Volume 35 Issue 3
Mar.  2023
Turn off MathJax
Article Contents
Liu Yingxi, Wu Handong, Ren Yuhui. Multimode reflector antenna suitable for construction of a high intensity radiated field[J]. High Power Laser and Particle Beams, 2023, 35: 033005. doi: 10.11884/HPLPB202335.220341
Citation: Liu Yingxi, Wu Handong, Ren Yuhui. Multimode reflector antenna suitable for construction of a high intensity radiated field[J]. High Power Laser and Particle Beams, 2023, 35: 033005. doi: 10.11884/HPLPB202335.220341

Multimode reflector antenna suitable for construction of a high intensity radiated field

doi: 10.11884/HPLPB202335.220341
  • Received Date: 2022-10-14
  • Accepted Date: 2023-01-09
  • Rev Recd Date: 2023-01-09
  • Available Online: 2023-02-04
  • Publish Date: 2023-03-01
  • High intensity radiated field construction system is a key equipment for electromagnetic irradiation effect test of various weapon systems. It can excite high intensity and evenly distributed electromagnetic field in a certain distance from the antenna. In this paper, an X-band offset Cassegrain multimode reflector antenna is designed for this system. Reflector antennas are used to obtain high gain so that the field strength in the desired region is as large as possible. The flat top narrow beam is realized by using the theory of multimode reflector, which makes the field in the desired area tend to be evenly distributed, while the field outside the area decreases rapidly. The measured results show that the gain of the proposed antenna is greater than 29.8 dB, and the 3 dB beamwidth is not less than 4.6°. In this range, the amplitude fluctuation of the pattern is less than 2 dB, and the flat top characteristic is obvious. In addition, the dual-bias reflector antenna has the advantages of small feed occlusion, low feeder loss and easy folding, which can be well applied to electromagnetic environment simulation test equipment.
  • loading
  • [1]
    Bieth F, Delmote P, Schneider M. Electromagnetic compatibility of a railgun implemented on a warship[J]. IEEE Transactions on Plasma Science, 2019, 47(6): 2987-2994. doi: 10.1109/TPS.2019.2894952
    [2]
    谭志良, 李亚南, 宋培姣. 射频前端强电磁脉冲防护研究进展[J]. 北京理工大学学报, 2020, 40(3):231-242

    Tan Zhiliang, Li Ya’nan, Song Peijiao. Relevant research on electromagnetic pulse protection of RF front-end[J]. Transactions of Beijing Institute of Technology, 2020, 40(3): 231-242
    [3]
    冀鑫炜, 田锦, 孙珊珊, 等. 地面雷达系统强电磁脉冲防护分析[J]. 现代雷达, 2018, 40(7):23-26

    Ji Xinwei, Tian Jin, Sun Shanshan, et al. Analysis of high intensity electromagnetic pulse protection for ground radar system[J]. Modern Radar, 2018, 40(7): 23-26
    [4]
    吕英华. 信息时代电磁兼容领域的挑战与应对[J]. 电波科学学报, 2019, 34(4):393-402

    Lyu Yinghua. The challenge and reply to EMC fields in the times of information[J]. Chinese Journal of Radio Science, 2019, 34(4): 393-402
    [5]
    Liu Wei, Yan Zhaowen, Wang Jianwei, et al. Ultrawideband real-time monitoring system based on electro-optical under-sampling and data acquisition for near-field measurement[J]. IEEE Transactions on Instrumentation and Measurement, 2020, 69(9): 6603-6612. doi: 10.1109/TIM.2020.2968755
    [6]
    张黎军, 陈昌华, 滕雁, 等. 高功率微波辐射场远场测量方法[J]. 强激光与粒子束, 2016, 28:053002 doi: 10.11884/HPLPB201628.053002

    Zhang Lijun, Chen Changhua, Teng Yan, et al. Farfield measurement method of high power microwave in radiation field[J]. High Power Laser and Particle Beams, 2016, 28: 053002 doi: 10.11884/HPLPB201628.053002
    [7]
    Shi Guochang, Liao Yi, Ying Xiaojun, et al. Methods of high intensity radiated field testing for civil aircraft[C]//Proceedings of 2017 International Symposium on Electromagnetic Compatibility. 2017.
    [8]
    Romero S F, Rodríguez P L, Bocanegra D E, et al. Comparing open area test site and resonant chamber for unmanned aerial vehicle’s high-intensity radiated field testing[J]. IEEE Transactions on Electromagnetic Compatibility, 2018, 60(6): 1704-1711. doi: 10.1109/TEMC.2017.2747771
    [9]
    伍捍东. 多模反射面天线理论与技术研究[J]. 微波学报, 2021, 37(6):1-5

    Wu Handong. Research on the theory and technology of multimode reflector antenna[J]. Journal of Microwaves, 2021, 37(6): 1-5
    [10]
    Rao S K, Tang M Q. Stepped-reflector antenna for dual-band multiple beam satellite communications payloads[J]. IEEE Transactions on Antennas and Propagation, 2006, 54(3): 801-811. doi: 10.1109/TAP.2006.869938
    [11]
    Manohar V, Kovitz J M, Rahmat-Samii Y. Synthesis and analysis of low profile, metal-only stepped parabolic reflector antenna[J]. IEEE Transactions on Antennas and Propagation, 2018, 66(6): 2788-2798. doi: 10.1109/TAP.2018.2821694
    [12]
    Janken J, English W, Difonzo D. Radiation from “multimode” reflector antennas[C]//Proceedings of 1973 Antennas and Propagation Society International Symposium. 1973: 306-309.
    [13]
    Shee K K, Smith W T. Optimizing multimode horn feed arrays for offset reflector antennas using a constrained minimization algorithm to reduce cross polarization[J]. IEEE Transactions on Antennas and Propagation, 1997, 45(12): 1883-1885. doi: 10.1109/8.650210
    [14]
    Granet C. Designing classical offset Cassegrain or Gregorian dual-reflector antennas from combinations of prescribed geometric parameters[J]. IEEE Antennas and Propagation Magazine, 2002, 44(3): 114-123. doi: 10.1109/MAP.2002.1028736
    [15]
    Rusch W V T, Prata A, Rahmat-Samii Y. Derivation and application of the equivalent paraboloid for classical offset Cassegrain and Gregorian antennas[J]. IEEE Transactions on Antennas and Propagation, 1990, 38(8): 1141-1149. doi: 10.1109/8.56949
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(2)

    Article views (765) PDF downloads(93) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return