Citation: | Cui Can, Wang Yue, Wang Yulei, et al. Research progress on nonlinear optics laser beam combining technology[J]. High Power Laser and Particle Beams, 2023, 35: 041006. doi: 10.11884/HPLPB202335.220359 |
[1] |
Zylstra A B, Kritcher A L, Hurricane O A, et al. Experimental achievement and signatures of ignition at the National Ignition Facility[J]. Physical Review E, 2022, 106: 025202. doi: 10.1103/PhysRevE.106.025202
|
[2] |
Le Pape S, Hopkins L F B, Divol L, et al. Fusion energy output greater than the kinetic energy of an imploding shell at the National Ignition Facility[J]. Physical Review Letters, 2018, 120: 245003. doi: 10.1103/PhysRevLett.120.245003
|
[3] |
Srinivas G, Gowda B H H K, Gowda H C, et al. Survey on laser guided missile systems and implementation by developing a laser guidance system[J]. Global Journal of Electronic and Communication Research, 2021, 12(1): 1-9. doi: 10.37622/GJECR/12.1.2021.1-9
|
[4] |
Xu Hongfei, Xia Jiqiang, Yuan Zhaohui, et al. Design and implementation of differential drive AGV based on laser guidance[C]//Proceedings of the 2019 3rd International Conference on Robotics and Automation Sciences (ICRAS). 2019: 112-117.
|
[5] |
Quazi M M, Ishak M, Fazal M A, et al. A comprehensive assessment of laser welding of biomedical devices and implant materials: recent research, development and applications[J]. Critical Reviews in Solid State and Materials Sciences, 2021, 46(2): 109-151. doi: 10.1080/10408436.2019.1708701
|
[6] |
Sundar R, Ganesh P, Gupta R K, et al. Laser shock peening and its applications: a review[J]. Lasers in Manufacturing and Materials Processing, 2019, 6(4): 424-463. doi: 10.1007/s40516-019-00098-8
|
[7] |
Veinhard M, Bellanger S, Daniault L, et al. Orbital angular momentum beams generation from 61 channels coherent beam combining femtosecond digital laser[J]. Optics Letters, 2021, 46(1): 25-28. doi: 10.1364/OL.405975
|
[8] |
Klenke A, Müller M, Stark H, et al. Coherent beam combination of ultrafast fiber lasers[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2018, 24: 0902709.
|
[9] |
Le Dortz J, Heilmann A, Antier M, et al. Highly scalable femtosecond coherent beam combining demonstrated with 19 fibers[J]. Optics Letters, 2017, 42(10): 1887-1890. doi: 10.1364/OL.42.001887
|
[10] |
辛国锋, 皮浩洋, 沈力, 等. 高功率半导体激光器光束非相干合成技术进展[J]. 激光与光电子学进展, 2010, 47:101404
Xin Guofeng, Pi Haoyang, Shen Li, et al. Beam incoherence combination of high power laser diode[J]. Laser & Optoelectronics Progress, 2010, 47: 101404
|
[11] |
Fan T Y. Laser beam combining for high-power, high-radiance sources[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2005, 11(3): 567-577. doi: 10.1109/JSTQE.2005.850241
|
[12] |
Mcnaught S J, Asman C P, Injeyan H, et al. 100-kW coherently combined Nd: YAG MOPA laser array[C]//Proceedings of the Frontiers in Optics 2009/Laser Science XXV/Fall 2009 OSA Optics & Photonics Technical Digest. 2009: FThD2.
