Volume 35 Issue 6
May  2023
Turn off MathJax
Article Contents
Yao Xueling, Jiao Zijia, Sun Jinru, et al. Design of high stability nanosecond pulse power supply based on one-stage Marx compression[J]. High Power Laser and Particle Beams, 2023, 35: 065002. doi: 10.11884/HPLPB202335.220362
Citation: Yao Xueling, Jiao Zijia, Sun Jinru, et al. Design of high stability nanosecond pulse power supply based on one-stage Marx compression[J]. High Power Laser and Particle Beams, 2023, 35: 065002. doi: 10.11884/HPLPB202335.220362

Design of high stability nanosecond pulse power supply based on one-stage Marx compression

doi: 10.11884/HPLPB202335.220362
  • Received Date: 2022-10-28
  • Accepted Date: 2023-03-09
  • Rev Recd Date: 2023-03-20
  • Available Online: 2023-03-23
  • Publish Date: 2023-05-06
  • In response to the lack of standard nanosecond high-voltage pulse power supply, this paper carries out the circuit analysis, structural design and performance testing of high-stability nanosecond high-voltage pulse power supply. By establishing the equivalent circuit model of nanosecond pulse generator, the circuit parameters of 5-stage primary pulse generation and the influence law of one-stage compression steepening gap on the characteristics of nanosecond pulse are obtained by simulation. The nanosecond high-voltage pulse power supply structure design and low jitter corona stabilization switching characteristics are studied to establish a nanosecond pulse power supply system with highly stable output. Development of a nanosecond resistive voltage divider and establishment of a scale factor calibration method based on a combination of nanosecond and microsecond scale transfer calibration tests are made to accurately obtain the scale factor of the nanosecond resistive voltage divider. The pulse power supply output characteristics test results show that the nanosecond pulse power supply system can output exponential nanosecond pulses with a rise time of 2.3 ns±0.5 ns and an amplitude range of 10−60 kV; the relative standard deviation of the output pulse voltage in the full amplitude range is within ±1.5%.
  • loading
  • [1]
    IEC 61000-2-9-1996, Electromagnetic compatibility (EMC) - Part 2: environment - section 9: description of HEMP environment - radiated disturbance. Basic EMC publication[S].
    [2]
    Wraight A, Prather W D, Sabath F. Developments in early-time (E1) high-altitude electromagnetic pulse (HEMP) test methods[J]. IEEE Transactions on Electromagnetic Compatibility, 2013, 55(3): 492-499. doi: 10.1109/TEMC.2013.2241442
    [3]
    Hoad R, Radasky W A. Progress in high-altitude electromagnetic pulse (HEMP) standardization[J]. IEEE Transactions on Electromagnetic Compatibility, 2013, 55(3): 532-538. doi: 10.1109/TEMC.2012.2234753
    [4]
    Sabath F, Potthast S. Tolerance values and the confidence level for high-altitude electromagnetic pulse (HEMP) field tests[J]. IEEE Transactions on Electromagnetic Compatibility, 2013, 55(3): 518-525. doi: 10.1109/TEMC.2012.2237032
    [5]
    Lara M B, Mayes J R, Mayes M G, et al. A modular compact Marx generator design for the Gatling Marx generator system[C]//Proceedings of 2005 IEEE Pulsed Power Conference. 2005.
    [6]
    Carey W J, Mayes J R. Marx generator design and performance[C]//Proceedings of the 25th International Power Modulator Symposium. 2002: 625-628.
    [7]
    Pecastaing L, Paillol J, Reess T, et al. Very fast rise-time short-pulse high-voltage generator[J]. IEEE Transactions on Plasma Science, 2006, 34(5): 1822-1831. doi: 10.1109/TPS.2006.883346
    [8]
    Hahn U, Herrmann M, Leipold F, et al. Nanosecond, kilovolt pulse generators[C]//Proceedings of the 28th IEEE International Conference on Plasma Science and 13th IEEE International Pulsed Power Conference. 2001: 1575-1578.
    [9]
    邱爱慈. 脉冲功率技术应用[M]. 西安: 陕西科学技术出版社, 2016

    Qiu Aici. Application of pulse power technology[M]. Xi'an: Shanxi Science and Technology Press, 2016
    [10]
    谢霖燊, 贾伟, 郭帆, 等. 用于有界波模拟器的紧凑型纳秒脉冲源[J]. 环境技术, 2014(s1):60-62

    Xie Linshen, Jia Wei, Guo Fan, et al. A compact high voltage pulse generator for bounded-wave EMP simulator[J]. Environmental Technology, 2014(s1): 60-62
    [11]
    贾伟, 陈志强, 郭帆, 等. 基于MARX发生器的中小型电磁脉冲模拟器驱动源[J]. 强激光与粒子束, 2018, 30:073203 doi: 10.11884/HPLPB201830.170401

