Shi Yiping, Yi Chaolong, Fan Yajun, et al. Design and experiments on a kind of high-power coplanar-feed impulse radiating antenna[J]. High Power Laser and Particle Beams, 2016, 28: 043001. doi: 10.11884/HPLPB201628.123001
Citation: Peng Chao, Lei Zhifeng, Zhang Zhangang, et al. Measurement and simulation of terrestrial atmospheric neutron spectrum in typical regions of China[J]. High Power Laser and Particle Beams, 2023, 35: 059001. doi: 10.11884/HPLPB202335.220353

Measurement and simulation of terrestrial atmospheric neutron spectrum in typical regions of China

doi: 10.11884/HPLPB202335.220353
  • Received Date: 2022-10-25
  • Accepted Date: 2023-02-10
  • Rev Recd Date: 2023-02-10
  • Available Online: 2023-02-21
  • Publish Date: 2023-04-07
  • Atmospheric neutrons can cause the single event effect (SEE) of integrated circuits, resulting in data loss or functional interrupt. The SEE failure rate caused by atmospheric neutrons depends on its flux, thus obtaining the atmospheric neutron flux is the premise of SEE failure rate assessment. In this paper, the atmospheric neutron energy spectra and fluxes in Guangzhou, Lanzhou and Lhasa are measured using the Bonner sphere spectrometers (BSS). Typical characteristics of atmospheric neutron spectrum are obtained. The measured results show that the atmospheric neutron flux in different areas is affected by the altitude, and the terrestrial atmospheric neutron flux increases with the altitude. In addition, the nuclear reaction process of primary cosmic ray particles in the earth’s atmosphere can also be simulated based on the Monte Carlo simulation tools, so as to calculate the atmospheric neutron spectrum. It shows that the measured data of atmospheric neutron spectra are in good agreement with the simulation data. These data can be used in quantitative evaluation of atmospheric neutron-induced SEE of integrated circuits.
  • [1]
    Ziegler J F. Terrestrial cosmic rays[J]. IBM Journal of Research and Development, 1996, 40(1): 19-39. doi: 10.1147/rd.401.0019
    [2]
    Ziegler J F, Lanford W A. Effect of cosmic rays on computer memories[J]. Science, 1979, 206(4420): 776-788. doi: 10.1126/science.206.4420.776
    [3]
    Nakamura T, Baba M, Ibe E, et al. Terrestrial neutron-induced soft errors in advanced memory devices[M]. Hackensack: World Scientific, 2008.
    [4]
    Cheminet A, Lacoste V, Hubert G, et al. Experimental measurements of the cosmic-ray induced neutron spectra at various mountain altitudes with HERMEIS[J]. IEEE Transactions on Nuclear Science, 2012, 59(4): 1722-1730. doi: 10.1109/TNS.2012.2201500
    [5]
    Gordon M S, Goldhagen P, Rodbell K P, et al. Measurement of the flux and energy spectrum of cosmic-ray induced neutrons on the ground[J]. IEEE Transactions on Nuclear Science, 2004, 51(6): 3427-3434. doi: 10.1109/TNS.2004.839134
    [6]
    吴建华, 徐勇军, 刘森林, 等. 西藏地区天然中子能谱测量[J]. 原子能科学技术, 2014, 48(2):219-222 doi: 10.7538/yzk.2014.48.02.0219

    Wu Jianhua, Xu Yongjun, Liu Senlin, et al. Spectrum measurement of natural neutron in Tibet[J]. Atomic Energy Science and Technology, 2014, 48(2): 219-222 doi: 10.7538/yzk.2014.48.02.0219
    [7]
    Hu Z M, Ge L J, Sun J Q, et al. Measurements of cosmic ray induced background neutrons near the ground using a Bonner sphere spectrometer[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2019, 940: 78-82.
    [8]
    Kole M, Pearce M, Salinas M M. A model of the cosmic ray induced atmospheric neutron environment[J]. Astroparticle Physics, 2015, 62: 230-240. doi: 10.1016/j.astropartphys.2014.10.002
    [9]
    Barth J L, Dyer C S, Stassinopoulos E G. Space, atmospheric, and terrestrial radiation environments[J]. IEEE Transactions on Nuclear Science, 2003, 50(3): 466-482. doi: 10.1109/TNS.2003.813131
    [10]
    Normand E, Baker T J. Altitude and latitude variations in avionics SEU and atmospheric neutron flux[J]. IEEE Transactions on Nuclear Science, 1993, 40(6): 1484-1490. doi: 10.1109/23.273514
    [11]
    Fang Yipin, Oates A S. Thermal neutron-induced soft errors in advanced memory and logic devices[J]. IEEE Transactions on Device and Materials Reliability, 2014, 14(1): 583-586. doi: 10.1109/TDMR.2013.2287699
    [12]
    Wen Shijie, Wong R, Romain M, et al. Thermal neutron soft error rate for SRAMS in the 90nm–45nm technology range[C]//Proceedings of 2010 IEEE International Reliability Physics Symposium. 2010: 1036-1039.
    [13]
    Sato T. Analytical model for estimating the zenith angle dependence of terrestrial cosmic ray fluxes[J]. PLoS One, 2016, 11: e0160390. doi: 10.1371/journal.pone.0160390
    [14]
    Fasso A, Ferrari A, Ranft J, et al. FLUKA: present status and future developments[C]//Proceedings 4th International Conference on Calorimetry in High-energy Physics. 1993: 493-502.
    [15]
    Infantino A, Blackmore E W, Brugger M, et al. FLUKA Monte Carlo assessment of the terrestrial muon flux at low energies and comparison against experimental measurements[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2016, 838: 109-116.
    [16]
    Sato T, Niita K. Analytical functions to predict cosmic-ray neutron spectra in the atmosphere[J]. Radiation Research, 2006, 166(3): 544-555. doi: 10.1667/RR0610.1
    [17]
    JESD89B, Measurement and reporting of alpha particle and terrestrial cosmic ray induced soft errors in semiconductor devices[S].
    [18]
    Ziegler J F. Terrestrial cosmic ray intensities[J]. IBM Journal of Research and Development, 1998, 42(1): 117-140. doi: 10.1147/rd.421.0117
  • Relative Articles