|
[13] |
吴坚, 马阎星, 马鹏飞, 等. 光纤激光相干合成20 kW级高功率输出[J]. 红外与激光工程, 2021, 50:20210621 doi: 10.3788/IRLA20210621
Wu Jian, Ma Yanxing, Ma Pengfei, et al. Fiber laser coherent synthesis 20 kW class high power output[J]. Infrared and Laser Engineering, 2021, 50: 20210621 doi: 10.3788/IRLA20210621
|
[14] |
刘泽金, 周朴, 陶汝茂, 等. 高能固态激光阵列光束合成技术浅析[J]. 光学学报, 2011, 31:0900113 doi: 10.3788/AOS201131.0900113
Liu Zejin, Zhou Pu, Tao Rumao, et al. Analysis of beam combination technology of high-power LD pumped laser array[J]. Acta Optica Sinica, 2011, 31: 0900113 doi: 10.3788/AOS201131.0900113
|
[15] |
Wang Dan, Du Qiang, Zhou Tong, et al. Stabilization of the 81-channel coherent beam combination using machine learning[J]. Optics Express, 2021, 29(4): 5694-5709. doi: 10.1364/OE.414985
|
[16] |
Kunkel W M, Leger J R. Passive coherent laser beam combining with spatial mode selecting feedback[J]. IEEE Journal of Quantum Electronics, 2019, 55: 1600108.
|
[17] |
Cheng Yong, Liu Xu, Wan Qiang, et al. Mutual injection phase locking coherent combination of solid-state lasers based on corner cube[J]. Optics Letters, 2013, 38(23): 5150-5152. doi: 10.1364/OL.38.005150
|
[18] |
Linslal C L, Ayyaswamy P, Maji S, et al. Challenges in coherent beam combining of high power fiber amplifiers: a review[J]. ISSS Journal of Micro and Smart Systems, 2022, 11(1): 277-293. doi: 10.1007/s41683-022-00099-4
|
[19] |
Fathi H, Närhi M, Gumenyuk R. Towards ultimate high-power scaling: Coherent beam combining of fiber lasers[J]. Photonics, 2021, 8: 566. doi: 10.3390/photonics8120566
|
[20] |
Fsaifes I, Daniault L, Bellanger S, et al. Coherent beam combining of 61 femtosecond fiber amplifiers[J]. Optics Express, 2020, 28(14): 20152-20161. doi: 10.1364/OE.394031
|
[21] |
Ostermeyer M, Kong H J, Kovalev V I, et al. Trends in stimulated Brillouin scattering and optical phase conjugation[J]. Laser and Particle Beams, 2008, 26(3): 297-362. doi: 10.1017/S0263034608000335
|
[22] |
Mullen R A, Vickers D J, West L, et al. Phase conjugation by stimulated photorefractive scattering using a retroreflected seeding beam[J]. Journal of the Optical Society of America B, 1992, 9(9): 1726-1734. doi: 10.1364/JOSAB.9.001726
|
[23] |
Moyer R H, Valley M, Cimolino M C. Beam combination through stimulated Brillouin scattering[J]. Journal of the Optical Society of America B, 1988, 5(12): 2473-2489. doi: 10.1364/JOSAB.5.002473
|
[24] |
Moore T R, Boyd R W. Three-dimensional simulations of stimulated Brillouin scattering with focused Gaussian beams[J]. Journal of Nonlinear Optical Physics & Materials, 1996, 5(2): 387-408.
|
[25] |
Heuer A, Menzel R. Principles of phase conjugating Brillouin mirrors[M]//Brignon A, Huignard J P. Phase Conjugate Laser Optics. Hoboken: John Wiley & Sons, Inc. , 2003: 19-62.
|
[26] |
Fisher R A. Optical phase conjugation[M]. New York: Academic Press, 2012: 50-60.
|
[27] |
Basov N G, Efimkov V F, Zubarev I G, et al. Inversion of Wavefront in SMBS of a depolarized pump[J]. Journal of Experimental and Theoretical Physics Letters, 1978, 28(4): 197-201.
