Tang Xiaohu, Hu Dan, Liu Kai. A phase stereo matching method based on integrated epipolar line using binocular structured light[J]. High Power Laser and Particle Beams, 2022, 34: 111004. doi: 10.11884/HPLPB202234.220102
Citation: Wu Guanjian, Wang Lei, Wang Guanwen, et al. Design of injection and extraction delay-line kicker magnet for circular electron-positron collider[J]. High Power Laser and Particle Beams, 2023, 35: 054002. doi: 10.11884/HPLPB202335.220364

Design of injection and extraction delay-line kicker magnet for circular electron-positron collider

doi: 10.11884/HPLPB202335.220364
  • Received Date: 2022-10-29
  • Accepted Date: 2023-02-14
  • Rev Recd Date: 2023-02-14
  • Available Online: 2023-02-21
  • Publish Date: 2023-04-07
  • Circular electron-positron collider (CEPC) is a double ring collider with a circumference of 100 km and a maximum energy of 120 GeV. To meet the needs of different energy particles injected from the booster to the collision ring, an off-axis injection system of the collision ring is designed for the W and Z energy modes to realize the accumulation of beam. To improve the injection efficiency, also be compatible with different injection energy, and different beam filling modes, and at the same time reduce the disturbance of other bucket by the kicker magnet during the injection process as much as possible, the off-axis injection kicker magnet system of the collision ring is required to be a trapezoidal wave pulse discharge system with a rise time and falling time of less than 200 ns and a pulse bottom width adjustment range of 440−2420 ns. Compared with the common lumped-inductance kicker magnet, the delay-line kicker magnet has better dynamic response characteristics and is suitable for producing a trapezoidal pulse with steeper front and more ideal waveform. In this paper, according to the physical requirements of beam injection of CEPC, the physical design and structure design of a delay-line kicker magnet are completed, and the PSpice and Opera programs are used for simulation. The design results show that the delay-line kicker magnet is composed of 26 LC units superimposed. The total length of the kicker magnet is 1018 mm, and the magnetic effective length is 942 mm. In [−20, 20] mm magnet aperture, the magnetic field strength is 0.042 1 T, the magnetic field uniformity is better than ±0.2%; the total rise time (10%−90%) of the kicker magnet system is 193 ns, and the fall time (90%−10%) is 191 ns. Theoretical analysis, PSpice program and Opera program simulation all verify the feasibility of the magnet design scheme.
  • [1]
    The CEPC Study Group. CEPC conceptual design report[R]. Beijing: Institute of High Energy Physics (IHEP), 2018.
    [2]
    Ducimetiere L, Garrel N, Barnes M J, et al. The LHC injection kicker magnet[C]//Proceedings of the 2003 Particle Accelerator Conference. 2003: 1162-1164.
    [3]
    Frick E, Kühn H, Mayer M, et al. Fast pulsed magnet systems for proton and antiproton injection into the CERN 400 GeV proton synchrotron[C]//Proceedings of the 15th Power Modulator Symposium. 1982: 290-298.
    [4]
    Ueda A, Ushiku T, Mitsuhashi T. Construction of travelling wave kicker magnet and pulse power supply for the KEK-Photon factory storage ring[C]//Proceedings of the 2001 Particle Accelerator Conference. 2001: 4050-4052.
    [5]
    Jensen C, Hanna B, Reilly R. A fast injection kicker magnet for the Tevatron[C]//Proceedings of the 2001 Particle Accelerator Conference. 2001: 3720-3722.
    [6]
    Jensen C, Reilly R, Hanna B. A fast injection kicker system for the Tevatron[C]//Proceedings of the 2001 Particle Accelerator Conference. 2001: 3723-3725.
    [7]
    Barnes M J, Ducimetière L, Fowler T, et al. Injection and extraction magnets: kicker magnets[C]//Proceedings of the CERN Accelerator School CAS 2009: Specialised Course on Magnets. 2009: 141-166.
    [8]
    高杰, 李煜辉, 翟纪元. 高能粒子加速器关键技术[M]. 上海: 上海交通大学出版社, 2021: 194-197

    Gao Jie, Li Yuhui, Zhai Jiyuan. Key technologies of high energy particle accelerators[M]. Shanghai: Shanghai Jiao Tong University Press, 2021: 194-197
    [9]
    张洪涛, 董海义, 杨奇. CSNS/RCS二极陶瓷真空盒磁控溅射镀TiN薄膜研究进展[J]. 真空, 2014, 51(4):61-64 doi: 10.13385/j.cnki.vacuum.2014.04.006