    [1]Han Xiaoxiang, Li Jun, Zhang Xin, Yuan Lin, Liu Yang, Wang Boyu. Simulation research on energy distribution of light radiation from nuclear explosion[J]. High Power Laser and Particle Beams, 2024, 36(7): 076003. doi: 10.11884/HPLPB202436.230406
    [2]Qi Xiongfei, Hou Liqiang, Du Zhengyu, Cao Xuewu. Numerical simulation and experimental verification on distribution characteristics of hydrogen flow in single compartment[J]. High Power Laser and Particle Beams, 2020, 32(5): 056002. doi: 10.11884/HPLPB202032.190420
    [3]Shen Shuangyan, Jin Xing. Numerical simulation of MHD magnetic control inlet flow field distribution[J]. High Power Laser and Particle Beams, 2015, 27(12): 124008. doi: 10.11884/HPLPB201527.124008
    [4]Tang Mi, Liu Cangli, Li Ping, Zhong Min, Bai Jinsong, Xie Long. Numerical simulation of phase distribution of debris cloud generated by hypervelocity impact[J]. High Power Laser and Particle Beams, 2012, 24(09): 2203-2206. doi: 10.3788/HPLPB20122409.2203
    [5]li linbo, lu xingqiang, cao huabao, li zhenghong, xu rongkun, yang jianlun. Simulation analysis for backward-reflected laser in high power laser amplifier[J]. High Power Laser and Particle Beams, 2010, 22(02): 0- .
    [6]gu xiaowei, meng lin, li jiayin, sun yiqin, yu xinhua. Three-dimensional numerical simulation of microhollow cathode discharge model[J]. High Power Laser and Particle Beams, 2009, 21(01): 0- .
    [7]zhang ligang, ning hui, shao hao, chen changhua, song zhimin. Numerical simulation for characteristics of open-ended rectangular waveguide[J]. High Power Laser and Particle Beams, 2009, 21(04): 0- .
    [8]peng tang-chao, shu xiao-jian, dou yu-huan. Numerical simulations of chirped pulse amplification at FEL[J]. High Power Laser and Particle Beams, 2008, 20(04): 0- .
    [9]ma qing-li, tang shi-biao, zou ji-wei. Numerical simulation of distribution of recoil proton in plastic scintillating fiber irradiated by high-energy neutron[J]. High Power Laser and Particle Beams, 2008, 20(07): 0- .
    [10]tian dong-bin, yuan xiao-dong, zu xiao-tao, wang bi-yi, xu shi-zhen, guo yuan-jun, jiang xiao-dong, li xu-ping, zheng wan-guo. Numerical simulation of light intensity distribution in vicinity of defect on fused silica subsurface[J]. High Power Laser and Particle Beams, 2008, 20(02): 0- .
    [11]ge ming-li, liu qing-xiang, li xiang-qiang, zhao yun-fu. Numerical simulation and experimental research of coaxial-inserting-fin phase shifter[J]. High Power Laser and Particle Beams, 2007, 19(05): 0- .
    [12]qian xian-mei, zhu wen-yue, rao rui-zhong. Simulation of effects of beam wander on scintillation index of a focused Gaussian-beam[J]. High Power Laser and Particle Beams, 2007, 19(02): 0- .
    [13]zhang song-bao, tang bin. Simulation and experiment of neutron radiography[J]. High Power Laser and Particle Beams, 2007, 19(07): 0- .