|
[28] |
Basov N G, Efimkov V F, Zubarev I G, et al. Influence of certain radiation parameters on wavefront reversal of a pump wave in a Brillouin mirror[J]. Soviet Journal of Quantum Electronics, 1979, 9(4): 455-458. doi: 10.1070/QE1979v009n04ABEH008908
|
[29] |
Basov N G, Efimkov V F, Zubarev I G, et al. Control of the characteristics of reversing mirrors in the amplification regime[J]. Soviet Journal of Quantum Electronics, 1981, 11(10): 1335-1337. doi: 10.1070/QE1981v011n10ABEH008482
|
[30] |
Sumida D S, Jones D C, Rockwell D A. An 8.2 J phase-conjugate solid-state laser coherently combining eight parallel amplifiers[J]. IEEE Journal of Quantum Electronics, 1994, 30(11): 2617-2627. doi: 10.1109/3.333716
|
[31] |
Bowers M W, Boyd R W, Hankla A K. Brillouin-enhanced four-wave-mixing vector phase-conjugate mirror with beam-combining capability[J]. Optics Letters, 1997, 22(6): 360-362. doi: 10.1364/OL.22.000360
|
[32] |
Shin Y S. Improvement of spatial beam profiles in beam combination using SBS mirrors[C]//Proceedings of the SPIE 2778, 17th Congress of the International Commission for Optics: Optics for Science and New Technology. 1996: 2778BL.
|
[33] |
Kong H J, Lee J Y, Shin Y S, et al. Beam recombination characteristics in array laser amplification using stimulated Brillouin scattering phase conjugation[J]. Optical Review, 1997, 4(2): 277-283. doi: 10.1007/s10043-997-0277-9
|
[34] |
Kong H J, Shin Y S, Kim H. Beam combination characteristics in an array laser using stimulated Brillouin scattering phase conjugate mirrors considering partial coherency between the beams[J]. Fusion Engineering and Design, 1999, 44(1/4): 407-417.
|
[35] |
Lee S K, Lee D W, Baek D H, et al. Independent phase control of Stokes waves for beam combination[C]//Proceedings of the SPIE 5627, High-Power Lasers and Applications III. 2004: 128-135.
|
[36] |
Kong H J, Lee S K, Lee D W, et al. Phase control of a stimulated Brillouin scattering phase conjugate mirror by a self-generated density modulation[J]. Applied Physics Letters, 2005, 86: 051111. doi: 10.1063/1.1857088
|
[37] |
Kong H J, Yoon J W, Shin J S, et al. Long-term stabilized two-beam combination laser amplifier with stimulated Brillouin scattering mirrors[J]. Applied Physics Letters, 2008, 92: 021120. doi: 10.1063/1.2831659
|
[38] |
Shin J S, Park S, Kong H J, et al. Phase stabilization of a wave-front dividing four-beam combined amplifier with stimulated Brillouin scattering phase conjugate mirrors[J]. Applied Physics Letters, 2010, 96: 131116. doi: 10.1063/1.3373629
|
[39] |
Kong H J, Park S, Cha S, et al. 0.4 J/10 ns/10 kHz-4 kW coherent beam combined laser using stimulated Brillouin scattering phase conjugation mirrors for industrial applications[J]. Physica Status Solidi (C), 2013, 10(6): 962-966. doi: 10.1002/pssc.201300013
|
[40] |
Brignon A. Coherent laser beam combining[M]. Wiley-VCH, 2013: 456-457.
|
[41] |
Bowers M W, Boyd R W. Phase locking via Brillouin-enhanced four-wave-mixing phase conjugation[J]. IEEE Journal of Quantum Electronics, 1998, 34(4): 634-644. doi: 10.1109/3.663441
|
[42] |
Dane C B, Hackel L A. High-average-power, high-brightness Nd: glass laser technology[R]. California: Lawrence Livermore National Laboratory, 1997: 239-245.
