Li Guangrong, Zhao Zhenguo, Wang Weijie, et al. Design and implementation of semiconductor multi-physical parallel computing program JEMS-CDS-Device[J]. High Power Laser and Particle Beams, 2020, 32: 043201. doi: 10.11884/HPLPB202032.190264
Citation: Peng Chao, Lei Zhifeng, Zhang Zhangang, et al. Measurement and simulation of terrestrial atmospheric neutron spectrum in typical regions of China[J]. High Power Laser and Particle Beams, 2023, 35: 059001. doi: 10.11884/HPLPB202335.220353

Measurement and simulation of terrestrial atmospheric neutron spectrum in typical regions of China

doi: 10.11884/HPLPB202335.220353
  • Received Date: 2022-10-25
  • Accepted Date: 2023-02-10
  • Rev Recd Date: 2023-02-10
  • Available Online: 2023-02-21
  • Publish Date: 2023-04-07
  • Atmospheric neutrons can cause the single event effect (SEE) of integrated circuits, resulting in data loss or functional interrupt. The SEE failure rate caused by atmospheric neutrons depends on its flux, thus obtaining the atmospheric neutron flux is the premise of SEE failure rate assessment. In this paper, the atmospheric neutron energy spectra and fluxes in Guangzhou, Lanzhou and Lhasa are measured using the Bonner sphere spectrometers (BSS). Typical characteristics of atmospheric neutron spectrum are obtained. The measured results show that the atmospheric neutron flux in different areas is affected by the altitude, and the terrestrial atmospheric neutron flux increases with the altitude. In addition, the nuclear reaction process of primary cosmic ray particles in the earth’s atmosphere can also be simulated based on the Monte Carlo simulation tools, so as to calculate the atmospheric neutron spectrum. It shows that the measured data of atmospheric neutron spectra are in good agreement with the simulation data. These data can be used in quantitative evaluation of atmospheric neutron-induced SEE of integrated circuits.
  • [1]
    Ziegler J F. Terrestrial cosmic rays[J]. IBM Journal of Research and Development, 1996, 40(1): 19-39. doi: 10.1147/rd.401.0019
    [2]
    Ziegler J F, Lanford W A. Effect of cosmic rays on computer memories[J]. Science, 1979, 206(4420): 776-788. doi: 10.1126/science.206.4420.776
    [3]
    Nakamura T, Baba M, Ibe E, et al. Terrestrial neutron-induced soft errors in advanced memory devices[M]. Hackensack: World Scientific, 2008.
    [4]
    Cheminet A, Lacoste V, Hubert G, et al. Experimental measurements of the cosmic-ray induced neutron spectra at various mountain altitudes with HERMEIS[J]. IEEE Transactions on Nuclear Science, 2012, 59(4): 1722-1730. doi: 10.1109/TNS.2012.2201500
    [5]
    Gordon M S, Goldhagen P, Rodbell K P, et al. Measurement of the flux and energy spectrum of cosmic-ray induced neutrons on the ground[J]. IEEE Transactions on Nuclear Science, 2004, 51(6): 3427-3434. doi: 10.1109/TNS.2004.839134
    [6]
    吴建华, 徐勇军, 刘森林, 等. 西藏地区天然中子能谱测量[J]. 原子能科学技术, 2014, 48(2):219-222 doi: 10.7538/yzk.2014.48.02.0219

