Chen Yuqing, Wang Lei, Zhao Lishan, et al. Simulation study of the relationship between low-frequency communication EM wave transmissivity of plasma sheaths and irradiation microwave E-field strength[J]. High Power Laser and Particle Beams, 2023, 35: 089001. doi: 10.11884/HPLPB202335.220361
Citation: Chen Yuqing, Wang Lei, Zhao Lishan, et al. Simulation study of the relationship between low-frequency communication EM wave transmissivity of plasma sheaths and irradiation microwave E-field strength[J]. High Power Laser and Particle Beams, 2023, 35: 089001. doi: 10.11884/HPLPB202335.220361

Simulation study of the relationship between low-frequency communication EM wave transmissivity of plasma sheaths and irradiation microwave E-field strength

doi: 10.11884/HPLPB202335.220361
  • Received Date: 2023-01-12
  • Accepted Date: 2023-03-28
  • Rev Recd Date: 2023-04-15
  • Available Online: 2023-05-15
  • Publish Date: 2023-08-15
  • During the flight of hypersonic vehicle, plasma sheath will be produced on the surface due to the influence of surface shockwave. Because the plasma sheath will absorb, reflect and scatter electromagnetic waves, the communication signal will be attenuated or even interrupted, causing “blackout” problem. Theoretically, the interaction between the plasma sheath and microwave is nonlinearly changing with electric field, so there may be a suitable E-field amplitude and irradiation time interval to make electromagnetic wave transmissivity rise. For this possibility, Finite Element Analysis is used to conduct a two-dimensional coupled simulation of the plasma sheath flow field and the electromagnetic field on the hypersonic vehicle’s surface, and the change of the plasma sheath transmissivity after microwave irradiation is obtained. The plasma sheath was irradiated for 30 ns with electric field of 5×104 V/m, 1×105 V/m, 2.5×105 V/m, 5×105 V/m, respectively. The maximum transmissivity to 1.2 GHz and 1.6 GHz electromagnetic waves is enhanced after irradiation. It provides a new possibility to solve the “blackout” problem.
  • [1]
    龚旻, 谭杰, 李大伟, 等. 临近空间高超声速飞行器黑障问题研究综述[J]. 宇航学报, 2018, 39(10):1059-1070 doi: 10.3873/j.issn.1000-1328.2018.10.001

    Gong Min, Tan Jie, Li Dawen, et al. Review of blackout problems of near space hypersonic vehicles[J]. Journal of Astronautics, 2018, 39(10): 1059-1070 doi: 10.3873/j.issn.1000-1328.2018.10.001
    [2]
    徐茂格, 席文君. 近空间高超音速飞行器射频通信“黑障”研究[J]. 电讯技术, 2009, 49(10):49-52 doi: 10.3969/j.issn.1001-893x.2009.10.011

    Xu Maoge, Xi Wenjun. Study on blackout in near space hypersonic vehicle radio frequency communication[J]. Telecommunication Engineering, 2009, 49(10): 49-52 doi: 10.3969/j.issn.1001-893x.2009.10.011
    [3]
    Blazek J. Computational fluid dynamics: principles and applications[M]. 3rd ed. Britain: Butterworth-Heinemann, 2015: 20-57.
    [4]
    Ouyang Wenchong, Liu Yanming. Impact of ionization rate on the transmission of electromagnetic wave in realistic plasma[J]. Physics of Plasmas, 2020, 27: 033507. doi: 10.1063/1.5135607
    [5]
    Bian Zheng, Li Jiangting, Guo Lixin. Simulation and feature extraction of the dynamic electromagnetic scattering of a hypersonic vehicle covered with plasma sheath[J]. Remote Sensing, 2020, 12: 2740. doi: 10.3390/rs12172740
    [6]
    梁晓庚, 田宏亮. 临近空间高超声速飞行器发展现状及其防御问题分析[J]. 航空兵器, 2016(4):3-10 doi: 10.19297/j.cnki.41-1228/tj.2016.04.001

    Liang Xiaogeng, Tian Hongliang. Analysis of the development status and the defense problem of near space hypersonic vehicle[J]. Aero Weaponry, 2016(4): 3-10 doi: 10.19297/j.cnki.41-1228/tj.2016.04.001
    [7]
    于哲峰, 刘佳琪, 刘连元, 等. 临近空间高超声速飞行器RCS特性研究[J]. 宇航学报, 2014, 35(6): 713-719

