Citation: | Liang Zhuanzhuan, Wang Guofu, Qin Mimi, et al. Research and design of 2.4/4.8/7.2 GHz tri-band antenna of harmonic radar[J]. High Power Laser and Particle Beams, 2023, 35: 033004. doi: 10.11884/HPLPB202335.220337 |
[1] |
Hosseini H, Hassani H R, Amini M H. Miniaturised multiple notched omnidirectional UWB monopole antenna[J]. Electronics Letters, 2018, 54(8): 472-474. doi: 10.1049/el.2017.4528
|
[2] |
Goswami C, Ghatak R, Poddar D R. Multi-band bisected Hilbert monopole antenna loaded with multiple subwavelength split-ring resonators[J]. IET Microwaves, Antennas & Propagation, 2018, 12(10): 1719-1727.
|
[3] |
Bag B, Biswas S, Sarkar P P. A wide circularly polarized dual-band isosceles trapezoidal monopole antenna with modified ground plane[J]. International Journal of Communication Systems, 2022, 35: e5037.
|
[4] |
杨敏, 陈新伟, 张文梅. 基于共面波导馈电的三频单极子天线[J]. 测试技术学报, 2015, 29(3):195-199 doi: 10.3969/j.issn.1671-7449.2015.03.003
Yang Min, Chen Xinwei, Zhang Wenmei. Tri-band monopole antenna based on CPW-feed[J]. Journal of Test and Measurement Technology, 2015, 29(3): 195-199 doi: 10.3969/j.issn.1671-7449.2015.03.003
|
[5] |
杨洋, 刘元安, 吴帆. 一种非对称馈电的小型化高隔离度分集天线[J]. 北京邮电大学学报, 2019, 42(3):51-57 doi: 10.13190/j.jbupt.2018-245
Yang Yang, Liu Yuan’an, Wu Fan. An asymmetric feed compact high isolation diversity antenna[J]. Journal of Beijing University of Posts and Telecommunications, 2019, 42(3): 51-57 doi: 10.13190/j.jbupt.2018-245
|
[6] |
Yang Yang, Liu Yuan'an, Wu Fan. A quad-band compact diversity antenna for mobile handset devices[J]. International Journal of Future Generation Communication and Networking, 2016, 9(6): 363-372. doi: 10.14257/ijfgcn.2016.9.6.34
|
[7] |
王丽黎, 杜忠红, 杨海龙, 等. 具有高隔离度的双陷波超宽带多入多出天线[J]. 强激光与粒子束, 2020, 32:063007 doi: 10.11884/HPLPB202032.190443
Wang Lili, Du Zhonghong, Yang Hailong, et al. Dual band-notch ultra-wideband multiple-input multiple-output antenna with high isolation[J]. High Power Laser and Particle Beams, 2020, 32: 063007 doi: 10.11884/HPLPB202032.190443
|
[8] |
王辂, 郑宏兴, 邓东民. 边缘开槽多频段天线设计[J]. 太赫兹科学与电子信息学报, 2016, 14(4):599-602,620 doi: 10.11805/TKYDA201604.0599
Wang Lu, Zheng Hongxing, Deng Dongmin. Design of multi-band antenna slotting on the edge[J]. Journal of Terahertz Science and Electronic Information Technology, 2016, 14(4): 599-602,620 doi: 10.11805/TKYDA201604.0599
|
[9] |
Hasan M N, Chu S, Bashir S. A DGS monopole antenna loaded with U-shape stub for UWB MIMO applications[J]. Microwave and Optical Technology Letters, 2019, 61(9): 2141-2149. doi: 10.1002/mop.31877
|
[10] |
Du Chengzhu, Yang Zhipeng, Zhong Shunshi. A compact coplanar waveguide-fed band-notched four-port flexible ultra-wide band-multi-input-multi-output slot antenna for wireless body area network and internet of things applications[J]. International Journal of RF and Microwave Computer-Aided Engineering, 2022, 32: e23289.
|
[11] |
严冬, 郭琪富, 程威, 等. 一种可应用于WLAN的高隔离度双频MIMO天线设计[J]. 电子元件与材料, 2020, 39(6):91-96 doi: 10.14106/j.cnki.1001-2028.2020.06.016
Yan Dong, Guo Qifu, Cheng Wei, et al. Design of a high-isolation dual-frequency MIMO antenna for WLAN[J]. Electronic Components and Materials, 2020, 39(6): 91-96 doi: 10.14106/j.cnki.1001-2028.2020.06.016
|
[12] |
焦天奇, 孟祥余, 郝术苗. 一种基于T形槽的单极子超宽带天线: CN106876960A[P]. 2017-06-20.