    Zhang Hongtao, Dong Haiyi, Yang Qi. Development of titanium nitride coating for the CSNS/RCS dipole ceramic vacuum chambers by DC magnetron sputtering[J]. Vacuum, 2014, 51(4): 61-64 doi: 10.13385/j.cnki.vacuum.2014.04.006
    [10]
    王磊, 康文, 郝耀斗, 等. CSNS\RCS引出系统快脉冲冲击磁铁样机的设计[J]. 强激光与粒子束, 2009, 21(8):1263-1266

    Wang Lei, Kang Wen, Hao Yaodou, et al. Fast kicker magnet prototype for CSNS\RCS extraction system[J]. High Power Laser and Particle Beams, 2009, 21(8): 1263-1266
    [11]
    Dinkel J, Hanna B, Jensen C, et al. Development of a high quality kicker magnet system[C]//Proceedings of International Conference on Particle Accelerators. 1993: 1357-1359.
    [12]
    赵籍九, 尹兆升. 粒子加速器技术[M]. 北京: 高等教育出版社, 2006: 298-299

    Zhao Jijiu, Yin Zhaosheng. Particle accelerator technology[M]. Beijing: Higher Education Press, 2006: 298-299
    [13]
    Stange G. A new delay-line kicker with capacitive loading sandwiches[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1991, 300(3): 425-430.
    [14]
    Fiander D C, Metzmacher K D, Pearce P. Kickers and septa at the PS complex, CERN[C]//Proceedings of the KAON PDS Magnet Design Workshop. 1988: 71-86.
    [15]
    Schröder G. Fast pulsed magnet systems[M]//Chao A W, Tigner M. Handbook of Accelerator Physics and Engineering. Singapore: World Scientific Press, 1999: 460-466.
    [16]
    Forsyth E B, Fruitman M. Fast kickers[J]. Particle Accelerators, 1970, 1: 27-39.
  • Relative Articles

    [1]Liu Qinghua, Li Jing, Shan Lijun, Xiao Dexin, Pan Qing, Liu Yu, Wang Hanbin, Hu Dongcai, Zhang Peng, Li Shoutao, Wang Jianxin, Zhang Demin, Yan Longgang, Zhang Xiaoli, Gan Kongyin, Zhang Chengxin, Li Peng, Shen Xuming, Bo Wei, Chen Yunbin, Li Xiaohui, Wang Shuaihua, Yu Yong, Chen Hao, Hu Xiutai, Ma Guowu, Zhou Kui, Zhou Zheng, Wang Yuan, Yang Xingfan, Wu Dai, Li Ming, Chen Menxue, Hu Jinguang, Zhao Jianheng, Fan Guobin. High-energy CT system with 10 lp/mm spatial resolution[J]. High Power Laser and Particle Beams, 2022, 34(12): 124001. doi: 10.11884/HPLPB202234.220322
    [2]Li Ruichun, Zhang Qinglei, Mi Qingru, Jiang Bocheng, Wang Kun, Li Changliang, Zhao Zhentang. Application of machine learning in orbital correction of storage ring[J]. High Power Laser and Particle Beams, 2021, 33(3): 034007. doi: 10.11884/HPLPB202133.200318
    [3]Mi Zhenghui, Sha Peng, Sun Yi, Dai Jianping, Pan Weimin, Wang Guangwei, Wang Qunyao, Li Zhongquan, Ma Qiang, Lin Haiying, Huang Tongming, Wang Muyuan, Wang Honglei. Operation of domestic 500 MHz superconducting cavity for BEPC Ⅱ[J]. High Power Laser and Particle Beams, 2018, 30(8): 085103. doi: 10.11884/HPLPB201830.170485
    [4]Tang Kai, Wang Jigang, Sun Baogen, Tang Leilei, Lu Ping, Yang Yongliang, Cheng Chaocai, Li Hao. Beam transverse size and emittance measurement of HLS Ⅱ using interferometry[J]. High Power Laser and Particle Beams, 2015, 27(07): 075101. doi: 10.11884/HPLPB201527.075101
    [5]Wu Fangfang, Zhou Zeran, Sun Baogen, Yang Yongliang, Lu Ping, Li Wubin, Ma Tianji, Zou Junying, Cheng Chaocai. Offline calibration of stripline beam position monitor for HLS Ⅱ[J]. High Power Laser and Particle Beams, 2013, 25(11): 2971-2975. doi: 10.3788/HPLPB20132511.2971