    Jia Wei, Chen Zhiqiang, Guo Fan, et al. Drivers of small and medium scale electromagnetic pulse simulator based on Marx generator[J]. High Power Laser and Particle Beams, 2018, 30: 073203 doi: 10.11884/HPLPB201830.170401
    [12]
    张北镇, 宋法伦, 甘延青, 等. 300 kV有界波EMP模拟器高压脉冲源的设计与研制[J]. 现代应用物理, 2019, 10:030401

    Zhang Beizhen, Song Falun, Gan Yanqing, et al. Design and development of a 300 kV high-voltage generator for bounded-wave EMP simulator[J]. Modern Applied Physics, 2019, 10: 030401
    [13]
    周开明, 李铮迪, 邓建红. 大动态高精度有界波电磁脉冲模拟器设计[J]. 强激光与粒子束, 2020, 32:063004 doi: 10.11884/HPLPB202032.190373

    Zhou Kaiming, Li Zhengdi, Deng Jianhong. Design of a high-precision and widely tunable bounded-wave electromagnetic pulse simulator[J]. High Power Laser and Particle Beams, 2020, 32: 063004 doi: 10.11884/HPLPB202032.190373
    [14]
    Bailey V, Carboni V, Eichenberger C, et al. A 6-MV pulser to drive horizontally polarized EMP simulators[J]. IEEE Transactions on Plasma Science, 2010, 38(10): 2554-2558. doi: 10.1109/TPS.2010.2065245
    [15]
    Schilling H, Schluter J, Peters M, et al. High voltage generator with fast risetime for EMP simulation[C]//Proceedings of the 10th IEEE International Pulsed Power Conference on Digest of Technical Papers. 1995: 1359-1364.
    [16]
    Gubanov V P, Korovin S D, Pegel I V, et al. Compact 1000 pps high-voltage nanosecond pulse generator[J]. IEEE Transactions on Plasma Science, 1997, 25(2): 258-265. doi: 10.1109/27.602497
    [17]
    Tewari S V, Umbarkar S B, Agarwal R, et al. Development and analysis of PFN based compact Marx generator using finite integration technique for an antenna load[J]. IEEE Transactions on Plasma Science, 2013, 41(10): 2684-2690. doi: 10.1109/TPS.2013.2279483
    [18]
    Baum C E. Electromagnetic sensors and measurement techniques[M]//Thompson J E, Luessen L H. Fast Electrical and Optical Measurements. Dordrecht: Springer, 1986.
    [19]
    王启武, 李炎新, 石立华. 纳秒电磁脉冲测量用D-dot探头设计及实验[J]. 强激光与粒子束, 2015, 27:115004 doi: 10.11884/HPLPB201527.115004

    Wang Qiwu, Li Yanxin, Shi Lihua. Design and experimental research of D-dot probe for nuclear electromagnetic pulse measurement[J]. High Power Laser and Particle Beams, 2015, 27: 115004 doi: 10.11884/HPLPB201527.115004
    [20]
    Liu Jinliang, Ye Bing, Zhan Tianwen, et al. Coaxial capacitive dividers for high-voltage pulse measurements in intense electron beam accelerator with water pulse-forming line[J]. IEEE Transactions on Instrumentation and Measurement, 2009, 58(1): 161-166. doi: 10.1109/TIM.2008.927195
    [21]
    王亮平, 郭宁, 李岩, 等. 测量强光一号负载电压的电容分压器[J]. 强激光与粒子束, 2010, 22(3):696-700 doi: 10.3788/HPLPB20102203.0696

    Wang Liangping, Guo Ning, Li Yan, et al. Capacitive divider for voltage measurement of diode load on Qiangguang-I accelerator[J]. High Power Laser and Particle Beams, 2010, 22(3): 696-700 doi: 10.3788/HPLPB20102203.0696
    [22]
    Zhang Lu, Mao Chen, Pu Lu, et al. Conical voltage sensor for measuring very fast transient overvoltage up to 3 MV in ultra-high-voltage class gas-insulated switchgear[J]. IET Science, Measurement & Technology, 2018, 12(3): 405-410.
    [23]
    Liu Yi, Lin Fuchang, Hu Guan, et al. Design and performance of a resistive-divider system for measuring fast HV impulse[J]. IEEE Transactions on Instrumentation and Measurement, 2010, 60(3): 996-1002.
    [24]
    He W, Yin H, Phelps A D R, et al. Study of a fast, high-impedance, high-voltage pulse divider[J]. Review of Scientific Instruments, 2001, 72(11): 4266-4269. doi: 10.1063/1.1408937
    [25]
    Khan M S, Agazar M, Le Bihan Y. Development of a standard measuring system for high-voltage nanosecond pulse measurements[C]//Proceedings of 2020 Conference on Precision Electromagnetic Measurements. 2020: 1-2.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(3)

    Article views (584) PDF downloads(113) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return