    Wu Jianhua, Xu Yongjun, Liu Senlin, et al. Spectrum measurement of natural neutron in Tibet[J]. Atomic Energy Science and Technology, 2014, 48(2): 219-222 doi: 10.7538/yzk.2014.48.02.0219
    [7]
    Hu Z M, Ge L J, Sun J Q, et al. Measurements of cosmic ray induced background neutrons near the ground using a Bonner sphere spectrometer[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2019, 940: 78-82.
    [8]
    Kole M, Pearce M, Salinas M M. A model of the cosmic ray induced atmospheric neutron environment[J]. Astroparticle Physics, 2015, 62: 230-240. doi: 10.1016/j.astropartphys.2014.10.002
    [9]
    Barth J L, Dyer C S, Stassinopoulos E G. Space, atmospheric, and terrestrial radiation environments[J]. IEEE Transactions on Nuclear Science, 2003, 50(3): 466-482. doi: 10.1109/TNS.2003.813131
    [10]
    Normand E, Baker T J. Altitude and latitude variations in avionics SEU and atmospheric neutron flux[J]. IEEE Transactions on Nuclear Science, 1993, 40(6): 1484-1490. doi: 10.1109/23.273514
    [11]
    Fang Yipin, Oates A S. Thermal neutron-induced soft errors in advanced memory and logic devices[J]. IEEE Transactions on Device and Materials Reliability, 2014, 14(1): 583-586. doi: 10.1109/TDMR.2013.2287699
    [12]
    Wen Shijie, Wong R, Romain M, et al. Thermal neutron soft error rate for SRAMS in the 90nm–45nm technology range[C]//Proceedings of 2010 IEEE International Reliability Physics Symposium. 2010: 1036-1039.
    [13]
    Sato T. Analytical model for estimating the zenith angle dependence of terrestrial cosmic ray fluxes[J]. PLoS One, 2016, 11: e0160390. doi: 10.1371/journal.pone.0160390
    [14]
    Fasso A, Ferrari A, Ranft J, et al. FLUKA: present status and future developments[C]//Proceedings 4th International Conference on Calorimetry in High-energy Physics. 1993: 493-502.
    [15]
    Infantino A, Blackmore E W, Brugger M, et al. FLUKA Monte Carlo assessment of the terrestrial muon flux at low energies and comparison against experimental measurements[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2016, 838: 109-116.
    [16]
    Sato T, Niita K. Analytical functions to predict cosmic-ray neutron spectra in the atmosphere[J]. Radiation Research, 2006, 166(3): 544-555. doi: 10.1667/RR0610.1
    [17]
    JESD89B, Measurement and reporting of alpha particle and terrestrial cosmic ray induced soft errors in semiconductor devices[S].
    [18]
    Ziegler J F. Terrestrial cosmic ray intensities[J]. IBM Journal of Research and Development, 1998, 42(1): 117-140. doi: 10.1147/rd.421.0117
  • Relative Articles

