Volume 35 Issue 4
Mar.  2023
Turn off MathJax
Article Contents
Liu Jiaying, Li Ziqiang, Yang Ran, et al. Research progress of coherent beam combining technique of phased fiber laser array[J]. High Power Laser and Particle Beams, 2023, 35: 041003. doi: 10.11884/HPLPB202335.220323
Citation: Liu Jiaying, Li Ziqiang, Yang Ran, et al. Research progress of coherent beam combining technique of phased fiber laser array[J]. High Power Laser and Particle Beams, 2023, 35: 041003. doi: 10.11884/HPLPB202335.220323

Research progress of coherent beam combining technique of phased fiber laser array

doi: 10.11884/HPLPB202335.220323
  • Received Date: 2022-12-23
  • Accepted Date: 2023-02-15
  • Rev Recd Date: 2023-02-13
  • Available Online: 2023-03-13
  • Publish Date: 2023-03-30
  • This paper introduces the state-of-the-art coherent beam combination of phased fiber laser array (PFLA), and summarizes the latest research progress in this area at the Institute of Optics and Electronics, Chinese Academy of Sciences, including optimization of coherent combining capability of PFLA based on amplitude modulation, transceiving coherent combining of PFLA, coherent combining of PFLA using target-in-the-loop, co-phasing combining of receiving beamlets of PFLA under atmospheric turbulence, the method of coherent combining based on multi-aperture wavefront detection, as well as the large-angle high-precision continuous addressing scanning of beams using adaptive fiber-optics collimator and microlens array scanner. The above research will promote the evolution of PFLA technology towards more units, higher power, longer distance etc., and facilitate its combinations and developments with laser atmospheric transmission, space laser communication, adaptive optics and other related theories and applications.
  • loading
  • [1]
    Yu C X, Augst S J, Redmond S M, et al. Coherent combining of a 4 kW, eight-element fiber amplifier array[J]. Optics Letters, 2011, 36(14): 2686-2688. doi: 10.1364/OL.36.002686
    [2]
    Ma Yanxing, Wang Xiaolin, Leng Jinyong, et al. Coherent beam combination of 1.08 kW fiber amplifier array using single frequency dithering technique[J]. Optics Letters, 2011, 36(6): 951-953. doi: 10.1364/OL.36.000951
    [3]
    Dawson J W, Messerly M J, Beach R J, et al. Analysis of the scalability of diffraction-limited fiber lasers and amplifiers to high average power[J]. Optics Express, 2008, 16(17): 13240-13266. doi: 10.1364/OE.16.013240
    [4]
    Vorontsov M A, Weyrauch T, Beresnev L A, et al. Adaptive array of phase-locked fiber collimators: analysis and experimental demonstration[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2009, 15(2): 269-280. doi: 10.1109/JSTQE.2008.2010875
    [5]
    Zhou Pu, Liu Zejin, Xu Xiaojun, et al. Comparative study on the propagation performance of coherently combined and incoherently combined beams[J]. Optics Communications, 2009, 282(8): 1640-1647. doi: 10.1016/j.optcom.2009.01.011
    [6]
    Becker N C, Hädrich S, Eidam T, et al. Adaptive pre-amplification pulse shaping in a high-power, coherently combined fiber laser system[J]. Optics Letters, 2017, 42(19): 3916-3919. doi: 10.1364/OL.42.003916
    [7]
    刘泽金, 王红岩, 许晓军. 高能半导体泵浦气体激光器[J]. 中国激光, 2021, 48:0401001 doi: 10.3788/CJL202148.0401001