Jao Tianqi, Meng Xiangyu, Hao Shumiao. A monopole UWB antenna based on t slot. CN106876960A[P]. 2017-06-20
|
[13] |
Koerner M A, Rogers R L. Gain enhancement of a pyramidal horn using E- and H-plane metal baffles[J]. IEEE Transactions on Antennas and Propagation, 2000, 48(4): 529-538. doi: 10.1109/8.843666
|
[14] |
Guo Qingyi, Wong H. A dual-polarized Fabry-Pérot antenna with high gain and wide bandwidth for millimeter-wave applications[J]. Frontiers of Information Technology & Electronic Engineering, 2021, 22(4): 599-608.
|
[15] |
于有海, 尹波, 张晓玲, 等. 应用于体域网通信的低SAR值天线设计[J]. 电子器件, 2020, 43(5):978-984 doi: 10.3969/j.issn.1005-9490.2020.05.006
Yu Youhai, Yin Bo, Zhang Xiaoling. A low SAR antenna designed for WBAN communications[J]. Chinese Journal of Electron Devices, 2020, 43(5): 978-984 doi: 10.3969/j.issn.1005-9490.2020.05.006
|
[1] | Zhang Tiankui, Shan Lianqiang, Yu Minghai, Lu Feng, Zhou Weimin, Tian Chao, Tan Fang, Yan Yonghong, Zhang Feng, Yuan Zongqiang, Xu Qiuyue, Wang Weiwu, Deng Zhigang, Teng Jian, Liu Dongxiao, Yang Lei, Fan Wei, Yang Yue, Zhou Kainan, Su Jingqin, Wu Yuchi, Ding Yongkun, Gu Yuqiu. Source-coded radiography technique with high spatial-resolution for X-ray source driven by ps-laser[J]. High Power Laser and Particle Beams, 2022, 34(12): 122001. doi: 10.11884/HPLPB202234.220186 |
[2] | Wang Feng, Li Yulong, Guan Zanyang, Zhang Xing, Li Jin, Huang Yunbao, Gan Huaquan, Che Xingsen. Application of compressed sensing technology in laser inertial confinement fusion[J]. High Power Laser and Particle Beams, 2022, 34(3): 031021. doi: 10.11884/HPLPB202234.210250 |
[3] | Cao Leifeng, Yang Zuhua, Chen Jihui, Wei Lai, Fan Quanping, Chen Yong, Zhang Qiangqiang, Zhou Weimin. Conceptual design of soft X-ray online calibration system for ICF[J]. High Power Laser and Particle Beams, 2020, 32(11): 112007. doi: 10.11884/HPLPB202032.200141 |
[4] | Sun Ao, Shang Wanli, Yang Guohong, Wei Minxi, Li Miao, Che Xingsen, Hou Lifei, Du Huabing, Yang Yimeng, Zhang Wenhai, Yang Dong, Wang Feng, He Haien, Yang Jiamin, Jiang Shaoen, Zhang Baohan, Ding Yongkun. Study on X-ray line emission diffraction in inertial confinement fusion and its recent progress[J]. High Power Laser and Particle Beams, 2020, 32(11): 112008. doi: 10.11884/HPLPB202032.200129 |
[5] | Cao Zhurong, Wang Qiangqiang, Deng Bo, Chen Tao, Deng Keli, Wang Weirong, Peng Xingyu, Chen Zhongjing, Yuan Zheng, Li Yukun, Wang Peng, Chen Bolun, Wang Feng, He Haien, Li Xingzhu, Xu Zeping, Yang Dong, Yang Jiamin, Jiang Shaoen, Ding Yongkun, Zhang Weiyan. Progress of X-ray high-speed photography technology used in laser driven inertial confinement fusion[J]. High Power Laser and Particle Beams, 2020, 32(11): 112004. doi: 10.11884/HPLPB202032.200099 |
[6] | Xu Jie, Mu Baozhong, Chen Liang, Li Wenjie, Xu Xinye, Wang Xin, Wang Zhanshan, Zhang Xing, Ding Yongkun. Progress of grazing incidence X-ray micro-imaging diagnosis technology[J]. High Power Laser and Particle Beams, 2020, 32(11): 112001. doi: 10.11884/HPLPB202032.200133 |
