Wang Feng, Zhang Xing, Li Yulong, et al. Progress in high time- and space-resolving diagnostic technique for laser-driven inertial confinement fusion[J]. High Power Laser and Particle Beams, 2020, 32: 112002. doi: 10.11884/HPLPB202032.200136
Citation: Liang Zhuanzhuan, Wang Guofu, Qin Mimi, et al. Research and design of 2.4/4.8/7.2 GHz tri-band antenna of harmonic radar[J]. High Power Laser and Particle Beams, 2023, 35: 033004. doi: 10.11884/HPLPB202335.220337

Research and design of 2.4/4.8/7.2 GHz tri-band antenna of harmonic radar

doi: 10.11884/HPLPB202335.220337
  • Received Date: 2022-10-13
  • Rev Recd Date: 2022-11-29
  • Available Online: 2022-11-30
  • Publish Date: 2023-03-01
  • In this paper, a three-band monopole antenna for hand-held harmonic radar is designed. The antenna is fed by a coplanar waveguide. By loading L-shaped radiating branch on the main radiating body of the monopole antenna and cutting a triangular notch on the ground plane close to the main radiating body, the antenna resonates in three frequency bands: 2.4 GHz, 4.8 GHz and 7.2 GHz. At the same time, a metal baffle is loaded at a distance of 10 mm from the antenna to enhance the directionality of antenna radiation and to receive electromagnetic waves reflected in multiple directions. The size of antenna is 54 mm×53 mm×1.6 mm, and the bandwidth in the three operating frequency bands is 0.51 GHz (2.35−2.86 GHz), 1.39 GHz (4.17−5.56 GHz), 1.46 GHz (6.17−7.63 GHz), respectively. It can effectively cover all the working frequency band of harmonic radar. According to the peak gain and radiation pattern of the antenna, the gain performance and overall radiation performance of the antenna are good in operating frequency band.
  • [1]
    Hosseini H, Hassani H R, Amini M H. Miniaturised multiple notched omnidirectional UWB monopole antenna[J]. Electronics Letters, 2018, 54(8): 472-474. doi: 10.1049/el.2017.4528
    [2]
    Goswami C, Ghatak R, Poddar D R. Multi-band bisected Hilbert monopole antenna loaded with multiple subwavelength split-ring resonators[J]. IET Microwaves, Antennas & Propagation, 2018, 12(10): 1719-1727.
    [3]
    Bag B, Biswas S, Sarkar P P. A wide circularly polarized dual-band isosceles trapezoidal monopole antenna with modified ground plane[J]. International Journal of Communication Systems, 2022, 35: e5037.
    [4]
    杨敏, 陈新伟, 张文梅. 基于共面波导馈电的三频单极子天线[J]. 测试技术学报, 2015, 29(3):195-199 doi: 10.3969/j.issn.1671-7449.2015.03.003

    Yang Min, Chen Xinwei, Zhang Wenmei. Tri-band monopole antenna based on CPW-feed[J]. Journal of Test and Measurement Technology, 2015, 29(3): 195-199 doi: 10.3969/j.issn.1671-7449.2015.03.003
    [5]
    杨洋, 刘元安, 吴帆. 一种非对称馈电的小型化高隔离度分集天线[J]. 北京邮电大学学报, 2019, 42(3):51-57 doi: 10.13190/j.jbupt.2018-245

    Yang Yang, Liu Yuan’an, Wu Fan. An asymmetric feed compact high isolation diversity antenna[J]. Journal of Beijing University of Posts and Telecommunications, 2019, 42(3): 51-57 doi: 10.13190/j.jbupt.2018-245
    [6]
    Yang Yang, Liu Yuan'an, Wu Fan. A quad-band compact diversity antenna for mobile handset devices[J]. International Journal of Future Generation Communication and Networking, 2016, 9(6): 363-372. doi: 10.14257/ijfgcn.2016.9.6.34
    [7]
    王丽黎, 杜忠红, 杨海龙, 等. 具有高隔离度的双陷波超宽带多入多出天线[J]. 强激光与粒子束, 2020, 32:063007 doi: 10.11884/HPLPB202032.190443

    Wang Lili, Du Zhonghong, Yang Hailong, et al. Dual band-notch ultra-wideband multiple-input multiple-output antenna with high isolation[J]. High Power Laser and Particle Beams, 2020, 32: 063007 doi: 10.11884/HPLPB202032.190443
    [8]
    王辂, 郑宏兴, 邓东民. 边缘开槽多频段天线设计[J]. 太赫兹科学与电子信息学报, 2016, 14(4):599-602,620 doi: 10.11805/TKYDA201604.0599