    Yu Zhefeng, Liu Jiaqi, Liu Lianyuan, et al. Research on the RCS characteristics of hypersonic near space vehicle[J]. Journal of Astronautics, 35(6): 713-719
    [8]
    于哲峰, 孙良奎, 马平, 等. 黑障对通信安全的影响及几种可能的解决方案[J]. 红外, 2017, 38(2):39-45 doi: 10.3969/j.issn.1672-8785.2017.02.007

    Yu Zhefeng, Sun Liangkui, Ma Ping, et al. Influence of blackout on communication security and several possible solutions[J]. Infrared, 2017, 38(2): 39-45 doi: 10.3969/j.issn.1672-8785.2017.02.007
    [9]
    Ouyang Wenchong, Jin Tao, Wu Zhengwei, et al. Study of terahertz wave propagation in realistic plasma sheath for the whole reentry process[J]. IEEE Transactions on Plasma Science, 2021, 49(1): 460-465. doi: 10.1109/TPS.2020.3042220
    [10]
    Sternberg N, Smolyakov A I. Resonant transmission of electromagnetic waves in multilayer dense-plasma structures[J]. IEEE Transactions on Plasma Science, 2009, 37(7): 1251-1260. doi: 10.1109/TPS.2009.2020399
    [11]
    Hodara H. The use of magnetic fields in the elimination of the re-entry radio blackout[J]. Proceedings of the IRE, 1961, 49(12): 1825-1830. doi: 10.1109/JRPROC.1961.287709
    [12]
    Shashurin A, Zhuang T, Teel G, et al. Laboratory modeling of the plasma layer at hypersonic flight[J]. Journal of Spacecraft and Rockets, 2014, 51(3): 838-846. doi: 10.2514/1.A32771
    [13]
    Keidar M, Kim M, Boyd I D. Electromagnetic reduction of plasma density during atmospheric reentry and hypersonic flights[J]. Journal of Spacecraft and Rockets, 2008, 45(3): 445-453. doi: 10.2514/1.32147
    [14]
    Li Ji, He Mang, Li Xiuping, et al. Multiphysics modeling of electromagnetic wave-hypersonic vehicle interactions under high-power microwave illumination: 2-D case[J]. IEEE Transactions on Antennas and Propagation, 2018, 66(7): 3653-3664. doi: 10.1109/TAP.2018.2835300
    [15]
    Li Zhigang, Yuan Zhongcai, Wang Jiachun, et al. Simulation of propagation of the HPM in the low-pressure argon plasma[J]. Plasma Science and Technology, 2017, 20: 025401.
    [16]
    Kundrapu M, Loverich J, Beckwith K, et al. Modeling radio communication blackout and blackout mitigation in hypersonic vehicles[J]. Journal of Spacecraft and Rockets, 2015, 52(3): 853-862. doi: 10.2514/1.A33122
    [17]
    韦毅. 高超飞行器等离子体鞘套的多场耦合数值研究[D]. 哈尔滨: 哈尔滨工业大学, 2017: 18-25

    Wei Y. Multi-field coupling numerical study on plasmasonic sheath of hypersonic flying craft[D]. Harbin: Harbin Institute of Technology, 2017: 18-25.
  • Relative Articles