|
[43] |
Yoshida H, Nakatsuka M, Hatae T, et al. Two-beam-combined 7.4 J, 50 Hz Q-switch pulsed YAG laser system based on SBS phase conjugation mirror for plasma diagnostics[J]. Japanese Journal of Applied Physics, 2004, 43(8A): L1038-L1040. doi: 10.1143/JJAP.43.L1038
|
[44] |
Trines R M G M, Alves E P, Webb E, et al. New criteria for efficient Raman and Brillouin amplification of laser beams in plasma[J]. Scientific Reports, 2020, 10: 19875. doi: 10.1038/s41598-020-76801-z
|
[45] |
Trines R M G M, Fiúza F, Bingham R, et al. Simulations of efficient Raman amplification into the multipetawatt regime[J]. Nature Physics, 2011, 7(1): 87-92. doi: 10.1038/nphys1793
|
[46] |
Malkin V M, Shvets G, Fisch N J. Fast compression of laser beams to highly overcritical powers[J]. Physical Review Letters, 1999, 82(22): 4448-4451. doi: 10.1103/PhysRevLett.82.4448
|
[47] |
Wharton K B, Kirkwood R K, Glenzer S H, et al. Observation of energy transfer between identical-frequency laser beams in a flowing plasma[J]. Physical Review Letters, 1998, 81(11): 2248-2251. doi: 10.1103/PhysRevLett.81.2248
|
[48] |
Cohen B I, Lasinski B F, Langdon A B, et al. Resonant stimulated Brillouin interaction of opposed laser beams in a drifting plasma[J]. Physics of Plasmas, 1998, 5(9): 3408-3415. doi: 10.1063/1.873055
|
[49] |
Kruer W L, Wilks S C, Afeyan B B, et al. Energy transfer between crossing laser beams[J]. Physics of Plasmas, 1996, 3(1): 382-385. doi: 10.1063/1.871863
|
[50] |
Kirkwood R K, Afeyan B B, Kruer W L, et al. Observation of energy transfer between frequency-mismatched laser beams in a large-scale plasma[J]. Physical Review Letters, 1996, 76(12): 2065-2068. doi: 10.1103/PhysRevLett.76.2065
|
[51] |
Kirkwood R K, Williams E A, Cohen B I, et al. Saturation of power transfer between two copropagating laser beams by ion-wave scattering in a single-species plasma[J]. Physics of Plasmas, 2005, 12: 112701. doi: 10.1063/1.2124508
|
[52] |
Seka W, Baldis H A, Fuchs J, et al. Multibeam stimulated Brillouin scattering from hot, solid-target plasmas[J]. Physical Review Letters, 2002, 89: 175002. doi: 10.1103/PhysRevLett.89.175002
|
[53] |
Kirkwood R K, Michel P, London R A, et al. Amplification of light in a plasma by stimulated ion acoustic waves driven by multiple crossing pump beams[J]. Physical Review E, 2011, 84: 026402. doi: 10.1103/PhysRevE.84.026402
|
[54] |
Kirkwood R K, Michel P, London R, et al. Multi-beam effects on backscatter and its saturation in experiments with conditions relevant to ignition[J]. Physics of Plasmas, 2011, 18: 056311. doi: 10.1063/1.3587122
|
[55] |
Kirkwood R K, MacGowan B J, Montgomery D S, et al. Effect of ion-wave damping on stimulated Raman scattering in high-Z laser-produced plasmas[J]. Physical Review Letters, 1996, 77(13): 2706-2709. doi: 10.1103/PhysRevLett.77.2706
|
[56] |
Kirkwood R K, Turnbull D P, Chapman T, et al. Plasma-based beam combiner for very high fluence and energy[J]. Nature Physics, 2017, 14(1): 80-84.
|
[57] |
Kirkwood R K, Turnbull D P, Chapman T, et al. A plasma amplifier to combine multiple beams at NIF[J]. Physics of Plasmas, 2018, 25: 056701. doi: 10.1063/1.5016310
|
[58] |
Kirkwood R K, Poole P L, Kalantar D H, et al. Production of high fluence laser beams using ion wave plasma optics[J]. Applied Physics Letters, 2022, 120: 200501. doi: 10.1063/5.0086068
|
[59] |
Poole P L, Kirkwood R K, Wilks S C, et al. Time-resolved measurement of power transfer in plasma amplifier experiments on NIF[C]//Proceedings of the 2021 Conference on Lasers and Electro-Optics. 2021: 1-2.