    Wang Lu, Zheng Hongxing, Deng Dongmin. Design of multi-band antenna slotting on the edge[J]. Journal of Terahertz Science and Electronic Information Technology, 2016, 14(4): 599-602,620 doi: 10.11805/TKYDA201604.0599
    [9]
    Hasan M N, Chu S, Bashir S. A DGS monopole antenna loaded with U-shape stub for UWB MIMO applications[J]. Microwave and Optical Technology Letters, 2019, 61(9): 2141-2149. doi: 10.1002/mop.31877
    [10]
    Du Chengzhu, Yang Zhipeng, Zhong Shunshi. A compact coplanar waveguide-fed band-notched four-port flexible ultra-wide band-multi-input-multi-output slot antenna for wireless body area network and internet of things applications[J]. International Journal of RF and Microwave Computer-Aided Engineering, 2022, 32: e23289.
    [11]
    严冬, 郭琪富, 程威, 等. 一种可应用于WLAN的高隔离度双频MIMO天线设计[J]. 电子元件与材料, 2020, 39(6):91-96 doi: 10.14106/j.cnki.1001-2028.2020.06.016

    Yan Dong, Guo Qifu, Cheng Wei, et al. Design of a high-isolation dual-frequency MIMO antenna for WLAN[J]. Electronic Components and Materials, 2020, 39(6): 91-96 doi: 10.14106/j.cnki.1001-2028.2020.06.016
    [12]
    焦天奇, 孟祥余, 郝术苗. 一种基于T形槽的单极子超宽带天线: CN106876960A[P]. 2017-06-20.

    Jao Tianqi, Meng Xiangyu, Hao Shumiao. A monopole UWB antenna based on t slot. CN106876960A[P]. 2017-06-20
    [13]
    Koerner M A, Rogers R L. Gain enhancement of a pyramidal horn using E- and H-plane metal baffles[J]. IEEE Transactions on Antennas and Propagation, 2000, 48(4): 529-538. doi: 10.1109/8.843666
    [14]
    Guo Qingyi, Wong H. A dual-polarized Fabry-Pérot antenna with high gain and wide bandwidth for millimeter-wave applications[J]. Frontiers of Information Technology & Electronic Engineering, 2021, 22(4): 599-608.
    [15]
    于有海, 尹波, 张晓玲, 等. 应用于体域网通信的低SAR值天线设计[J]. 电子器件, 2020, 43(5):978-984 doi: 10.3969/j.issn.1005-9490.2020.05.006

    Yu Youhai, Yin Bo, Zhang Xiaoling. A low SAR antenna designed for WBAN communications[J]. Chinese Journal of Electron Devices, 2020, 43(5): 978-984 doi: 10.3969/j.issn.1005-9490.2020.05.006
  • Relative Articles

