Peng Yi, Zhang Jingyu, Chen Yixue. Application of improved transmutation trajectory analysis in neutron activation calculation[J]. High Power Laser and Particle Beams, 2017, 29: 036018. doi: 10.11884/HPLPB201729.160194
Citation: Liu Yingxi, Wu Handong, Ren Yuhui. Multimode reflector antenna suitable for construction of a high intensity radiated field[J]. High Power Laser and Particle Beams, 2023, 35: 033005. doi: 10.11884/HPLPB202335.220341

Multimode reflector antenna suitable for construction of a high intensity radiated field

doi: 10.11884/HPLPB202335.220341
  • Received Date: 2022-10-14
  • Accepted Date: 2023-01-09
  • Rev Recd Date: 2023-01-09
  • Available Online: 2023-02-04
  • Publish Date: 2023-03-01
  • High intensity radiated field construction system is a key equipment for electromagnetic irradiation effect test of various weapon systems. It can excite high intensity and evenly distributed electromagnetic field in a certain distance from the antenna. In this paper, an X-band offset Cassegrain multimode reflector antenna is designed for this system. Reflector antennas are used to obtain high gain so that the field strength in the desired region is as large as possible. The flat top narrow beam is realized by using the theory of multimode reflector, which makes the field in the desired area tend to be evenly distributed, while the field outside the area decreases rapidly. The measured results show that the gain of the proposed antenna is greater than 29.8 dB, and the 3 dB beamwidth is not less than 4.6°. In this range, the amplitude fluctuation of the pattern is less than 2 dB, and the flat top characteristic is obvious. In addition, the dual-bias reflector antenna has the advantages of small feed occlusion, low feeder loss and easy folding, which can be well applied to electromagnetic environment simulation test equipment.
  • [1]
    Bieth F, Delmote P, Schneider M. Electromagnetic compatibility of a railgun implemented on a warship[J]. IEEE Transactions on Plasma Science, 2019, 47(6): 2987-2994. doi: 10.1109/TPS.2019.2894952
    [2]
    谭志良, 李亚南, 宋培姣. 射频前端强电磁脉冲防护研究进展[J]. 北京理工大学学报, 2020, 40(3):231-242

    Tan Zhiliang, Li Ya’nan, Song Peijiao. Relevant research on electromagnetic pulse protection of RF front-end[J]. Transactions of Beijing Institute of Technology, 2020, 40(3): 231-242
    [3]
    冀鑫炜, 田锦, 孙珊珊, 等. 地面雷达系统强电磁脉冲防护分析[J]. 现代雷达, 2018, 40(7):23-26

    Ji Xinwei, Tian Jin, Sun Shanshan, et al. Analysis of high intensity electromagnetic pulse protection for ground radar system[J]. Modern Radar, 2018, 40(7): 23-26
    [4]
    吕英华. 信息时代电磁兼容领域的挑战与应对[J]. 电波科学学报, 2019, 34(4):393-402

    Lyu Yinghua. The challenge and reply to EMC fields in the times of information[J]. Chinese Journal of Radio Science, 2019, 34(4): 393-402
    [5]
    Liu Wei, Yan Zhaowen, Wang Jianwei, et al. Ultrawideband real-time monitoring system based on electro-optical under-sampling and data acquisition for near-field measurement[J]. IEEE Transactions on Instrumentation and Measurement, 2020, 69(9): 6603-6612. doi: 10.1109/TIM.2020.2968755
    [6]
    张黎军, 陈昌华, 滕雁, 等. 高功率微波辐射场远场测量方法[J]. 强激光与粒子束, 2016, 28:053002 doi: 10.11884/HPLPB201628.053002