    [6]Li Xiaoyu, Xu Gang. Minimum emittance of three-bend achromats[J]. High Power Laser and Particle Beams, 2012, 24(08): 1947-1950. doi: 10.3788/HPLPB20122408.1947
    [7]chu chen, huang guirong, jin kai, wang xuetao, wang jinxiang, jia dachun. Analysis and measurement of storage ring Robinson instability[J]. High Power Laser and Particle Beams, 2011, 23(10): 0- .
    [8]leng yongbin, yan yingbing, yuan renxian, zhou weimin. Betatron tune measurement system for Shanghai Synchrotron Radiation Facility storage ring[J]. High Power Laser and Particle Beams, 2010, 22(10): 0- .
    [9]bu ling-shan, zhao zhen-tang, yin li-xin, du han-wen, yan zhong-bao. Vibration damping of magnet girder assembly of Shanghai synchrotron radiation facility’s storage ring[J]. High Power Laser and Particle Beams, 2008, 20(01): 0- .
    [10]wang shao-ming, man kai-di, cai guo-zhu, guo yi-zhen, yang sheng-li. Alignment and survey of magnets for cooler-storage-ring main ring[J]. High Power Laser and Particle Beams, 2005, 17(05): 0- .
    [11]li ge, zhou yin-gui, zhang peng-fei, chen nian, he duo-hui. Performance analysis of upgrading optical klystron for FEL[J]. High Power Laser and Particle Beams, 2005, 17(02): 303- .
    [12]liu gong-fa, xie dong, li wei-min, liu zu-ping. Beam soft ramping control of Hefei light source storage ring[J]. High Power Laser and Particle Beams, 2004, 16(08): 0- .
    [13]luo shi yu, hu xi duo, shao ming zhu, wu mu ying, chen shao wen. Radiation energy loss and cooling of onedimensional crystallization beam[J]. High Power Laser and Particle Beams, 2003, 15(07): 0- .
    [14]shen lian guan, wang jun hua, wang gui cheng, he xin, zhao jian bin, li xiao guang, yao jian ping, zhu yang bin. Development of BPM calibrator and its application for phase II in HLS[J]. High Power Laser and Particle Beams, 2002, 14(05): 0- .
    [15]sun bao-gen, he duo-hui, xu hong-liang, lu ping, wang jun-hua, gao yun-feng, liu jin-ying, wang lin. Application research of tune measurement-system in Hefei light source[J]. High Power Laser and Particle Beams, 2002, 14(02): 0- .
    [16]yu xiang-kun, liu zu-ping, li wei-min, li yong-jun, diao cao-zheng. Differential relation between optic parameter and lattice parameter in HLS storage ring[J]. High Power Laser and Particle Beams, 2001, 13(02): 0- .
    [17]ding xiao-ping, kang wen, han qian. Design of kicker magnets for the storage ring injection of Shanghai Synchrotron Radiation Facility[J]. High Power Laser and Particle Beams, 2001, 13(03): 0- .
    [18]liu jin-ying, xu hong-liang, sun bao-geng, li ge, zhang shan-cai, he duo-hui. Using iccd as a fast optical switch to measure harmonic super-radiation from an optical klystron in a storage ring[J]. High Power Laser and Particle Beams, 2001, 13(04): 0- .
    [20]li yongjun jin yuming liu zuping, . STUDY ON BEAM EMITTANCE FOR HLS STORAGE RING[J]. High Power Laser and Particle Beams, 1998, 10(04): 0- .
  • Cited by