    [1]Zhang Tiankui, Shan Lianqiang, Yu Minghai, Lu Feng, Zhou Weimin, Tian Chao, Tan Fang, Yan Yonghong, Zhang Feng, Yuan Zongqiang, Xu Qiuyue, Wang Weiwu, Deng Zhigang, Teng Jian, Liu Dongxiao, Yang Lei, Fan Wei, Yang Yue, Zhou Kainan, Su Jingqin, Wu Yuchi, Ding Yongkun, Gu Yuqiu. Source-coded radiography technique with high spatial-resolution for X-ray source driven by ps-laser[J]. High Power Laser and Particle Beams, 2022, 34(12): 122001. doi: 10.11884/HPLPB202234.220186
    [2]Wang Feng, Li Yulong, Guan Zanyang, Zhang Xing, Li Jin, Huang Yunbao, Gan Huaquan, Che Xingsen. Application of compressed sensing technology in laser inertial confinement fusion[J]. High Power Laser and Particle Beams, 2022, 34(3): 031021. doi: 10.11884/HPLPB202234.210250
    [3]Cao Leifeng, Yang Zuhua, Chen Jihui, Wei Lai, Fan Quanping, Chen Yong, Zhang Qiangqiang, Zhou Weimin. Conceptual design of soft X-ray online calibration system for ICF[J]. High Power Laser and Particle Beams, 2020, 32(11): 112007. doi: 10.11884/HPLPB202032.200141
    [4]Sun Ao, Shang Wanli, Yang Guohong, Wei Minxi, Li Miao, Che Xingsen, Hou Lifei, Du Huabing, Yang Yimeng, Zhang Wenhai, Yang Dong, Wang Feng, He Haien, Yang Jiamin, Jiang Shaoen, Zhang Baohan, Ding Yongkun. Study on X-ray line emission diffraction in inertial confinement fusion and its recent progress[J]. High Power Laser and Particle Beams, 2020, 32(11): 112008. doi: 10.11884/HPLPB202032.200129
    [5]Cao Zhurong, Wang Qiangqiang, Deng Bo, Chen Tao, Deng Keli, Wang Weirong, Peng Xingyu, Chen Zhongjing, Yuan Zheng, Li Yukun, Wang Peng, Chen Bolun, Wang Feng, He Haien, Li Xingzhu, Xu Zeping, Yang Dong, Yang Jiamin, Jiang Shaoen, Ding Yongkun, Zhang Weiyan. Progress of X-ray high-speed photography technology used in laser driven inertial confinement fusion[J]. High Power Laser and Particle Beams, 2020, 32(11): 112004. doi: 10.11884/HPLPB202032.200099
    [6]Xu Jie, Mu Baozhong, Chen Liang, Li Wenjie, Xu Xinye, Wang Xin, Wang Zhanshan, Zhang Xing, Ding Yongkun. Progress of grazing incidence X-ray micro-imaging diagnosis technology[J]. High Power Laser and Particle Beams, 2020, 32(11): 112001. doi: 10.11884/HPLPB202032.200133
    [7]Gao Shasha, Wu Xiaojun, He Zhibing, He Xiaoshan, Wang Tao, Zhu Fanghua, Zhang Zhanwen. Research progress of fabrication techniques for laser inertial confinement fusion target[J]. High Power Laser and Particle Beams, 2020, 32(3): 032001. doi: 10.11884/HPLPB202032.200039
    [8]Xie Jun, Zhang Zhaorui, Mei Lusheng, Huang Yanhua, Zhu Lei, Liu Feng, Zhang Haijun, Li Guo, Song Chengwei. Fabrication of diagnostic hole of SiO2/CH/Au hohlraum by micro-electrical discharge machining[J]. High Power Laser and Particle Beams, 2014, 26(11): 112002. doi: 10.11884/HPLPB201426.112002
    [9]Wang Rui, Peng Long, Li Lezhong. Method for diagnosis and tuning of cross-coupled resonator bandstop and bandpass filters with source-load coupling[J]. High Power Laser and Particle Beams, 2014, 26(11): 113007. doi: 10.11884/HPLPB201426.113007
    [10]Tang Qi, Song Zifeng, Chen Jiabin, Zhan Xiayu. ICF implosion hotspot ion temperature diagnostic techniques based on neutron time-of-flight method[J]. High Power Laser and Particle Beams, 2013, 25(12): 3153-3157. doi: 3153
    [11]He Tie, Lei Jiarong, Liu Meng, An Li, Wang Xinhua, Zheng Pu. Fen+ beam profile diagnostics based on Al2O3:Cr scintillating screen[J]. High Power Laser and Particle Beams, 2013, 25(04): 1013-1016.
    [12]Zhang Lin, Du Kai. Target technologies for laser inertial confinement fusion: State-of-the-art and future perspective[J]. High Power Laser and Particle Beams, 2013, 25(12): 3091-3097. doi: 3091
    [13]Yi Shengzhen, Mu Baozhong, Wang Xin, Jiang Li, Zhu Jingtao, Wang Zhanshan, Fang Zhiheng, Wang Wei, Fu Sizu. One-dimensional KBA microscope for planar target diagnosis[J]. High Power Laser and Particle Beams, 2012, 24(05): 1076-1080. doi: 10.3788/HPLPB20122405.1076
    [14]li yawei, deng jianjun, xie min, feng zongming, liu yuntao, ma chenggang. Measurement and diagnosis system for 1.2 MV repetitive pulsed power source[J]. High Power Laser and Particle Beams, 2010, 22(01): 0- .
    [15]liu lifeng, xiao shali, wang hongjian, shi jun, liu shenye, wei minxi, chen bolun, qian jiayu. Application of spherically bent crystals spectrometer to X-ray diagnosis[J]. High Power Laser and Particle Beams, 2010, 22(10): 0- .
    [16]wang jia-yin, shi jia-ming, yuan zhong-cai, xu bo. Plasma diagnostic method using the transmission attenuation of microwaves at three frequencies[J]. High Power Laser and Particle Beams, 2007, 19(04): 0- .
    [17]zheng zhi jian, ding yong kun, ding yao nan, liu zhong li, liu shen ye, sun ke xu, cheng jin xiu, jiang shao en, qi lan ying, zhang bao han, yang cun bang. yang jia min, su chun xiao, chen jia bin, li wen hong, yi rong qing, tang dao yuan, . Recent progress and application of diagnostic technique in laser fusion[J]. High Power Laser and Particle Beams, 2003, 15(11): 0- .
    [18]deng jian jun, chen si fu, li jing, chang li hua, yang guo jun, lin yu zheng. Time resolved energy spectrum diagnostics for 2MeV injector pulsed electron beam[J]. High Power Laser and Particle Beams, 2003, 15(07): 0- .
    [19]hu hai-ying, li xu-dong, chen dai-bing. Diagnosis on the frequency spectrum of the X-band transit time tube oscillator[J]. High Power Laser and Particle Beams, 2002, 14(03): 0- .
  • Cited by