    Zhang Lijun, Chen Changhua, Teng Yan, et al. Farfield measurement method of high power microwave in radiation field[J]. High Power Laser and Particle Beams, 2016, 28: 053002 doi: 10.11884/HPLPB201628.053002
    [7]
    Shi Guochang, Liao Yi, Ying Xiaojun, et al. Methods of high intensity radiated field testing for civil aircraft[C]//Proceedings of 2017 International Symposium on Electromagnetic Compatibility. 2017.
    [8]
    Romero S F, Rodríguez P L, Bocanegra D E, et al. Comparing open area test site and resonant chamber for unmanned aerial vehicle’s high-intensity radiated field testing[J]. IEEE Transactions on Electromagnetic Compatibility, 2018, 60(6): 1704-1711. doi: 10.1109/TEMC.2017.2747771
    [9]
    伍捍东. 多模反射面天线理论与技术研究[J]. 微波学报, 2021, 37(6):1-5

    Wu Handong. Research on the theory and technology of multimode reflector antenna[J]. Journal of Microwaves, 2021, 37(6): 1-5
    [10]
    Rao S K, Tang M Q. Stepped-reflector antenna for dual-band multiple beam satellite communications payloads[J]. IEEE Transactions on Antennas and Propagation, 2006, 54(3): 801-811. doi: 10.1109/TAP.2006.869938
    [11]
    Manohar V, Kovitz J M, Rahmat-Samii Y. Synthesis and analysis of low profile, metal-only stepped parabolic reflector antenna[J]. IEEE Transactions on Antennas and Propagation, 2018, 66(6): 2788-2798. doi: 10.1109/TAP.2018.2821694
    [12]
    Janken J, English W, Difonzo D. Radiation from “multimode” reflector antennas[C]//Proceedings of 1973 Antennas and Propagation Society International Symposium. 1973: 306-309.
    [13]
    Shee K K, Smith W T. Optimizing multimode horn feed arrays for offset reflector antennas using a constrained minimization algorithm to reduce cross polarization[J]. IEEE Transactions on Antennas and Propagation, 1997, 45(12): 1883-1885. doi: 10.1109/8.650210
    [14]
    Granet C. Designing classical offset Cassegrain or Gregorian dual-reflector antennas from combinations of prescribed geometric parameters[J]. IEEE Antennas and Propagation Magazine, 2002, 44(3): 114-123. doi: 10.1109/MAP.2002.1028736
    [15]
    Rusch W V T, Prata A, Rahmat-Samii Y. Derivation and application of the equivalent paraboloid for classical offset Cassegrain and Gregorian antennas[J]. IEEE Transactions on Antennas and Propagation, 1990, 38(8): 1141-1149. doi: 10.1109/8.56949
  • Relative Articles

