[96] |
Blomster O, Blomqvist M. Square formed fiber optics for high power applications[C]//Proceedings of the 4th International WLT-Conference on Lasers in Manufacturing. 2007.
|
[97] |
Blomqvist M, Campbell S, Latokartano J, et al. Multi-kW laser cladding using cylindrical collimators and square-formed fibers[C]//Proceedings of SPIE 8239, High Power Laser Materials Processing: Lasers, Beam Delivery, Diagnostics, and Applications. 2012: 82390L.
|
[98] |
Matsuura Y, Akiyama D, Miyagi M. Beam homogenizer for hollow-fiber delivery system of excimer laser light[J]. Applied Optics, 2003, 42(18): 3505-3508. doi: 10.1364/AO.42.003505
|
[99] |
Konishi K, Kanie T, Takahashi K, et al. Development of rectangular core optical fiber cable for high power laser[J]. SEI Technical Review, 2010(71): 109-112.
|
[100] |
Choi I S, Park J, Jeong H, et al. Fabrication of 4×1 signal combiner for high-power lasers using hydrofluoric acid[J]. Optics Express, 2018, 26(23): 30667-30677. doi: 10.1364/OE.26.030667
|
[101] |
Fu Min, Li Zhixian, Wang Zefeng, et al. Research on a 4×1 fiber signal combiner with high beam quality at a power level of 12kW[J]. Optics Express, 2021, 29(17): 26658-26668. doi: 10.1364/OE.433047
|
[102] |
Zou Shuzhen, Yu Haijuan, Zuo Jiexi, et al. Kilowatt-level 4×1 fiber combiner of low brightness loss with a square core output fiber[J]. Journal of Lightwave Technology, 2021, 39(7): 2130-2135. doi: 10.1109/JLT.2020.3045510
|
[103] |
Yan Yuefang, Liu Yu, Zhang Haoyu, et al. Principle and numerical demonstration of high power all-fiber coherent beam combination based on self-imaging effect in a square core fiber[J]. Photonics Research, 2022, 10(2): 444-455. doi: 10.1364/PRJ.441384
|
[104] |
Liu Yu, Li Yue, Li Yuwei, et al. Fabrication of all-fiber 2×2 coherent beam combiner for high power CBC applications[C]//Proceedings of the Laser Applications Conference 2021. 2021: JTu1A. 19.
|