|
[60] |
Peng H, Wu Z H, Zuo Y L, et al. Strongly coupled stimulated Brillouin amplification in pump-ionizing plasma[J]. Laser Physics Letters, 2018, 15: 026003. doi: 10.1088/1612-202X/aa9aa4
|
[61] |
Jia Xiaobao, Jia Qing, Xiao Jianyuan, et al. Explicit high-order symplectic integrators of coupled Schrodinger equations for pump-probe systems[DB/OL]. arXiv preprint arXiv: 2208.13120, 2022.
|
[62] |
张锐, 周丹丹, 田小程, 等. 高功率激光装置实现CBET研究所需的四色光输出[J]. 强激光与粒子束, 2023, 35:029901 doi: 10.11884/HPLPB202335.220381
Zhang Rui, Zhou Dandan, Tian Xiaocheng, et al. Four-color laser for crossed-beam energy transfer research realized on high power laser facility[J]. High Power Laser and Particle Beams, 2023, 35: 029901 doi: 10.11884/HPLPB202335.220381
|
[63] |
白振旭, 杨学宗, 陈晖, 等. 高功率金刚石激光技术研究进展(特邀)[J]. 红外与激光工程, 2020, 49:20201076 doi: 10.3788/IRLA20201076
Bai Zhenxu, Yang Xuezong, Chen Hui, et al. Research progress of high-power diamond laser technology (invited)[J]. Infrared and Laser Engineering, 2020, 49: 20201076 doi: 10.3788/IRLA20201076
|
[64] |
McKay A, Spence D J, Coutts D W, et al. Non-collinear beam combining of kilowatt beams in a diamond Raman amplifier[C]//Proceedings of the Advanced Solid State Lasers. 2014: ATu5A. 1.
|
[65] |
McKay A, Mildren R P, Coutts D W, et al. SRS in the strong-focusing regime for Raman amplifiers[J]. Optics Express, 2015, 23(11): 15012-15020. doi: 10.1364/OE.23.015012
|
[66] |
McKay A, Spence D J, Coutts D W, et al. Diamond-based concept for combining beams at very high average powers[J]. Laser & Photonics Reviews, 2017, 11: 1600130.
|
[67] |
丁迎春, 吕志伟, 何伟明. 受激布里渊散射相位共轭激光组束规律[J]. 强激光与粒子束, 2002, 14(3):353-356
Ding Yingchun, Lv Zhiwei, He Weiming. Study of beam combination by stimulated Brillouin scattering[J]. High Power Laser and Particle Beams, 2002, 14(3): 353-356
|
[68] |
Guo Qi, Lu Zhiwei, Wang Yulei. Highly efficient Brillouin amplification of strong Stokes seed[J]. Applied Physics Letters, 2010, 96: 221107. doi: 10.1063/1.3435385
|
[69] |
郭琦. 受激布里渊散射组束激光器研究[D]. 哈尔滨: 哈尔滨工业大学, 2010
Guo Qi. Research on stimulated Brillouin scattering beam combination laser[D]. Harbin: Harbin Institute of Technology, 2010
|
[70] |
王双义. 基于布里渊放大的激光串行组束中若干关键问题研究[D]. 哈尔滨: 哈尔滨工业大学, 2008
Wang Shuangyi. Investigation of some key problems in serial laser beam combination based on Brillouin amplification[D]. Harbin: Harbin Institute of Technology, 2008
|
[71] |
王双义, 林殿阳, 吕志伟, 等. 对受激布里渊散射激光进行组束的数值模拟及方案设计[J]. 强激光与粒子束, 2003, 15(9):877-880
Wang Shuangyi, Lin Dianyang, Lv Zhiwei, et al. Numerical simulation and scheme design for laser beam combination of stimulated Brillouin scattering[J]. High Power Laser and Particle Beams, 2003, 15(9): 877-880
|
[72] |
安习文. 交叉泵浦布里渊放大系统增益特性研究[D]. 哈尔滨: 哈尔滨工业大学, 2013
An Xiwen. Investigation of gain properities of non-collinear Brillouin amplification system[D]. Harbin: Harbin Institute of Technology, 2013