    [1]Geng Xingning, Xu Degang, Li Ji’ning, Chen Kai, Zhong Kai, Yao Jianquan. Propagation characteristics of terahertz wave in plasma sheath around air vehicle[J]. High Power Laser and Particle Beams, 2020, 32(3): 033101. doi: 10.11884/HPLPB202032.190291
    [2]Wu Xiguang, Hu Yang, Wang Ping, Nan Lin. Interaction of Terahertz wave with plasma based on Z-FDTD[J]. High Power Laser and Particle Beams, 2018, 30(4): 043102. doi: 10.11884/HPLPB201830.170309
    [3]Chen Chunmei, Bai Yulong, Zhang Jie, Yang Yang, Wang Juan. Numerical study of oblique incidence of terahertz wave to magnetized plasma[J]. High Power Laser and Particle Beams, 2018, 30(1): 013101. doi: 10.11884/HPLPB201830.170276
    [4]Yang Ying, Yu Zhefeng, Dong Weizhong, Ding Mingsong, Sun Liangkui, Huang Jie. Blackout mitigation by electromagnetic control in re-entry vehicles[J]. High Power Laser and Particle Beams, 2018, 30(12): 123201. doi: 10.11884/HPLPB201830.180238
    [5]Yuan Mingquan, Lei Qiang, Wang Xiong. Fabrication process of micro shear stress sensors[J]. High Power Laser and Particle Beams, 2017, 29(10): 104103. doi: 10.11884/HPLPB201729.170128
    [6]Wang Lili, Zhao Zhenzhu, Liu Jiangfan, Xi Xiaoli. Three-waves nonlinear effect of radio wave propagation in plasma[J]. High Power Laser and Particle Beams, 2017, 29(05): 053201. doi: 10.11884/HPLPB201729.170011
    [7]Zhao Rikang, Zhang Zihao, Zhang Lin, Wang Guibin, Ouyang Jiting. Microwave scattering by inhomogeneous plasma column[J]. High Power Laser and Particle Beams, 2017, 29(05): 053001. doi: 10.11884/HPLPB201729.170043
    [8]Jiang Jin, Wang Zhigong, Chen Changxing, Zhang Hang, Wu Linna, Wang Xiaodong, Lin Xing, Wen Zhijun. Attenuation properties of millimeter wave atmospheric window propagation in plasma sheath[J]. High Power Laser and Particle Beams, 2016, 28(08): 083101. doi: 10.11884/HPLPB201628.151073
    [9]Liu Fan, Weng Jun, Wang Jianhua, Sun Qi. Simulation of an atmospheric pressure microwave plasma jet system and treatment of waste H2S[J]. High Power Laser and Particle Beams, 2015, 27(11): 119002. doi: 10.11884/HPLPB201527.119002
    [10]Chen Yuxu, Zhao Qing, Bo Yong, Xuan Yinliang, Sun Xu, Liu Jianwei. Numerical simulation and experimental verification of electromagnetic transmission characteristics of plasma sheath[J]. High Power Laser and Particle Beams, 2015, 27(03): 032041. doi: 10.11884/HPLPB201527.032041
    [11]he xiang, chen jianping, chu ran, chen yudong, zeng xiaojun, ni xiaowu. Experimental investigation on radar cross section reduction of plasma covered cavity[J]. High Power Laser and Particle Beams, 2011, 23(05): 0- .
    [12]influence of ignition location on drag reduction by laser plasma, . Fang Juan1, Hong Yanji2, Huang Hui2, Li Qian2, Liu Zhun1[J]. High Power Laser and Particle Beams, 2010, 22(09): 0- .
    [13]li haiyan, li sixin, luo wanqing, liu sen. Effects of high temperature flowfields around hypersonic air vehicles on laser lethality[J]. High Power Laser and Particle Beams, 2010, 22(06): 0- .
    [14]shi weibo, li sixin, xiao yu, liu sen. Laser lethality of hypersonic vehicles under aero-heating[J]. High Power Laser and Particle Beams, 2010, 22(06): 0- .