    Periodical cited type(1)

    1. 高斌,裴士伦,王辉,赵世琦,池云龙. S波段HYBRID聚束-加速结构的样机研制. 强激光与粒子束. 2021(02): 94-100 . 本站查看

    Other cited types(0)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-04020406080
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 20.6 %FULLTEXT: 20.6 %META: 71.1 %META: 71.1 %PDF: 8.3 %PDF: 8.3 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 6.7 %其他: 6.7 %其他: 0.6 %其他: 0.6 %Beauharnois: 0.0 %Beauharnois: 0.0 %China: 0.8 %China: 0.8 %India: 0.0 %India: 0.0 %Mongolia: 0.0 %Mongolia: 0.0 %Taiwan, China: 0.1 %Taiwan, China: 0.1 %Trumansburg: 0.1 %Trumansburg: 0.1 %United States: 0.6 %United States: 0.6 %[]: 1.3 %[]: 1.3 %上海: 6.0 %上海: 6.0 %东京: 0.1 %东京: 0.1 %东莞: 0.5 %东莞: 0.5 %中卫: 0.0 %中卫: 0.0 %中山: 0.0 %中山: 0.0 %临汾: 0.0 %临汾: 0.0 %丹东: 0.0 %丹东: 0.0 %乐山: 0.1 %乐山: 0.1 %九龙: 0.1 %九龙: 0.1 %伊萨卡: 0.1 %伊萨卡: 0.1 %伦敦: 0.1 %伦敦: 0.1 %保定: 0.2 %保定: 0.2 %六安: 0.0 %六安: 0.0 %兰州: 0.5 %兰州: 0.5 %内华达: 0.0 %内华达: 0.0 %内江: 0.1 %内江: 0.1 %北京: 14.2 %北京: 14.2 %十堰: 0.1 %十堰: 0.1 %南京: 0.6 %南京: 0.6 %南充: 0.0 %南充: 0.0 %南昌: 0.0 %南昌: 0.0 %南通: 0.0 %南通: 0.0 %台州: 0.2 %台州: 0.2 %合肥: 0.8 %合肥: 0.8 %咸阳: 0.1 %咸阳: 0.1 %哈尔滨: 0.1 %哈尔滨: 0.1 %哥伦布: 0.0 %哥伦布: 0.0 %埃森: 0.1 %埃森: 0.1 %大连: 0.4 %大连: 0.4 %天津: 0.4 %天津: 0.4 %太原: 0.4 %太原: 0.4 %威海: 0.1 %威海: 0.1 %安庆: 0.1 %安庆: 0.1 %安康: 0.3 %安康: 0.3 %宣城: 0.2 %宣城: 0.2 %宿州: 0.0 %宿州: 0.0 %密蘇里城: 0.1 %密蘇里城: 0.1 %巴音郭楞蒙古自治州: 0.1 %巴音郭楞蒙古自治州: 0.1 %广州: 0.4 %广州: 0.4 %延安: 0.0 %延安: 0.0 %弗里蒙特: 0.1 %弗里蒙特: 0.1 %张家口: 1.9 %张家口: 1.9 %徐州: 0.2 %徐州: 0.2 %成都: 2.2 %成都: 2.2 %扬州: 0.1 %扬州: 0.1 %揭阳: 0.0 %揭阳: 0.0 %新乡: 0.1 %新乡: 0.1 %无锡: 0.1 %无锡: 0.1 %昆明: 0.2 %昆明: 0.2 %晋中: 0.1 %晋中: 0.1 %晋城: 0.1 %晋城: 0.1 %普洱: 0.0 %普洱: 0.0 %朝阳: 0.1 %朝阳: 0.1 %杭州: 0.8 %杭州: 0.8 %株洲: 0.0 %株洲: 0.0 %格兰特县: 0.0 %格兰特县: 0.0 %桂林: 0.1 %桂林: 0.1 %梅州: 0.0 %梅州: 0.0 %武汉: 0.4 %武汉: 0.4 %汉中: 0.0 %汉中: 0.0 %汕头: 0.0 %汕头: 0.0 %沈阳: 0.1 %沈阳: 0.1 %洛阳: 0.1 %洛阳: 0.1 %济南: 0.2 %济南: 0.2 %淮南: 0.1 %淮南: 0.1 %深圳: 0.9 %深圳: 0.9 %温州: 0.1 %温州: 0.1 %湖州: 0.2 %湖州: 0.2 %漯河: 0.5 %漯河: 0.5 %石家庄: 0.2 %石家庄: 0.2 %福州: 0.5 %福州: 0.5 %科林斯堡: 0.0 %科林斯堡: 0.0 %秦皇岛: 0.1 %秦皇岛: 0.1 %纽瓦克: 0.0 %纽瓦克: 0.0 %纽约: 0.1 %纽约: 0.1 %绍兴: 0.1 %绍兴: 0.1 %绵阳: 1.4 %绵阳: 1.4 %绵阳市涪城区: 0.0 %绵阳市涪城区: 0.0 %美国伊利诺斯芝加哥: 0.4 %美国伊利诺斯芝加哥: 0.4 %芒廷维尤: 14.9 %芒廷维尤: 14.9 %芝加哥: 1.1 %芝加哥: 1.1 %苏州: 0.2 %苏州: 0.2 %莫斯科: 0.0 %莫斯科: 0.0 %葫芦岛: 0.2 %葫芦岛: 0.2 %衡水: 0.1 %衡水: 0.1 %衡阳: 0.1 %衡阳: 0.1 %衢州: 0.0 %衢州: 0.0 %西宁: 28.7 %西宁: 28.7 %西安: 2.7 %西安: 2.7 %西雅图: 0.1 %西雅图: 0.1 %贵阳: 0.1 %贵阳: 0.1 %费利蒙: 0.0 %费利蒙: 0.0 %赣州: 0.0 %赣州: 0.0 %达拉斯: 0.1 %达拉斯: 0.1 %运城: 0.7 %运城: 0.7 %连云港: 0.1 %连云港: 0.1 %邯郸: 0.1 %邯郸: 0.1 %郑州: 0.5 %郑州: 0.5 %重庆: 0.5 %重庆: 0.5 %金华: 0.0 %金华: 0.0 %金昌: 0.0 %金昌: 0.0 %长春: 0.1 %长春: 0.1 %长沙: 0.9 %长沙: 0.9 %长治: 0.1 %长治: 0.1 %青岛: 0.1 %青岛: 0.1 %鞍山: 0.1 %鞍山: 0.1 %香港: 0.0 %香港: 0.0 %香港特别行政区: 0.1 %香港特别行政区: 0.1 %魁北克: 0.2 %魁北克: 0.2 %其他其他BeauharnoisChinaIndiaMongoliaTaiwan, ChinaTrumansburgUnited States[]上海东京东莞中卫中山临汾丹东乐山九龙伊萨卡伦敦保定六安兰州内华达内江北京十堰南京南充南昌南通台州合肥咸阳哈尔滨哥伦布埃森大连天津太原威海安庆安康宣城宿州密蘇里城巴音郭楞蒙古自治州广州延安弗里蒙特张家口徐州成都扬州揭阳新乡无锡昆明晋中晋城普洱朝阳杭州株洲格兰特县桂林梅州武汉汉中汕头沈阳洛阳济南淮南深圳温州湖州漯河石家庄福州科林斯堡秦皇岛纽瓦克纽约绍兴绵阳绵阳市涪城区美国伊利诺斯芝加哥芒廷维尤芝加哥苏州莫斯科葫芦岛衡水衡阳衢州西宁西安西雅图贵阳费利蒙赣州达拉斯运城连云港邯郸郑州重庆金华金昌长春长沙长治青岛鞍山香港香港特别行政区魁北克

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(1)

    Article views (657) PDF downloads(85) Cited by(1)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return