    [1]Gao Cong, Liu Nian, Li Fengyun, Liu Yu, Dai Jiangyun, Shen Changle, He Hongle, Lü Jiakun, Li Fang, Zhang Lihua, Li Yuwei, Jiang Lei, Guo Chao, Tao Rumao, Ke Weiwei, Zhang Haoyu, Wang Jianjun, Lin Honghuan, Jing Feng. 17.4 kW (1+1) long distance side-pumped laser fiber[J]. High Power Laser and Particle Beams, 2022, 34(5): 051002. doi: 10.11884/HPLPB202234.220070
    [2]Han Yaofeng, Zhang Ruofan, Yang Hongru, Duan Yuanyuan, Lei Junjie. Time-variable thermal effect in side-pump high power pulsed Nd:YAG laser[J]. High Power Laser and Particle Beams, 2015, 27(06): 061005. doi: 10.11884/HPLPB201527.061005
    [3]Zhao Shijie, Xie Ruiqing, Liao Defeng, Chen Xianhua, Wang Jian. Low transmitted wavefront error processing technology for Nd:YAG crystal slab[J]. High Power Laser and Particle Beams, 2015, 27(06): 062010. doi: 10.11884/HPLPB201527.062010
    [4]Xie Ruiqing, Liao Defeng, Wang Xiaobo, Yuan Zhigang, Zhong Bo, Chen Xianhua, Wang Jian, Lei Xiangyang, Hou Jing. Fabrication of Nd:YAG crystal slab using composite lap[J]. High Power Laser and Particle Beams, 2014, 26(01): 012007. doi: 10.3788/HPLPB201426.012007
    [5]li bin, yao jianquan, ding xin, zhang fan, wang peng. Laser diode-side-pumped high power 266 nm ultraviolet laser[J]. High Power Laser and Particle Beams, 2011, 23(08): 0- .
    [6]xiong zhuang, song huiying, qu dapeng, yao yi, zheng quan. LD-pumped Nd:YVO4 dual-wavelength operation and intracavity sum-frequency 491 nm laser[J]. High Power Laser and Particle Beams, 2010, 22(06): 0- .
    [7]pang kai, han jun-ting, li qiang, jiang meng-hua, cai yan-fang, liu bo, ding xiao-ting. Pump distribution in LD side-pumped disk laser[J]. High Power Laser and Particle Beams, 2008, 20(08): 0- .
    [8]dai qin, li xin-zhong, wang xi-jun, . Analysis of thermal effect in LDA side pumping Nd:YAG solid state lasers[J]. High Power Laser and Particle Beams, 2007, 19(02): 0- .
    [9]zhu hai-yong, zhang ge, huang cheng-hui, wei yong, huang lin-xiong, chen jing, chen wei-dong, wei min, chen zhen-qiang. High-power CW diode-side-pumped Nd:YAP laser at 1 341.4 nm[J]. High Power Laser and Particle Beams, 2006, 18(09): 0- .
    [10]bu yi-kun, zheng quan, xue qing-hua, cheng ying-xin, qian long-sheng, . LD-pumped Nd:YAG 946 nm/1 064 nm laser dual-wavelength operation and intracavity sum-frequency mixing[J]. High Power Laser and Particle Beams, 2005, 17(05s): 0- .
    [11]jiang dong-sheng, zhao hong, wang jian-jun, yuan li-gang, yang tao, zhou shou-huan. 120 W diode-pumped green Nd:YAG laser[J]. High Power Laser and Particle Beams, 2005, 17(05s): 0- .
    [12]fang ming-xing, li qiang, jiang meng-hua, zuo tie-chuan. Four-rod resonator for krypton lamp pumped CW Nd:YAG laser with high power output[J]. High Power Laser and Particle Beams, 2005, 17(11): 0- .
    [13]yao zhen-yu, jiang jian-feng, tu bo, zhou tang-jian, cui ling-ling, tang chun, wu de-yong. Study on diode-pumped Nd:YAG disk laser[J]. High Power Laser and Particle Beams, 2005, 17(05s): 0- .
    [14]ling wei-jun, wei zhi-yi, jia yu-lei, wang peng, wang zhao-hua. All-solid-state actively mode-locked diode-radial-pumped Nd:YAG laser[J]. High Power Laser and Particle Beams, 2005, 17(05s): 0- .
    [15]luo yi-ming, li ming-zhong, tang jun, wang jian-jun, fu xue-jun, jia wei, deng qing-hua, . Diode-pumped high-gain amplifier system[J]. High Power Laser and Particle Beams, 2005, 17(05s): 0- .
    [16]li qiang, wang zhi min, wang zhi yong, yu zhen sheng, lei hong, guo jiang, li gang, zuo tie chuan. lamp pumped high power CW Nd:YAG laser[J]. High Power Laser and Particle Beams, 2004, 16(09): 0- .
    [17]yao zhen yu, l bai da, tu bo, jiang jian feng, tong li xin, wu de yong, gao qing song, chen xiao lin. 100W diodepumped Nd:YAG disk laser[J]. High Power Laser and Particle Beams, 2004, 16(09): 0- .
    [18]luo yi-ming, li ming-zhong, qin xing-wu, chen liang-ming, sui zhan, zhao run-chang, ding lei, liang yue. Study on ring-LD side-pumping solid laser[J]. High Power Laser and Particle Beams, 2002, 14(03): 0- .
  • Cited by

    Periodical cited type(0)

