Volume 35 Issue 8
Jul.  2023
Turn off MathJax
Article Contents
Huang Xiaoxia, Zhao Bowang, Guo Huaiwen, et al. Autonomous pulse shaping method for high-power laser facility[J]. High Power Laser and Particle Beams, 2023, 35: 082001. doi: 10.11884/HPLPB202335.220320
Citation: Huang Xiaoxia, Zhao Bowang, Guo Huaiwen, et al. Autonomous pulse shaping method for high-power laser facility[J]. High Power Laser and Particle Beams, 2023, 35: 082001. doi: 10.11884/HPLPB202335.220320

Autonomous pulse shaping method for high-power laser facility

doi: 10.11884/HPLPB202335.220320
  • Received Date: 2023-02-14
  • Accepted Date: 2023-03-29
  • Rev Recd Date: 2023-04-16
  • Available Online: 2023-05-15
  • Publish Date: 2023-08-15
  • Laser pulse shape is one of the most critical parameters for the success of inertial confinement fusion experiments. The ability to shape the laser pulse with accuracy, efficiency, and robustness is fundamental for high-power laser facility with individual characteristics and independent adjustability for each beam. An autonomous pulse-shaping method is established by employing an iterative algorithm and some strategies, solving the problem of nonlinear response in the pulse-shaping process, as well as improving the convergence rate. The test results indicate that it is capable of shaping an almost arbitrary pulse waveform at the accuracy of better than 10% (rms) of the deviances within 20 iterations or about 10 min, even a 23∶1 high-contrast-pulse waveform can be done with high quality of pulse and measure condition. With this method, the precise control on the laser pulse shape and the operational efficiency can fully meet the experimental requirements.
  • loading
  • [1]
    Nuckolls J, Wood L, Thiessen A, et al. Laser compression of matter to super-high densities: thermonuclear (CTR) applications[J]. Nature, 1972, 239(5368): 139-142. doi: 10.1038/239139a0
    [2]
    Moses E I, Lindl J D, Spaeth M L, et al. Overview: development of the National Ignition Facility and the transition to a user facility for the ignition campaign and high energy density scientific research[J]. Fusion Science and Technology, 2016, 69(1): 1-24. doi: 10.13182/FST15-128
    [3]
    Betti R, Zhou C D, Anderson K S, et al. Shock ignition of thermonuclear fuel with high areal density[J]. Physical Review Letters, 2007, 98: 155001. doi: 10.1103/PhysRevLett.98.155001
    [4]
    Hurricane O A, Callahan D A, Casey D T, et al. Fuel gain exceeding unity in an inertially confined fusion implosion[J]. Nature, 2014, 506(7488): 343-348. doi: 10.1038/nature13008
    [5]
    Hurricane O A, Callahan D A, Casey D T, et al. The high-foot implosion campaign on the National Ignition Facility[J]. Physics of Plasmas, 2014, 21: 056314. doi: 10.1063/1.4874330
    [6]
    Lindl J D, Amendt P, Berger R L, et al. The physics basis for ignition using indirect-drive targets on the National Ignition Facility[J]. Physics of Plasmas, 2004, 11(2): 339-491. doi: 10.1063/1.1578638
    [7]
    Spaeth M L, Manes K R, Kalantar D H, et al. Description of the NIF Laser[J]. Fusion Science and Technology, 2016, 69(1): 25-145. doi: 10.13182/FST15-144
    [8]
    Spaeth M L, Manes K R, Bowers M, et al. National Ignition Facility laser system performance[J]. Fusion Science and Technology, 2016, 69(1): 366-394. doi: 10.13182/FST15-136
    [9]
    Denis V, Beau V, Le Deroff L, et al. The Laser Megajoule facility: laser performances and comparison with computational simulation[C]//Proceedings of SPIE 10084, High Power Lasers for Fusion Research IV. 2017: 100840I.
    [10]
    Di Nicola J M, Bond T, Bowers M, et al. The National Ignition Facility: laser performance status and performance quad results at elevated energy[J]. Nuclear Fusion, 2019, 59: 032004. doi: 10.1088/1741-4326/aac69e
    [11]
    Brunton G, Erbert G, Browning D, et al. The shaping of a national ignition campaign pulsed waveform[J]. Fusion Engineering and Design, 2012, 87(12): 1940-1944. doi: 10.1016/j.fusengdes.2012.09.019
    [12]
    Hu Dongxia, Dong Jun, Xu Dangpeng, et al. Generation and measurement of complex laser pulse shapes in the SG-III laser facility[J]. Chinese Optics Letters, 2015, 13: 041406. doi: 10.3788/COL201513.041406
    [13]
    Rothenberg J E, Browning D F, Wilcox R B. Issue of FM to AM conversion on the National Ignition Facility[C]//Proceedings of SPIE 3492, Third International Conference on Solid State Lasers for Application to Inertial Confinement Fusion. 1999: 51-61.
    [14]
    Hocquet S, Penninckx D, Bordenave E, et al. FM-to-AM conversion in high-power lasers[J]. Applied Optics, 2008, 47(18): 3338-3349. doi: 10.1364/AO.47.003338
    [15]
    Huang Xiaoxia, Deng Xuewei, Zhou Wei, et al. FM-to-AM modulations induced by a weak residual reflection stack of sine-modulated pulses in inertial confinement fusion laser systems[J]. Laser Physics, 2018, 28: 025001. doi: 10.1088/1555-6611/aa962c
    [16]
    Renka R J. Nonlinear least squares and Sobolev gradients[J]. Applied Numerical Mathematics, 2013, 65: 91-104. doi: 10.1016/j.apnum.2012.12.002
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)

    Article views (446) PDF downloads(79) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return