    [15]wu ying, chen jianping, ni xiaowu, chu ran. Experimental study of frequency shift of reflected microwave from laser-induced plasma[J]. High Power Laser and Particle Beams, 2009, 21(06): 0- .
    [16]chen shi-xiu, sun you-lin, xia chang-zheng, yan guo-zhi. Preliminary study on mechanism of radiating microwave from pulsed plasma[J]. High Power Laser and Particle Beams, 2008, 20(03): 0- .
    [17]liu liang, zhang gui-xin, zhu zhi-jie, luo cheng-mu. Atmospheric pressure microwave plasma system with ring waveguide[J]. High Power Laser and Particle Beams, 2007, 19(09): 0- .
    [18]wang jia-yin, shi jia-ming, yuan zhong-cai, xu bo. Plasma diagnostic method using the transmission attenuation of microwaves at three frequencies[J]. High Power Laser and Particle Beams, 2007, 19(04): 0- .
    [19]yuan zhong-cai, shi jia-ming, wang jia-chun. Experimental studies of the interaction of microwaves with mixture burning plasmas in the atmosphere[J]. High Power Laser and Particle Beams, 2005, 17(05): 0- .
  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-040102030405060
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 19.8 %FULLTEXT: 19.8 %META: 73.5 %META: 73.5 %PDF: 6.7 %PDF: 6.7 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 6.7 %其他: 6.7 %其他: 1.2 %其他: 1.2 %Kamphaeng Phet: 0.1 %Kamphaeng Phet: 0.1 %Matawan: 0.1 %Matawan: 0.1 %Seattle: 0.1 %Seattle: 0.1 %United States: 0.4 %United States: 0.4 %[]: 0.1 %[]: 0.1 %上海: 0.9 %上海: 0.9 %东莞: 0.1 %东莞: 0.1 %临汾: 0.1 %临汾: 0.1 %丹东: 0.4 %丹东: 0.4 %乌鲁木齐: 0.2 %乌鲁木齐: 0.2 %保定: 0.3 %保定: 0.3 %兰州: 0.3 %兰州: 0.3 %加利福尼亚州: 0.1 %加利福尼亚州: 0.1 %北京: 2.6 %北京: 2.6 %匹兹堡: 0.2 %匹兹堡: 0.2 %十堰: 0.1 %十堰: 0.1 %华盛顿: 0.3 %华盛顿: 0.3 %南京: 0.4 %南京: 0.4 %南充: 0.4 %南充: 0.4 %南昌: 0.5 %南昌: 0.5 %南通: 0.1 %南通: 0.1 %博阿努瓦: 0.1 %博阿努瓦: 0.1 %厦门: 0.2 %厦门: 0.2 %台州: 0.2 %台州: 0.2 %合肥: 0.2 %合肥: 0.2 %名古屋: 0.1 %名古屋: 0.1 %哈尔滨: 0.6 %哈尔滨: 0.6 %哥伦布: 0.2 %哥伦布: 0.2 %喀什: 0.2 %喀什: 0.2 %嘉兴: 0.2 %嘉兴: 0.2 %天津: 1.0 %天津: 1.0 %太原: 0.1 %太原: 0.1 %安康: 0.1 %安康: 0.1 %安阳: 0.1 %安阳: 0.1 %宣城: 0.7 %宣城: 0.7 %常州: 0.2 %常州: 0.2 %常德: 0.4 %常德: 0.4 %广州: 0.3 %广州: 0.3 %库比蒂诺: 0.7 %库比蒂诺: 0.7 %廊坊: 0.2 %廊坊: 0.2 %延安: 0.1 %延安: 0.1 %张家口: 1.6 %张家口: 1.6 %张家界: 0.1 %张家界: 0.1 %德阳: 0.2 %德阳: 0.2 %德黑兰: 0.2 %德黑兰: 0.2 %成都: 0.6 %成都: 0.6 %扬州: 0.4 %扬州: 0.4 %无锡: 0.2 %无锡: 0.2 %昆明: 1.2 %昆明: 1.2 %晋城: 0.1 %晋城: 0.1 %普洱: 0.1 %普洱: 0.1 %杭州: 0.9 %杭州: 0.9 %武汉: 0.3 %武汉: 0.3 %沈阳: 0.1 %沈阳: 0.1 %洛阳: 0.1 %洛阳: 0.1 %济南: 0.1 %济南: 0.1 %深圳: 0.2 %深圳: 0.2 %温州: 0.1 %温州: 0.1 %湘潭: 0.2 %湘潭: 0.2 %漯河: 1.5 %漯河: 1.5 %石家庄: 0.3 %石家庄: 0.3 %秦皇岛: 0.1 %秦皇岛: 0.1 %纽约: 0.2 %纽约: 0.2 %绵阳: 0.2 %绵阳: 0.2 %胡志明: 0.1 %胡志明: 0.1 %芒廷维尤: 40.0 %芒廷维尤: 40.0 %芝加哥: 0.7 %芝加哥: 0.7 %苏州: 0.1 %苏州: 0.1 %萍乡: 0.1 %萍乡: 0.1 %衡水: 0.2 %衡水: 0.2 %衡阳: 0.1 %衡阳: 0.1 %衢州: 0.2 %衢州: 0.2 %西宁: 18.0 %西宁: 18.0 %西安: 1.6 %西安: 1.6 %西雅图: 0.2 %西雅图: 0.2 %诺沃克: 3.5 %诺沃克: 3.5 %贵阳: 0.2 %贵阳: 0.2 %费利蒙: 0.1 %费利蒙: 0.1 %运城: 1.4 %运城: 1.4 %遵义: 0.2 %遵义: 0.2 %邯郸: 0.4 %邯郸: 0.4 %郑州: 0.2 %郑州: 0.2 %重庆: 0.5 %重庆: 0.5 %长春: 0.1 %长春: 0.1 %长沙: 1.6 %长沙: 1.6 %青岛: 0.1 %青岛: 0.1 %其他其他Kamphaeng PhetMatawanSeattleUnited States[]上海东莞临汾丹东乌鲁木齐保定兰州加利福尼亚州北京匹兹堡十堰华盛顿南京南充南昌南通博阿努瓦厦门台州合肥名古屋哈尔滨哥伦布喀什嘉兴天津太原安康安阳宣城常州常德广州库比蒂诺廊坊延安张家口张家界德阳德黑兰成都扬州无锡昆明晋城普洱杭州武汉沈阳洛阳济南深圳温州湘潭漯河石家庄秦皇岛纽约绵阳胡志明芒廷维尤芝加哥苏州萍乡衡水衡阳衢州西宁西安西雅图诺沃克贵阳费利蒙运城遵义邯郸郑州重庆长春长沙青岛

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(2)

    Article views (892) PDF downloads(91) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return