    Other cited types(3)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-04010203040
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 23.0 %FULLTEXT: 23.0 %META: 75.8 %META: 75.8 %PDF: 1.2 %PDF: 1.2 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 2.7 %其他: 2.7 %其他: 0.4 %其他: 0.4 %Canada: 0.1 %Canada: 0.1 %Canton: 0.1 %Canton: 0.1 %China: 0.4 %China: 0.4 %Elizabeth City: 0.1 %Elizabeth City: 0.1 %India: 0.1 %India: 0.1 %Netherlands: 0.2 %Netherlands: 0.2 %Rochester: 0.2 %Rochester: 0.2 %Spain: 0.1 %Spain: 0.1 %Taiwan, China: 0.2 %Taiwan, China: 0.2 %United States: 0.4 %United States: 0.4 %[]: 0.7 %[]: 0.7 %上海: 0.5 %上海: 0.5 %中山: 0.1 %中山: 0.1 %丹佛: 0.1 %丹佛: 0.1 %佛罗里达: 0.3 %佛罗里达: 0.3 %北京: 19.1 %北京: 19.1 %北海: 0.2 %北海: 0.2 %匹兹堡: 0.2 %匹兹堡: 0.2 %南京: 0.1 %南京: 0.1 %南昌: 0.4 %南昌: 0.4 %厦门: 0.2 %厦门: 0.2 %台州: 0.5 %台州: 0.5 %周口: 0.1 %周口: 0.1 %圣保罗: 0.1 %圣保罗: 0.1 %天津: 0.2 %天津: 0.2 %安德森: 0.1 %安德森: 0.1 %宜昌: 0.2 %宜昌: 0.2 %密蘇里城: 0.4 %密蘇里城: 0.4 %广州: 0.2 %广州: 0.2 %张家口: 0.8 %张家口: 0.8 %成都: 0.1 %成都: 0.1 %扬州: 0.2 %扬州: 0.2 %斯泰特勒: 0.1 %斯泰特勒: 0.1 %新乡: 0.1 %新乡: 0.1 %新北: 0.1 %新北: 0.1 %昆明: 0.3 %昆明: 0.3 %普洱: 0.1 %普洱: 0.1 %杭州: 0.4 %杭州: 0.4 %杰克逊: 0.2 %杰克逊: 0.2 %武汉: 0.2 %武汉: 0.2 %法拉盛: 0.2 %法拉盛: 0.2 %济南: 0.2 %济南: 0.2 %淄博: 0.1 %淄博: 0.1 %深圳: 0.1 %深圳: 0.1 %湖州: 0.1 %湖州: 0.1 %漯河: 0.4 %漯河: 0.4 %瑟普赖斯: 0.2 %瑟普赖斯: 0.2 %石家庄: 0.1 %石家庄: 0.1 %秦皇岛: 0.2 %秦皇岛: 0.2 %芒廷维尤: 28.0 %芒廷维尤: 28.0 %莆田: 0.2 %莆田: 0.2 %萨默维尔: 0.1 %萨默维尔: 0.1 %衢州: 0.1 %衢州: 0.1 %西宁: 39.6 %西宁: 39.6 %西安: 0.1 %西安: 0.1 %运城: 0.1 %运城: 0.1 %郑州: 0.2 %郑州: 0.2 %长沙: 0.1 %长沙: 0.1 %长治: 0.1 %长治: 0.1 %其他其他CanadaCantonChinaElizabeth CityIndiaNetherlandsRochesterSpainTaiwan, ChinaUnited States[]上海中山丹佛佛罗里达北京北海匹兹堡南京南昌厦门台州周口圣保罗天津安德森宜昌密蘇里城广州张家口成都扬州斯泰特勒新乡新北昆明普洱杭州杰克逊武汉法拉盛济南淄博深圳湖州漯河瑟普赖斯石家庄秦皇岛芒廷维尤莆田萨默维尔衢州西宁西安运城郑州长沙长治

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(3)

    Article views (1055) PDF downloads(129) Cited by(3)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return