|
[73] |
Chen Yi, Lu Zhiwei, Wang Yulei, et al. Phase matching for noncollinear Brillouin amplification based on controlling of frequency shift of stokes seed[J]. Optics Letters, 2014, 39(10): 3047-3049. doi: 10.1364/OL.39.003047
|
[74] |
Yuan Hang, Wang Yulei, Yuan Qiang, et al. Amplification of 200-ps high-intensity laser pulses via frequency matching stimulated Brillouin scattering[J]. High Power Laser Science and Engineering, 2019, 7: e41. doi: 10.1017/hpl.2019.31
|
[75] |
Yuan Hang, Wang Yulei, Lu Zhiwei, et al. Active frequency matching in stimulated Brillouin amplification for production of a 2.4 J, 200 ps laser pulse[J]. Optics Letters, 2018, 43(3): 511-514. doi: 10.1364/OL.43.000511
|
[76] |
Cui Can, Wang Yulei, Lu Zhiwei, et al. Joule-level 10 Hz non-collinear multi-pump SBS amplifier with high energy extraction efficiency used for laser beams combination[C]//Proceedings of the Conference on Lasers and Electro-Optics. 2019: JTu2A. 59.
|
[77] |
Cui Can, Wang Yulei, Lu Zhiwei, et al. Demonstration of 2.5 J, 10 Hz, nanosecond laser beam combination system based on non-collinear Brillouin amplification[J]. Optics Express, 2018, 26(25): 32717-32727. doi: 10.1364/OE.26.032717
|
[78] |
张小民, 胡东霞, 许党朋, 等. 浅论强激光系统的物理受限问题[J]. 中国激光, 2021, 48:1201002 doi: 10.3788/CJL202148.1201002
Zhang Xiaomin, Hu Dongxia, Xu Dangpeng, et al. Physical limitations of high-power, high-energy lasers[J]. Chinese Journal of Lasers, 2021, 48: 1201002 doi: 10.3788/CJL202148.1201002
|
[79] |
Banerjee S, Mason P, Phillips J, et al. Pushing the boundaries of diode-pumped solid-state lasers for high-energy applications[J]. High Power Laser Science and Engineering, 2020, 8: e20. doi: 10.1017/hpl.2020.20
|
[80] |
De Vido M, Mason P D, Ertel K, et al. The first kilowatt average power 100J-level DPSSL[C]//Proceedings of the 2017 IEEE High Power Diode Lasers and Systems Conference (HPD). 2017: 19-20.
|
[81] |
Divoky M, Sikocinski P, Pilar J, et al. Design of high-energy-class cryogenically cooled Yb3+∶YAG multislab laser system with low wavefront distortion[J]. Optical Engineering, 2013, 52: 064201. doi: 10.1117/1.OE.52.6.064201
|
[82] |
Kong H J, Park S, Cha S, et al. Coherent beam combination laser system using SBS-PCM for high repetition rate solid-state lasers[J]. Optical Materials, 2013, 35(4): 807-811. doi: 10.1016/j.optmat.2012.09.042
|
[83] |
Bai Zhenxu, Yuan Hang, Liu Zhaohong, et al. Stimulated Brillouin scattering materials, experimental design and applications: a review[J]. Optical Materials, 2018, 75: 626-645. doi: 10.1016/j.optmat.2017.10.035
|
[84] |
Wang Yue, Cui Can, Lu Zhiwei, et al. Beam spatial intensity modification based on stimulated Brillouin amplification[J]. Optics Express, 2022, 30(20): 35792-35806. doi: 10.1364/OE.462032
|