    Liu Zejin, Wang Hongyan, Xu Xiaojun. High energy diode pumped gas laser[J]. Chinese Journal of Lasers, 2021, 48: 0401001 doi: 10.3788/CJL202148.0401001
    [8]
    Chang Hongxiang, Chang Qi, Xi Jiachao, et al. First experimental demonstration of coherent beam combining of more than 100 beams[J]. Photonics Research, 2020, 8(12): 1943-1948. doi: 10.1364/PRJ.409788
    [9]
    Weyrauch T, Vorontsov M, Mangano J, et al. Deep turbulence effects mitigation with coherent combining of 21 laser beams over 7 km[J]. Optics Letters, 2016, 41(4): 840-843. doi: 10.1364/OL.41.000840
    [10]
    Rouzé B, Lombard L, Jacqmin H, et al. Coherent beam combination of seven 1.5 µm fiber amplifiers through up to 1 km atmospheric turbulence: near- and far-field experimental analysis[J]. Applied Optics, 2021, 60(27): 8524-8533. doi: 10.1364/AO.433872
    [11]
    Han Ronglei, Sun Jianfeng, Hou Peipei, et al. Multi-dimensional and large-sized optical phased array for space laser communication[J]. Optics Express, 2022, 30(4): 5026-5037. doi: 10.1364/OE.447351
    [12]
    Ma Jing, Li Kangning, Tan Liying, et al. Performance analysis of satellite-to-ground downlink coherent optical communications with spatial diversity over Gamma-Gamma atmospheric turbulence[J]. Applied Optics, 2015, 54(25): 7575-7585. doi: 10.1364/AO.54.007575
    [13]
    Geisler D J, Yarnall T M, Stevens M L, et al. Multi-aperture digital coherent combining for free-space optical communication receivers[J]. Optics Express, 2016, 24(12): 12661-12671. doi: 10.1364/OE.24.012661
    [14]
    Yuan Renzhi, Cheng Julian. Free-space optical quantum communications in turbulent channels with receiver diversity[J]. IEEE Transactions on Communications, 2020, 68(9): 5706-5717. doi: 10.1109/TCOMM.2020.2997398
    [15]
    Wang Hanbin, He Bing, Yang Yifeng, et al. Beam quality improvement of coherent beam combining by gradient power distribution hexagonal tiled-aperture large laser array[J]. Optical Engineering, 2019, 58: 066105.
    [16]
    Zuo Jing, Li Feng, Geng Chao, et al. Experimental demonstration of central-lobe energy enhancement based on amplitude modulation of beamlets in 19 elements fiber laser phased array[J]. IEEE Photonics Journal, 2021, 13: 1500113.
    [17]
    Geng Chao, Li Feng, Zuo Jing, et al. Fiber laser transceiving and wavefront aberration mitigation with adaptive distributed aperture array for free-space optical communications[J]. Optics Letters, 2020, 45(7): 1906-1909. doi: 10.1364/OL.383093
    [18]
    Yang Yan, Geng Chao, Li Feng, et al. Combining module based on coherent polarization beam combining[J]. Applied Optics, 2017, 56(7): 2020-2028. doi: 10.1364/AO.56.002020
    [19]
    Yang Yan, Geng Chao, Li Feng, et al. Fiber-based coherent polarization beam combining with cascaded phase-locking and polarization-transforming controls[J]. Journal of Optics, 2018, 20: 055703. doi: 10.1088/2040-8986/aaba2b
    [20]
    Lao Chenzhe, Sun Jianfeng, Lu Zhiyong, et al. Multi-aperture fiber coherent combining system in urban horizontal atmospheric laser link[J]. Optics Communications, 2020, 466: 125172. doi: 10.1016/j.optcom.2019.125172
    [21]
    Huang Guan, Geng Chao, Li Feng, et al. Control bandwidth promotion of adaptive fiber-optics collimator and its application in coherent beam combination[J]. IEEE Photonics Journal, 2018, 10: 7105513.
    [22]
    Huang Guan, Geng Chao, Li Feng, et al. Adaptive SMF coupling based on precise-delayed SPGD algorithm and its application in free space optical communication[J]. IEEE Photonics Journal, 2018, 10: 7904212.
    [23]
    Zou Fan, Zuo Jing, Geng Chao, et al. Adaptive laser aiming through 2 km horizontal atmosphere with precise-delayed SPGD algorithm[J]. Journal of Russian Laser Research, 2021, 42(4): 462-467. doi: 10.1007/s10946-021-09983-0
    [24]
    Vorontsov M A, Kolosov V V, Polnau E. Target-in-the-loop wavefront sensing and control with a Collett-Wolf beacon: speckle-average phase conjugation[J]. Applied Optics, 2009, 48(1): A13-A29. doi: 10.1364/AO.48.000A13
    [25]
    耿超, 李枫, 黄冠, 等. 基于光纤自适应操控的激光相控阵技术研究进展(特邀)[J]. 红外与激光工程, 2018, 47:0103003 doi: 10.3788/IRLA201847.0103003

