Volume 35 Issue 6
May  2023
Turn off MathJax
Article Contents
Qiang Yongfa, Wu Wenlong, Liu Jianguo, et al. Simulation of gas purging process in the slab cassette of a large-aperture slab amplifier[J]. High Power Laser and Particle Beams, 2023, 35: 062001. doi: 10.11884/HPLPB202335.220354
Citation: Qiang Yongfa, Wu Wenlong, Liu Jianguo, et al. Simulation of gas purging process in the slab cassette of a large-aperture slab amplifier[J]. High Power Laser and Particle Beams, 2023, 35: 062001. doi: 10.11884/HPLPB202335.220354

Simulation of gas purging process in the slab cassette of a large-aperture slab amplifier

doi: 10.11884/HPLPB202335.220354
  • Received Date: 2023-01-01
  • Accepted Date: 2023-01-02
  • Rev Recd Date: 2023-03-02
  • Available Online: 2023-02-24
  • Publish Date: 2023-05-06
  • To replace the gas in the slab cassette of slab amplifier more quickly, thus to transport micro aerosol particles produced by xenon lamp irradiation, and prolong the operating life Nd:glass, this paper proposes several different designs of gas flow channel on the baffle of slab cassette and compares their purging effects. Based on computational fluid dynamics (CFD) and dispersed phase model (DPM), the purge flow field in the chamber was obtained, and the purging process of micro contaminant particles was simulated. Through comparative analysis, it is found that the time required to achieve a cleanliness of 100 class is significantly different for different apertures and arrangements of the holes. When the hole diameter is 14 mm, and the holes on the upper and lower baffles are orderly round through-holes, the purging time to achieve 100 class is 205 s, and the gas pressure loss in the cassette is 424.3 Pa. Finally, gas purging experiments of a 4×2 combined slab amplifier show that a purging time of 2−3 min is needed to achieve 100-class cleanliness by the optimized design.
  • loading
  • [1]
    Burnham A K, Horvath J A, Letts S A, et al. Achieving and maintaining cleanliness in NIF amplifiers[C]//Third International Conference on Solid State Lasers for Application to Inertial Confinement Fusion. 1998: 609-620.
    [2]
    Honig J. Cleanliness improvements of National Ignition Facility amplifiers as compared to previous large-scale lasers[J]. Optical Engineering, 2004, 43(12): 2904-2911. doi: 10.1117/1.1815320
    [3]
    Glass A J, Guenther A H. Laser induced damage of optical elements–a status report[J]. Applied Optics, 1973, 12(4): 637-649. doi: 10.1364/AO.12.000637
    [4]
    於海武, 郑万国, 唐军, 等. 高功率激光放大器片腔洁净度实验研究[J]. 强激光与粒子束, 2001, 13(3):272-276

    Yu Haiwu, Zheng Wangguo, Tang Jun, et al. Investigation of slab cavity cleanliness of high power laser amplifiers[J]. High Power Laser and Particle Beams, 2001, 13(3): 272-276
    [5]
    Honig J. Offline slab damage experiments comparing air and nitrogen purge[R]. NIF-0070328, 2001: 22-29.
    [6]
    Honig J, Ravizza D. Nova retrospective and possible implications for NIF[R]. NIF-0110227, 1999.
    [7]
    景峰, 彭志涛, 朱启华, 等. 高功率固体激光驱动器的优化设计[J]. 强激光与粒子束, 2000, 12(s1):117-121

    Jing Feng, Peng Zhitao, Zhu Qihua, et al. Design optimization of high power solid-state lasers for ICF driver[J]. High Power Laser and Particle Beams, 2000, 12(s1): 117-121
    [8]
    江梦春, 朱健强, 刘志刚, 等. 钕玻璃片状放大器玻璃腔的概念设计[J]. 光子学报, 2016, 45:1114001 doi: 10.3788/gzxb20164511.1114001

    Jiang Mengchun, Zhu Jianqiang, Liu Zhigang, et al. Conceptual design for glass cavity in Nd: glass slab amplifier[J]. Acta Photonica Sinica, 2016, 45: 1114001 doi: 10.3788/gzxb20164511.1114001
    [9]
    程晓锋, 苗心向, 陈远斌, 等. 神光-Ⅲ主机激光装置片状放大器洁净控制进展[J]. 强激光与粒子束, 2012, 24(1):1-2

    Cheng Xiaofeng, Miao Xinxiang, Chen Yuanbin, et al. Development on cleanliness control of slab amplifiers for Shenguang-Ⅲ laser driver[J]. High Power Laser and Particle Beams, 2012, 24(1): 1-2
    [10]
    Lowdermilk W H. Status of the National Ignition Facility project[C]//Proceedings of SPIE 3047, Solid State Lasers for Application to Inertial Confinement Fusion: Second Annual International Conference. 1997: 16-37.
    [11]
    Spaeth M L, Manes K R, Honig J. Cleanliness for the NIF 1ω laser amplifiers[J]. Fusion Science and Technology, 2016, 69(1): 250-264. doi: 10.13182/FST14-861
    [12]
    程晓锋, 王洪彬, 苗心向, 等. 高功率固体激光驱动器污染控制及片状放大器洁净度改进[J]. 强激光与粒子束, 2013, 25(5):1147-1151 doi: 10.3788/HPLPB20132505.1147

    Cheng Xiaofeng, Wang Hongbin, Miao Xinxiang, et al. Contamination control for high-power solid-state laser driver and improvement of cleanliness in slab amplifiers[J]. High Power Laser and Particle Beams, 2013, 25(5): 1147-1151 doi: 10.3788/HPLPB20132505.1147
    [13]
    杨晓伟, 刘志刚, 任志远, 等. 高功率激光片状放大器片腔内流场模拟及优化[J]. 中国激光, 2016, 43:0901002 doi: 10.3788/CJL201643.0901002

    Yang Xiaowei, Liu Zhigang, Ren Zhiyuan, et al. Simulation and optimization of internal flow field in high power laser slab amplifiers[J]. Chinese Journal of Lasers, 2016, 43: 0901002 doi: 10.3788/CJL201643.0901002
    [14]
    Ren Zhiyuan, Zhu Jianqiang, Liu Zhigang, et al. Optimizing the cleanliness in multi-segment disk amplifiers based on vector flow schemes[J]. High Power Laser Science and Engineering, 2018, 6: e1. doi: 10.1017/hpl.2017.36
    [15]
    张攀政, 冯滔, 谢静, 等. 间断多次氮气吹扫法提高片状放大器在线洁净度研究[J]. 中国激光, 2018, 45:0401014 doi: 10.3788/CJL201845.0401014

    Zhang Panzheng, Feng Tao, Xie Jing, et al. Disk amplifier on-line cleanliness improvement achieved by intermittent nitrogen gas purge[J]. Chinese Journal of Lasers, 2018, 45: 0401014 doi: 10.3788/CJL201845.0401014
    [16]
    万阳. 反射镜箱动态吹扫数值模拟与试验研究[D]. 重庆: 重庆大学, 2017

    Wan Yang. The numerical simulation and experiment research of the reflect mirror trunk transient blow[D]. Chongqing: Chongqing University, 2017
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)  / Tables(1)

    Article views (492) PDF downloads(61) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return