    [1]Wang Xiangyu, Lu Yanlei, Zhu Yufeng, Fang Xu, Qiao Hanqing, Zhang Xingjia. Design and development of compact high power subnanosecond pulse compression device[J]. High Power Laser and Particle Beams, 2023, 35(2): 025006. doi: 10.11884/HPLPB202335.220254
    [2]Lian Yudong, Wang Yuhe, Zhang Yuqin, Han Shiwei, Yu Yang, Qi Xuan, Luan Nannan, Bai Zhenxu, Wang Yulei, Lü Zhiwei. Research progress of stimulated Brillouin scattering pulse compression technique[J]. High Power Laser and Particle Beams, 2021, 33(5): 051001. doi: 10.11884/HPLPB202133.210006
    [3]Zhang Xingjia, Lu Yanlei, Fan Yajun, Shi Lei, Xia Wenfeng, Qiao Hanqing. Triple transmission line type subnanosecond pulse-compression device[J]. High Power Laser and Particle Beams, 2017, 29(11): 115002. doi: 10.11884/HPLPB201729.170101
    [4]Shi Lei, Zhu Yufeng, Lu Yanlei, Xia Wenfeng, Qiao Hanqing, Yi Chaolong, Fan Yajun. Pulse compression based on pulse forming line charging techonlogy[J]. High Power Laser and Particle Beams, 2015, 27(06): 065003. doi: 10.11884/HPLPB201527.065003
    [5]Xiong Zhengfeng, Ning Hui, Chen Huaibi, Tang Chuanxiang. Design of compact power combiner in rectangular waveguide[J]. High Power Laser and Particle Beams, 2014, 26(06): 063013. doi: 10.11884/HPLPB201426.063013
    [6]Bai Zhen, Li Guolin, Zhang Jun. X-band high power microwave mode-selective directional coupler[J]. High Power Laser and Particle Beams, 2013, 25(07): 1747-1750. doi: 10.3788/HPLPB20132507.1747
    [7]Zhu Yufeng, Shi Lei, Fan Yajun, Xia Wenfeng. Application of forming-line pulse-compression in ultra-wide-spectrum technology[J]. High Power Laser and Particle Beams, 2013, 25(09): 2448-2452. doi: 10.3788/HPLPB20132509.2448
    [8]liang qinjin, shi xiaoyan, pan wenwu. High voltage semiconductor fast ionization device and its properties of pulse compression[J]. High Power Laser and Particle Beams, 2011, 23(08): 0- .
    [9]zhong shaopeng, zhao minghua, wang baoliang. Design and test of sub-harmonic cavity's coupler for 150 MeV linac of Shanghai synchrotron radiation facility[J]. High Power Laser and Particle Beams, 2010, 22(05): 0- .
    [10]guo qi, lü zhiwei, zhu chengyu. High-quality pulse shape realized in two-step stimulated Brillouin scattering pulse compression system[J]. High Power Laser and Particle Beams, 2010, 22(02): 0- .
    [11]gao zhixing, tang xiuzhang, zhang haifeng, xiang yihuai. Excimer laser pulse compressed with pulse feedback[J]. High Power Laser and Particle Beams, 2009, 21(08): 0- .
    [12]shi de-wan, wang wen-xiang, gong yu-bin, wei yan-yu. Solution of field distribution in stripline directional coupler[J]. High Power Laser and Particle Beams, 2007, 19(06): 0- .
    [13]zhang zhi-qiang, fang jin-yong, hao wen-xi, qiu shi, ning hui. Numerical simulation and optimization design of X-band pulse compression equipment[J]. High Power Laser and Particle Beams, 2006, 18(02): 0- .
    [14]liu wen-bing, zhu qi-hua, feng guo-ying, wang xiao, wang fang. Effects of non-parallel grating pair on pulse space-time profiles[J]. High Power Laser and Particle Beams, 2005, 17(10): 0- .