    Periodical cited type(2)

    1. 陆益敏, 黄国俊, 郭延龙, 丁方正, 陈霞, 韦尚方, 米朝伟. 激光沉积大面积均匀类金刚石膜的设计改进及实验. 兵工学报. 2017(03): 555-560 .
    2. 王利, 王鹏, 王刚, 王培培, 白云立, 刘华松. 制备工艺条件对SiO_2薄膜非均质特性的影响. 强激光与粒子束. 2016(02): 46-51 . 本站查看

    Other cited types(0)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-04020406080
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 24.1 %FULLTEXT: 24.1 %META: 74.6 %META: 74.6 %PDF: 1.3 %PDF: 1.3 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 6.8 %其他: 6.8 %其他: 0.9 %其他: 0.9 %Central District: 0.2 %Central District: 0.2 %China: 0.3 %China: 0.3 %Hanoi: 0.2 %Hanoi: 0.2 %Koesan: 0.2 %Koesan: 0.2 %Seattle: 0.1 %Seattle: 0.1 %Seongnam-si: 0.2 %Seongnam-si: 0.2 %United States: 0.3 %United States: 0.3 %[]: 0.7 %[]: 0.7 %上海: 2.8 %上海: 2.8 %东京: 0.3 %东京: 0.3 %东莞: 0.3 %东莞: 0.3 %中央邦: 0.1 %中央邦: 0.1 %中山: 0.2 %中山: 0.2 %临汾: 0.1 %临汾: 0.1 %丹东: 0.1 %丹东: 0.1 %佛山: 0.4 %佛山: 0.4 %保定: 0.2 %保定: 0.2 %兰州: 0.1 %兰州: 0.1 %北京: 3.1 %北京: 3.1 %十堰: 0.2 %十堰: 0.2 %南京: 0.8 %南京: 0.8 %南昌: 0.9 %南昌: 0.9 %南通: 0.2 %南通: 0.2 %厦门: 0.1 %厦门: 0.1 %台北: 0.3 %台北: 0.3 %台州: 0.3 %台州: 0.3 %合肥: 0.4 %合肥: 0.4 %哈尔滨: 0.3 %哈尔滨: 0.3 %哥伦布: 0.1 %哥伦布: 0.1 %大连: 0.3 %大连: 0.3 %天津: 1.4 %天津: 1.4 %宁波: 0.1 %宁波: 0.1 %安庆: 0.1 %安庆: 0.1 %安康: 0.1 %安康: 0.1 %宜春: 0.1 %宜春: 0.1 %宣城: 0.1 %宣城: 0.1 %崇左: 0.1 %崇左: 0.1 %常州: 0.2 %常州: 0.2 %常德: 0.1 %常德: 0.1 %广州: 0.8 %广州: 0.8 %张家口: 0.3 %张家口: 0.3 %徐州: 0.1 %徐州: 0.1 %悉尼: 0.2 %悉尼: 0.2 %成都: 2.4 %成都: 2.4 %扬州: 0.1 %扬州: 0.1 %拉法叶: 0.3 %拉法叶: 0.3 %无锡: 0.9 %无锡: 0.9 %昆明: 0.1 %昆明: 0.1 %晋城: 0.1 %晋城: 0.1 %普洱: 0.1 %普洱: 0.1 %朝阳: 0.2 %朝阳: 0.2 %杭州: 1.6 %杭州: 1.6 %桂林: 0.1 %桂林: 0.1 %武汉: 1.0 %武汉: 1.0 %沈阳: 0.4 %沈阳: 0.4 %泉州: 0.1 %泉州: 0.1 %泰安: 0.1 %泰安: 0.1 %洛杉矶: 0.2 %洛杉矶: 0.2 %洛阳: 0.2 %洛阳: 0.2 %济南: 0.2 %济南: 0.2 %淄博: 0.1 %淄博: 0.1 %深圳: 1.3 %深圳: 1.3 %渭南: 0.1 %渭南: 0.1 %湖州: 0.3 %湖州: 0.3 %漯河: 0.9 %漯河: 0.9 %潍坊: 0.1 %潍坊: 0.1 %烟台: 0.1 %烟台: 0.1 %石家庄: 0.2 %石家庄: 0.2 %福州: 0.4 %福州: 0.4 %科隆: 0.3 %科隆: 0.3 %秦皇岛: 0.1 %秦皇岛: 0.1 %绵阳: 0.1 %绵阳: 0.1 %芒廷维尤: 35.0 %芒廷维尤: 35.0 %芝加哥: 0.3 %芝加哥: 0.3 %苏州: 0.3 %苏州: 0.3 %荆州: 0.1 %荆州: 0.1 %莫斯科: 0.2 %莫斯科: 0.2 %衢州: 0.3 %衢州: 0.3 %西宁: 20.0 %西宁: 20.0 %西安: 0.5 %西安: 0.5 %西尾: 0.2 %西尾: 0.2 %西雅图: 0.2 %西雅图: 0.2 %诺沃克: 1.9 %诺沃克: 1.9 %贵阳: 0.2 %贵阳: 0.2 %达拉斯: 0.1 %达拉斯: 0.1 %运城: 0.7 %运城: 0.7 %邢台: 0.1 %邢台: 0.1 %邯郸: 0.1 %邯郸: 0.1 %郑州: 0.1 %郑州: 0.1 %鄂州: 0.1 %鄂州: 0.1 %重庆: 0.3 %重庆: 0.3 %长沙: 1.6 %长沙: 1.6 %阳泉: 0.1 %阳泉: 0.1 %青岛: 0.9 %青岛: 0.9 %鞍山: 0.1 %鞍山: 0.1 %首尔特别: 0.5 %首尔特别: 0.5 %马鞍山: 0.1 %马鞍山: 0.1 %其他其他Central DistrictChinaHanoiKoesanSeattleSeongnam-siUnited States[]上海东京东莞中央邦中山临汾丹东佛山保定兰州北京十堰南京南昌南通厦门台北台州合肥哈尔滨哥伦布大连天津宁波安庆安康宜春宣城崇左常州常德广州张家口徐州悉尼成都扬州拉法叶无锡昆明晋城普洱朝阳杭州桂林武汉沈阳泉州泰安洛杉矶洛阳济南淄博深圳渭南湖州漯河潍坊烟台石家庄福州科隆秦皇岛绵阳芒廷维尤芝加哥苏州荆州莫斯科衢州西宁西安西尾西雅图诺沃克贵阳达拉斯运城邢台邯郸郑州鄂州重庆长沙阳泉青岛鞍山首尔特别马鞍山

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(15)  / Tables(3)

    Article views (672) PDF downloads(86) Cited by(2)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return