Citation: | Huang Xiaoxia, Zhao Bowang, Guo Huaiwen, et al. Autonomous pulse shaping method for high-power laser facility[J]. High Power Laser and Particle Beams, 2023, 35: 082001. doi: 10.11884/HPLPB202335.220320 |
[1] |
Nuckolls J, Wood L, Thiessen A, et al. Laser compression of matter to super-high densities: thermonuclear (CTR) applications[J]. Nature, 1972, 239(5368): 139-142. doi: 10.1038/239139a0
|
[2] |
Moses E I, Lindl J D, Spaeth M L, et al. Overview: development of the National Ignition Facility and the transition to a user facility for the ignition campaign and high energy density scientific research[J]. Fusion Science and Technology, 2016, 69(1): 1-24. doi: 10.13182/FST15-128
|
[3] |
Betti R, Zhou C D, Anderson K S, et al. Shock ignition of thermonuclear fuel with high areal density[J]. Physical Review Letters, 2007, 98: 155001. doi: 10.1103/PhysRevLett.98.155001
|
[4] |
Hurricane O A, Callahan D A, Casey D T, et al. Fuel gain exceeding unity in an inertially confined fusion implosion[J]. Nature, 2014, 506(7488): 343-348. doi: 10.1038/nature13008
|
[5] |
Hurricane O A, Callahan D A, Casey D T, et al. The high-foot implosion campaign on the National Ignition Facility[J]. Physics of Plasmas, 2014, 21: 056314. doi: 10.1063/1.4874330
|
[6] |
Lindl J D, Amendt P, Berger R L, et al. The physics basis for ignition using indirect-drive targets on the National Ignition Facility[J]. Physics of Plasmas, 2004, 11(2): 339-491. doi: 10.1063/1.1578638
|
[7] |
Spaeth M L, Manes K R, Kalantar D H, et al. Description of the NIF Laser[J]. Fusion Science and Technology, 2016, 69(1): 25-145. doi: 10.13182/FST15-144
|
[8] |
Spaeth M L, Manes K R, Bowers M, et al. National Ignition Facility laser system performance[J]. Fusion Science and Technology, 2016, 69(1): 366-394. doi: 10.13182/FST15-136
|
[9] |
Denis V, Beau V, Le Deroff L, et al. The Laser Megajoule facility: laser performances and comparison with computational simulation[C]//Proceedings of SPIE 10084, High Power Lasers for Fusion Research IV. 2017: 100840I.
|
[10] |
Di Nicola J M, Bond T, Bowers M, et al. The National Ignition Facility: laser performance status and performance quad results at elevated energy[J]. Nuclear Fusion, 2019, 59: 032004. doi: 10.1088/1741-4326/aac69e
|
[11] |
Brunton G, Erbert G, Browning D, et al. The shaping of a national ignition campaign pulsed waveform[J]. Fusion Engineering and Design, 2012, 87(12): 1940-1944. doi: 10.1016/j.fusengdes.2012.09.019
|
[12] |
Hu Dongxia, Dong Jun, Xu Dangpeng, et al. Generation and measurement of complex laser pulse shapes in the SG-III laser facility[J]. Chinese Optics Letters, 2015, 13: 041406. doi: 10.3788/COL201513.041406
|
[13] |
Rothenberg J E, Browning D F, Wilcox R B. Issue of FM to AM conversion on the National Ignition Facility[C]//Proceedings of SPIE 3492, Third International Conference on Solid State Lasers for Application to Inertial Confinement Fusion. 1999: 51-61.
|
[14] |
Hocquet S, Penninckx D, Bordenave E, et al. FM-to-AM conversion in high-power lasers[J]. Applied Optics, 2008, 47(18): 3338-3349. doi: 10.1364/AO.47.003338
|
[15] |
Huang Xiaoxia, Deng Xuewei, Zhou Wei, et al. FM-to-AM modulations induced by a weak residual reflection stack of sine-modulated pulses in inertial confinement fusion laser systems[J]. Laser Physics, 2018, 28: 025001. doi: 10.1088/1555-6611/aa962c
|
[16] |
Renka R J. Nonlinear least squares and Sobolev gradients[J]. Applied Numerical Mathematics, 2013, 65: 91-104. doi: 10.1016/j.apnum.2012.12.002
|