    Geng Chao, Li Feng, Huang Guan, et al. Research progress of laser phased array technique based on fiber adaptive manipulation (Invited)[J]. Infrared and Laser Engineering, 2018, 47: 0103003 doi: 10.3788/IRLA201847.0103003
    [26]
    支冬, 马阎星, 马鹏飞, 等. 公里级湍流大气环境下光纤激光高效相干合成[J]. 红外与激光工程, 2019, 48:1005007 doi: 10.3788/IRLA201948.1005007

    Zhi Dong, Ma Yanxing, Ma Pengfei, et al. Efficient coherent beam combining of fiber laser array through km-scale turbulent atmosphere[J]. Infrared and Laser Engineering, 2019, 48: 1005007 doi: 10.3788/IRLA201948.1005007
    [27]
    李枫, 左竞, 黄冠, 等. 19孔径光纤阵列激光经2 km湍流传输实现目标在回路的相干合成[J]. 中国激光, 2021, 48:0316002 doi: 10.3788/CJL202148.0316002

    Li Feng, Zuo Jing, Huang Guan, et al. Target-in-loop coherent beam combining of a 19-aperture fiber laser array over 2 km in atmosphere[J]. Chinese Journal of Lasers, 2021, 48: 0316002 doi: 10.3788/CJL202148.0316002
    [28]
    Zuo Jing, Zou Fan, Zhou Xin, et al. Coherent combining of a large-scale fiber laser array over 2.1 km in turbulence based on a beam conformal projection system[J]. Optics Letters, 2022, 47(2): 365-368. doi: 10.1364/OL.446722
    [29]
    李枫, 邹凡, 姜佳丽, 等. 57孔径光纤激光相控阵自适应光学系统实现经2 km大气传输的目标在回路相干合成[J]. 中国激光, 2022, 49:0616002

    Li Feng, Zou Fan, Jiang Jiali, et al. Target-in-loop coherent beam combining of a 57-aperture fiber laser array over 2 km in atmosphere based on a adaptive optical system[J]. Chinese Journal of Lasers, 2022, 49: 0616002
    [30]
    Li Feng, Geng Chao, Li Xinyang, et al. Co-aperture transceiving of two combined beams based on adaptive fiber coupling control[J]. IEEE Photonics Technology Letters, 2015, 27(17): 1787-1790. doi: 10.1109/LPT.2015.2438172
    [31]
    Li Feng, Geng Chao, Huang Guan, et al. Experimental demonstration of coherent combining with tip/tilt control based on adaptive space-to-fiber laser beam coupling[J]. IEEE Photonics Journal, 2017, 9: 7102812.
    [32]
    李枫, 耿超, 李新阳, 等. 基于光纤耦合器的全光纤链路锁相控制[J]. 光电工程, 2017, 44(6):602-609