    [15]xie su-long, meng fan-bao, ma hong-ge. Effects of gas switch on power gain in pulse compressed system[J]. High Power Laser and Particle Beams, 2005, 17(06): 0- .
    [16]zhang wei, wu jian-hong, li chao-ming. Effect of wavefront aberration of grating on pulse compression[J]. High Power Laser and Particle Beams, 2005, 17(03): 0- .
    [17]wang chao, lzhi-wei, he wei-ming. Picosecond pulse generation by stimulated Brillouin scattering compressor[J]. High Power Laser and Particle Beams, 2003, 15(12): 0- .
    [18]ning hui, fang jin-yong, li ping, liu jing-yue, liu guo-zhi, xiao li-lin, tong de-chun, lin yu-zheng, . Experiment research on HPM pulse compression[J]. High Power Laser and Particle Beams, 2001, 13(04): 0- .
  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-04051015202530
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 25.6 %FULLTEXT: 25.6 %META: 70.7 %META: 70.7 %PDF: 3.7 %PDF: 3.7 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 7.9 %其他: 7.9 %其他: 0.5 %其他: 0.5 %China: 0.7 %China: 0.7 %India: 0.1 %India: 0.1 %Korea Republic of: 0.2 %Korea Republic of: 0.2 %Pakistan: 0.5 %Pakistan: 0.5 %Switzerland: 0.1 %Switzerland: 0.1 %Taiwan, China: 0.1 %Taiwan, China: 0.1 %United States: 0.1 %United States: 0.1 %[]: 2.0 %[]: 2.0 %上海: 0.7 %上海: 0.7 %中山: 0.1 %中山: 0.1 %临汾: 0.1 %临汾: 0.1 %丹东: 0.1 %丹东: 0.1 %丽水: 0.1 %丽水: 0.1 %内江: 0.1 %内江: 0.1 %北京: 14.1 %北京: 14.1 %十堰: 0.1 %十堰: 0.1 %南京: 0.3 %南京: 0.3 %南平: 0.1 %南平: 0.1 %南通: 0.2 %南通: 0.2 %卢布林: 0.3 %卢布林: 0.3 %台北: 0.1 %台北: 0.1 %台州: 0.5 %台州: 0.5 %合肥: 0.2 %合肥: 0.2 %咸阳: 0.3 %咸阳: 0.3 %哈尔科夫: 0.4 %哈尔科夫: 0.4 %哥伦布: 0.2 %哥伦布: 0.2 %嘉兴: 0.1 %嘉兴: 0.1 %大田广域: 0.1 %大田广域: 0.1 %天津: 0.3 %天津: 0.3 %孟买: 0.5 %孟买: 0.5 %安康: 0.1 %安康: 0.1 %宣城: 0.2 %宣城: 0.2 %山景: 0.1 %山景: 0.1 %巴中: 0.1 %巴中: 0.1 %常州: 0.3 %常州: 0.3 %广州: 0.1 %广州: 0.1 %张家口: 0.3 %张家口: 0.3 %德里: 0.2 %德里: 0.2 %德黑兰: 0.6 %德黑兰: 0.6 %忠清北道: 0.1 %忠清北道: 0.1 %成都: 0.1 %成都: 0.1 %新乡: 0.1 %新乡: 0.1 %新德里: 0.2 %新德里: 0.2 %无锡: 0.1 %无锡: 0.1 %昆明: 0.1 %昆明: 0.1 %晋城: 0.1 %晋城: 0.1 %普洱: 0.1 %普洱: 0.1 %杭州: 1.2 %杭州: 1.2 %武汉: 0.1 %武汉: 0.1 %毕晓普: 0.1 %毕晓普: 0.1 %汉诺威: 0.1 %汉诺威: 0.1 %深圳: 0.3 %深圳: 0.3 %温州: 0.2 %温州: 0.2 %湖州: 0.3 %湖州: 0.3 %漯河: 0.9 %漯河: 0.9 %珠海: 0.1 %珠海: 0.1 %石家庄: 0.1 %石家庄: 0.1 %福州: 0.1 %福州: 0.1 %秦皇岛: 0.1 %秦皇岛: 0.1 %纽约: 0.3 %纽约: 0.3 %聊城: 0.3 %聊城: 0.3 %芒廷维尤: 14.4 %芒廷维尤: 14.4 %芝加哥: 0.1 %芝加哥: 0.1 %衢州: 0.3 %衢州: 0.3 %西孟加拉邦: 0.2 %西孟加拉邦: 0.2 %西宁: 45.2 %西宁: 45.2 %西安: 0.4 %西安: 0.4 %贵阳: 0.1 %贵阳: 0.1 %运城: 0.2 %运城: 0.2 %郑州: 0.6 %郑州: 0.6 %重庆: 0.1 %重庆: 0.1 %长沙: 0.3 %长沙: 0.3 %长治: 0.1 %长治: 0.1 %阳泉: 0.2 %阳泉: 0.2 %黄山: 0.1 %黄山: 0.1 %其他其他ChinaIndiaKorea Republic ofPakistanSwitzerlandTaiwan, ChinaUnited States[]上海中山临汾丹东丽水内江北京十堰南京南平南通卢布林台北台州合肥咸阳哈尔科夫哥伦布嘉兴大田广域天津孟买安康宣城山景巴中常州广州张家口德里德黑兰忠清北道成都新乡新德里无锡昆明晋城普洱杭州武汉毕晓普汉诺威深圳温州湖州漯河珠海石家庄福州秦皇岛纽约聊城芒廷维尤芝加哥衢州西孟加拉邦西宁西安贵阳运城郑州重庆长沙长治阳泉黄山

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(2)

    Article views (894) PDF downloads(101) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return