Citation: | Peng Chao, Lei Zhifeng, Zhang Zhangang, et al. Measurement and simulation of terrestrial atmospheric neutron spectrum in typical regions of China[J]. High Power Laser and Particle Beams, 2023, 35: 059001. doi: 10.11884/HPLPB202335.220353 |
[1] |
Ziegler J F. Terrestrial cosmic rays[J]. IBM Journal of Research and Development, 1996, 40(1): 19-39. doi: 10.1147/rd.401.0019
|
[2] |
Ziegler J F, Lanford W A. Effect of cosmic rays on computer memories[J]. Science, 1979, 206(4420): 776-788. doi: 10.1126/science.206.4420.776
|
[3] |
Nakamura T, Baba M, Ibe E, et al. Terrestrial neutron-induced soft errors in advanced memory devices[M]. Hackensack: World Scientific, 2008.
|
[4] |
Cheminet A, Lacoste V, Hubert G, et al. Experimental measurements of the cosmic-ray induced neutron spectra at various mountain altitudes with HERMEIS[J]. IEEE Transactions on Nuclear Science, 2012, 59(4): 1722-1730. doi: 10.1109/TNS.2012.2201500
|
[5] |
Gordon M S, Goldhagen P, Rodbell K P, et al. Measurement of the flux and energy spectrum of cosmic-ray induced neutrons on the ground[J]. IEEE Transactions on Nuclear Science, 2004, 51(6): 3427-3434. doi: 10.1109/TNS.2004.839134
|
[6] |
吴建华, 徐勇军, 刘森林, 等. 西藏地区天然中子能谱测量[J]. 原子能科学技术, 2014, 48(2):219-222 doi: 10.7538/yzk.2014.48.02.0219
Wu Jianhua, Xu Yongjun, Liu Senlin, et al. Spectrum measurement of natural neutron in Tibet[J]. Atomic Energy Science and Technology, 2014, 48(2): 219-222 doi: 10.7538/yzk.2014.48.02.0219
|
[7] |
Hu Z M, Ge L J, Sun J Q, et al. Measurements of cosmic ray induced background neutrons near the ground using a Bonner sphere spectrometer[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2019, 940: 78-82.
|
[8] |
Kole M, Pearce M, Salinas M M. A model of the cosmic ray induced atmospheric neutron environment[J]. Astroparticle Physics, 2015, 62: 230-240. doi: 10.1016/j.astropartphys.2014.10.002
|
[9] |
Barth J L, Dyer C S, Stassinopoulos E G. Space, atmospheric, and terrestrial radiation environments[J]. IEEE Transactions on Nuclear Science, 2003, 50(3): 466-482. doi: 10.1109/TNS.2003.813131
|
[10] |
Normand E, Baker T J. Altitude and latitude variations in avionics SEU and atmospheric neutron flux[J]. IEEE Transactions on Nuclear Science, 1993, 40(6): 1484-1490. doi: 10.1109/23.273514
|
[11] |
Fang Yipin, Oates A S. Thermal neutron-induced soft errors in advanced memory and logic devices[J]. IEEE Transactions on Device and Materials Reliability, 2014, 14(1): 583-586. doi: 10.1109/TDMR.2013.2287699
|
[12] |
Wen Shijie, Wong R, Romain M, et al. Thermal neutron soft error rate for SRAMS in the 90nm–45nm technology range[C]//Proceedings of 2010 IEEE International Reliability Physics Symposium. 2010: 1036-1039.
|
[13] |
Sato T. Analytical model for estimating the zenith angle dependence of terrestrial cosmic ray fluxes[J]. PLoS One, 2016, 11: e0160390. doi: 10.1371/journal.pone.0160390
|
[14] |
Fasso A, Ferrari A, Ranft J, et al. FLUKA: present status and future developments[C]//Proceedings 4th International Conference on Calorimetry in High-energy Physics. 1993: 493-502.
|
[15] |
Infantino A, Blackmore E W, Brugger M, et al. FLUKA Monte Carlo assessment of the terrestrial muon flux at low energies and comparison against experimental measurements[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2016, 838: 109-116.
|
[16] |
Sato T, Niita K. Analytical functions to predict cosmic-ray neutron spectra in the atmosphere[J]. Radiation Research, 2006, 166(3): 544-555. doi: 10.1667/RR0610.1
|
[17] |
JESD89B, Measurement and reporting of alpha particle and terrestrial cosmic ray induced soft errors in semiconductor devices[S].