    Li Feng, Geng Chao, Li Xinyang, et al. Phase-locking control in all fiber link based on fiber coupler[J]. Opto-Electronic Engineering, 2017, 44(6): 602-609
    [33]
    Wang Xiaolin, Zhou Pu, Ma Yanxing, et al. Active phasing a nine-element 1.14 kW all-fiber two-tone MOPA array using SPGD algorithm[J]. Optics Letters, 2011, 36(16): 3121-3123. doi: 10.1364/OL.36.003121
    [34]
    Vorontsov M A, Sivokon V P. Stochastic parallel-gradient-descent technique for high-resolution wave-front phase-distortion correction[J]. Journal of the Optical Society of America A, 1998, 15(10): 2745-2758. doi: 10.1364/JOSAA.15.002745
    [35]
    李枫, 耿超, 黄冠, 等. 基于光纤耦合的光纤激光阵列像差探测[J]. 光电工程, 2018, 45:170691

    Li Feng, Geng Chao, Huang Guan, et al. Wavefront sensing based on fiber coupling of the fiber laser array[J]. Opto-Electronic Engineering, 2018, 45: 170691
    [36]
    马阎星, 吴坚, 粟荣涛, 等. 光学相控阵技术发展概述[J]. 红外与激光工程, 2020, 49:20201042

    Ma Yanxing, Wu Jian, Su Rongtao, et al. Review of optical phased array techniques[J]. Infrared and Laser Engineering, 2020, 49: 20201042
    [37]
    Li Anhu, Liu Xingsheng, Sun Wansong. Forward and inverse solutions for three-element Risley prism beam scanners[J]. Optics Express, 2017, 25(7): 7677-7688. doi: 10.1364/OE.25.007677
    [38]
    Li Anhu, Jiang Xuchun, Sun Jianfeng, et al. Laser coarse–fine coupling scanning method by steering double prisms[J]. Applied Optics, 2012, 51(3): 356-364. doi: 10.1364/AO.51.000356
    [39]
    Gokce S K, Holmstrom S, Hibert C, et al. Two-dimensional MEMS stage integrated with microlens arrays for laser beam steering[J]. Journal of Microelectromechanical Systems, 2011, 20(1): 15-17. doi: 10.1109/JMEMS.2010.2090507
    [40]
    Abiri B, Aflatouni F, Rekhi A, et al. Electronic two-dimensional beam steering for integrated optical phased arrays[C]//OFC 2014. 2014: 1-3.
    [41]
    Watson E A, Whitaker W E, Brewer C D, et al. Implementing optical phased array beam steering with cascaded microlens arrays[C]//Proceedings IEEE Aerospace Conference. 2002: 3.
    [42]
    Goltsos W C, Holz M. Agile beam steering using binary optics microlens arrays[J]. Optical Engineering, 1990, 29(11): 1392-1397. doi: 10.1117/12.55743
    [43]
    黄鹰, 向思桦, 陈四海, 等. 微型光扫描器研究[J]. 红外与毫米波学报, 2007, 26(1):26-29

    Huang Ying, Xiang Sihua, Chen Sihai, et al. Study on microoptical scanner[J]. Journal of Infrared and Millimeter Waves, 2007, 26(1): 26-29
    [44]
    谢洪波, 王瑶, 毛晨盛, 等. 一种可实现收发一体连续扫描的微透镜阵列[J]. 应用光学, 2018, 39(5):613-618

    Xie Hongbo, Wang Yao, Mao Chensheng, et al. Micro-lens array for integrative transmitting and receiving continuous scanning[J]. Journal of Applied Optics, 2018, 39(5): 613-618
    [45]
    Yang Xu, Geng Chao, Li Feng, et al. High-resolution beam scanning technique with microlens array and adaptive fiber-optics collimator[J]. Optics Express, 2021, 29(1): 359-367. doi: 10.1364/OE.412272
    [46]
    Yang Xu, Huang Guan, Li Feng, et al. Continuous tracking and pointing of coherent beam combining system via target-in-the-loop concept[J]. IEEE Photonics Technology Letters, 2021, 33(20): 1119-1122. doi: 10.1109/LPT.2021.3108419
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(21)

    Article views (1064) PDF downloads(278) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return