[7] | Gao Shasha, Wu Xiaojun, He Zhibing, He Xiaoshan, Wang Tao, Zhu Fanghua, Zhang Zhanwen. Research progress of fabrication techniques for laser inertial confinement fusion target[J]. High Power Laser and Particle Beams, 2020, 32(3): 032001. doi: 10.11884/HPLPB202032.200039 |
[8] | Xie Jun, Zhang Zhaorui, Mei Lusheng, Huang Yanhua, Zhu Lei, Liu Feng, Zhang Haijun, Li Guo, Song Chengwei. Fabrication of diagnostic hole of SiO2/CH/Au hohlraum by micro-electrical discharge machining[J]. High Power Laser and Particle Beams, 2014, 26(11): 112002. doi: 10.11884/HPLPB201426.112002 |
[9] | Wang Rui, Peng Long, Li Lezhong. Method for diagnosis and tuning of cross-coupled resonator bandstop and bandpass filters with source-load coupling[J]. High Power Laser and Particle Beams, 2014, 26(11): 113007. doi: 10.11884/HPLPB201426.113007 |
[10] | Tang Qi, Song Zifeng, Chen Jiabin, Zhan Xiayu. ICF implosion hotspot ion temperature diagnostic techniques based on neutron time-of-flight method[J]. High Power Laser and Particle Beams, 2013, 25(12): 3153-3157. doi: 3153 |
[11] | He Tie, Lei Jiarong, Liu Meng, An Li, Wang Xinhua, Zheng Pu. Fen+ beam profile diagnostics based on Al2O3:Cr scintillating screen[J]. High Power Laser and Particle Beams, 2013, 25(04): 1013-1016. |
[12] | Zhang Lin, Du Kai. Target technologies for laser inertial confinement fusion: State-of-the-art and future perspective[J]. High Power Laser and Particle Beams, 2013, 25(12): 3091-3097. doi: 3091 |
[13] | Yi Shengzhen, Mu Baozhong, Wang Xin, Jiang Li, Zhu Jingtao, Wang Zhanshan, Fang Zhiheng, Wang Wei, Fu Sizu. One-dimensional KBA microscope for planar target diagnosis[J]. High Power Laser and Particle Beams, 2012, 24(05): 1076-1080. doi: 10.3788/HPLPB20122405.1076 |
[14] | li yawei, deng jianjun, xie min, feng zongming, liu yuntao, ma chenggang. Measurement and diagnosis system for 1.2 MV repetitive pulsed power source[J]. High Power Laser and Particle Beams, 2010, 22(01): 0- . |
[15] | liu lifeng, xiao shali, wang hongjian, shi jun, liu shenye, wei minxi, chen bolun, qian jiayu. Application of spherically bent crystals spectrometer to X-ray diagnosis[J]. High Power Laser and Particle Beams, 2010, 22(10): 0- . |
[16] | wang jia-yin, shi jia-ming, yuan zhong-cai, xu bo. Plasma diagnostic method using the transmission attenuation of microwaves at three frequencies[J]. High Power Laser and Particle Beams, 2007, 19(04): 0- . |
[17] | zheng zhi jian, ding yong kun, ding yao nan, liu zhong li, liu shen ye, sun ke xu, cheng jin xiu, jiang shao en, qi lan ying, zhang bao han, yang cun bang. yang jia min, su chun xiao, chen jia bin, li wen hong, yi rong qing, tang dao yuan, . Recent progress and application of diagnostic technique in laser fusion[J]. High Power Laser and Particle Beams, 2003, 15(11): 0- . |
[18] | deng jian jun, chen si fu, li jing, chang li hua, yang guo jun, lin yu zheng. Time resolved energy spectrum diagnostics for 2MeV injector pulsed electron beam[J]. High Power Laser and Particle Beams, 2003, 15(07): 0- . |
[19] | hu hai-ying, li xu-dong, chen dai-bing. Diagnosis on the frequency spectrum of the X-band transit time tube oscillator[J]. High Power Laser and Particle Beams, 2002, 14(03): 0- . |
1. | 高斌,裴士伦,王辉,赵世琦,池云龙. S波段HYBRID聚束-加速结构的样机研制. 强激光与粒子束. 2021(02): 94-100 . ![]() |