|
[18] |
Ziegler J F. Terrestrial cosmic ray intensities[J]. IBM Journal of Research and Development, 1998, 42(1): 117-140. doi: 10.1147/rd.421.0117
|
[1] | Gao Cong, Liu Nian, Li Fengyun, Liu Yu, Dai Jiangyun, Shen Changle, He Hongle, Lü Jiakun, Li Fang, Zhang Lihua, Li Yuwei, Jiang Lei, Guo Chao, Tao Rumao, Ke Weiwei, Zhang Haoyu, Wang Jianjun, Lin Honghuan, Jing Feng. 17.4 kW (1+1) long distance side-pumped laser fiber[J]. High Power Laser and Particle Beams, 2022, 34(5): 051002. doi: 10.11884/HPLPB202234.220070 |
[2] | Han Yaofeng, Zhang Ruofan, Yang Hongru, Duan Yuanyuan, Lei Junjie. Time-variable thermal effect in side-pump high power pulsed Nd:YAG laser[J]. High Power Laser and Particle Beams, 2015, 27(06): 061005. doi: 10.11884/HPLPB201527.061005 |
[3] | Zhao Shijie, Xie Ruiqing, Liao Defeng, Chen Xianhua, Wang Jian. Low transmitted wavefront error processing technology for Nd:YAG crystal slab[J]. High Power Laser and Particle Beams, 2015, 27(06): 062010. doi: 10.11884/HPLPB201527.062010 |
[4] | Xie Ruiqing, Liao Defeng, Wang Xiaobo, Yuan Zhigang, Zhong Bo, Chen Xianhua, Wang Jian, Lei Xiangyang, Hou Jing. Fabrication of Nd:YAG crystal slab using composite lap[J]. High Power Laser and Particle Beams, 2014, 26(01): 012007. doi: 10.3788/HPLPB201426.012007 |
[5] | li bin, yao jianquan, ding xin, zhang fan, wang peng. Laser diode-side-pumped high power 266 nm ultraviolet laser[J]. High Power Laser and Particle Beams, 2011, 23(08): 0- . |
[6] | xiong zhuang, song huiying, qu dapeng, yao yi, zheng quan. LD-pumped Nd:YVO4 dual-wavelength operation and intracavity sum-frequency 491 nm laser[J]. High Power Laser and Particle Beams, 2010, 22(06): 0- . |
[7] | pang kai, han jun-ting, li qiang, jiang meng-hua, cai yan-fang, liu bo, ding xiao-ting. Pump distribution in LD side-pumped disk laser[J]. High Power Laser and Particle Beams, 2008, 20(08): 0- . |
[8] | dai qin, li xin-zhong, wang xi-jun, . Analysis of thermal effect in LDA side pumping Nd:YAG solid state lasers[J]. High Power Laser and Particle Beams, 2007, 19(02): 0- . |
[9] | zhu hai-yong, zhang ge, huang cheng-hui, wei yong, huang lin-xiong, chen jing, chen wei-dong, wei min, chen zhen-qiang. High-power CW diode-side-pumped Nd:YAP laser at 1 341.4 nm[J]. High Power Laser and Particle Beams, 2006, 18(09): 0- . |
[10] | bu yi-kun, zheng quan, xue qing-hua, cheng ying-xin, qian long-sheng, . LD-pumped Nd:YAG 946 nm/1 064 nm laser dual-wavelength operation and intracavity sum-frequency mixing[J]. High Power Laser and Particle Beams, 2005, 17(05s): 0- . |
[11] | jiang dong-sheng, zhao hong, wang jian-jun, yuan li-gang, yang tao, zhou shou-huan. 120 W diode-pumped green Nd:YAG laser[J]. High Power Laser and Particle Beams, 2005, 17(05s): 0- . |
[12] | fang ming-xing, li qiang, jiang meng-hua, zuo tie-chuan. Four-rod resonator for krypton lamp pumped CW Nd:YAG laser with high power output[J]. High Power Laser and Particle Beams, 2005, 17(11): 0- . |
[13] | yao zhen-yu, jiang jian-feng, tu bo, zhou tang-jian, cui ling-ling, tang chun, wu de-yong. Study on diode-pumped Nd:YAG disk laser[J]. High Power Laser and Particle Beams, 2005, 17(05s): 0- . |
[14] | ling wei-jun, wei zhi-yi, jia yu-lei, wang peng, wang zhao-hua. All-solid-state actively mode-locked diode-radial-pumped Nd:YAG laser[J]. High Power Laser and Particle Beams, 2005, 17(05s): 0- . |
[15] | luo yi-ming, li ming-zhong, tang jun, wang jian-jun, fu xue-jun, jia wei, deng qing-hua, . Diode-pumped high-gain amplifier system[J]. High Power Laser and Particle Beams, 2005, 17(05s): 0- . |
[16] | li qiang, wang zhi min, wang zhi yong, yu zhen sheng, lei hong, guo jiang, li gang, zuo tie chuan. lamp pumped high power CW Nd:YAG laser[J]. High Power Laser and Particle Beams, 2004, 16(09): 0- . |
[17] | yao zhen yu, l bai da, tu bo, jiang jian feng, tong li xin, wu de yong, gao qing song, chen xiao lin. 100W diodepumped Nd:YAG disk laser[J]. High Power Laser and Particle Beams, 2004, 16(09): 0- . |
[18] | luo yi-ming, li ming-zhong, qin xing-wu, chen liang-ming, sui zhan, zhao run-chang, ding lei, liang yue. Study on ring-LD side-pumping solid laser[J]. High Power Laser and Particle Beams, 2002, 14(03): 0- . |