    [14]zhang fa-qiang, yang jian-lun, li zheng-hong, chen fa-xin, ying chun-tong, liu guang-jun. Numerical simulation of high energy neutron radiography[J]. High Power Laser and Particle Beams, 2006, 18(02): 0- .
    [15]sun jun, liu guo-zhi, lin yu-zheng, xiao ren-zhen. Numerical simulation of electric field enhancement factor of metallic microprotrusion[J]. High Power Laser and Particle Beams, 2005, 17(08): 0- .
    [16]tu bo, jiang jian-feng, zhou tang-jian, cui ling-ling, yao zhen-yu. Numerical simulation of medium temperature and stress for high power disk laser[J]. High Power Laser and Particle Beams, 2005, 17(05s): 0- .
    [17]he feng, su jian-cang, li yong-dong, liu chun-liang, sun jian. Numerical simulation of semiconductor opening switch[J]. High Power Laser and Particle Beams, 2005, 17(12): 0- .
    [18]phyzhang guo ping, zhang tan xin, zheng wu di. Test of simulation by experiments of Nelike Ge Xray lasers[J]. High Power Laser and Particle Beams, 2004, 16(01): 0- .
    [19]wang li, li hong-fu, niu xin-jian, deng xue. Analysis of the influence of the magnetic field profiles on the high-power gyrotron's magnetic injection gun[J]. High Power Laser and Particle Beams, 2003, 15(12): 0- .
    [20]zhu peng-fei, qian lie-jia, lin zun-qi. Numerical studies of characteristic of optical parametric chirped pulse amplification[J]. High Power Laser and Particle Beams, 2001, 13(04): 0- .
  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-040102030
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 31.5 %FULLTEXT: 31.5 %META: 62.2 %META: 62.2 %PDF: 6.3 %PDF: 6.3 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 6.5 %其他: 6.5 %其他: 0.6 %其他: 0.6 %Seattle: 0.2 %Seattle: 0.2 %上海: 2.0 %上海: 2.0 %东莞: 0.2 %东莞: 0.2 %丹东: 0.2 %丹东: 0.2 %乌鲁木齐: 0.2 %乌鲁木齐: 0.2 %保定: 0.6 %保定: 0.6 %北京: 3.1 %北京: 3.1 %北伯根: 0.2 %北伯根: 0.2 %华盛顿州: 0.2 %华盛顿州: 0.2 %南里奥格兰德州: 0.7 %南里奥格兰德州: 0.7 %博阿努瓦: 0.2 %博阿努瓦: 0.2 %台州: 0.4 %台州: 0.4 %合肥: 0.4 %合肥: 0.4 %哈尔滨: 0.2 %哈尔滨: 0.2 %哥伦布: 0.2 %哥伦布: 0.2 %天津: 0.2 %天津: 0.2 %安康: 0.2 %安康: 0.2 %宿迁: 0.2 %宿迁: 0.2 %常德: 0.6 %常德: 0.6 %广州: 0.6 %广州: 0.6 %张家口: 0.9 %张家口: 0.9 %成都: 2.0 %成都: 2.0 %扬州: 0.2 %扬州: 0.2 %晋城: 0.2 %晋城: 0.2 %杭州: 0.4 %杭州: 0.4 %格兰特县: 0.2 %格兰特县: 0.2 %武汉: 1.3 %武汉: 1.3 %沈阳: 0.2 %沈阳: 0.2 %海口: 0.2 %海口: 0.2 %深圳: 0.2 %深圳: 0.2 %温州: 0.6 %温州: 0.6 %湖州: 0.9 %湖州: 0.9 %漯河: 1.1 %漯河: 1.1 %烟台: 0.2 %烟台: 0.2 %石家庄: 0.2 %石家庄: 0.2 %秦皇岛: 0.2 %秦皇岛: 0.2 %绵阳: 0.2 %绵阳: 0.2 %芒廷维尤: 48.1 %芒廷维尤: 48.1 %衢州: 0.9 %衢州: 0.9 %西宁: 10.6 %西宁: 10.6 %西安: 0.9 %西安: 0.9 %诺沃克: 6.7 %诺沃克: 6.7 %贵阳: 0.4 %贵阳: 0.4 %达州: 0.2 %达州: 0.2 %运城: 2.2 %运城: 2.2 %遵义: 0.4 %遵义: 0.4 %邯郸: 0.2 %邯郸: 0.2 %郑州: 0.2 %郑州: 0.2 %重庆: 0.6 %重庆: 0.6 %长沙: 0.9 %长沙: 0.9 %青岛: 0.2 %青岛: 0.2 %鞍山: 0.2 %鞍山: 0.2 %马哈达翁达: 0.7 %马哈达翁达: 0.7 %其他其他Seattle上海东莞丹东乌鲁木齐保定北京北伯根华盛顿州南里奥格兰德州博阿努瓦台州合肥哈尔滨哥伦布天津安康宿迁常德广州张家口成都扬州晋城杭州格兰特县武汉沈阳海口深圳温州湖州漯河烟台石家庄秦皇岛绵阳芒廷维尤衢州西宁西安诺沃克贵阳达州运城遵义邯郸郑州重庆长沙青岛鞍山马哈达翁达

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(3)

    Article views (1069) PDF downloads(129) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return