Ling Wenbin, Yu Zhiguo, E Peng, et al. Design of power supply for pulsed magnetic window system[J]. High Power Laser and Particle Beams, 2019, 31: 040018. doi: 10.11884/HPLPB201931.180269
Citation: Wu Guanjian, Wang Lei, Wang Guanwen, et al. Design of injection and extraction delay-line kicker magnet for circular electron-positron collider[J]. High Power Laser and Particle Beams, 2023, 35: 054002. doi: 10.11884/HPLPB202335.220364

Design of injection and extraction delay-line kicker magnet for circular electron-positron collider

doi: 10.11884/HPLPB202335.220364
  • Received Date: 2022-10-29
  • Accepted Date: 2023-02-14
  • Rev Recd Date: 2023-02-14
  • Available Online: 2023-02-21
  • Publish Date: 2023-04-07
  • Circular electron-positron collider (CEPC) is a double ring collider with a circumference of 100 km and a maximum energy of 120 GeV. To meet the needs of different energy particles injected from the booster to the collision ring, an off-axis injection system of the collision ring is designed for the W and Z energy modes to realize the accumulation of beam. To improve the injection efficiency, also be compatible with different injection energy, and different beam filling modes, and at the same time reduce the disturbance of other bucket by the kicker magnet during the injection process as much as possible, the off-axis injection kicker magnet system of the collision ring is required to be a trapezoidal wave pulse discharge system with a rise time and falling time of less than 200 ns and a pulse bottom width adjustment range of 440−2420 ns. Compared with the common lumped-inductance kicker magnet, the delay-line kicker magnet has better dynamic response characteristics and is suitable for producing a trapezoidal pulse with steeper front and more ideal waveform. In this paper, according to the physical requirements of beam injection of CEPC, the physical design and structure design of a delay-line kicker magnet are completed, and the PSpice and Opera programs are used for simulation. The design results show that the delay-line kicker magnet is composed of 26 LC units superimposed. The total length of the kicker magnet is 1018 mm, and the magnetic effective length is 942 mm. In [−20, 20] mm magnet aperture, the magnetic field strength is 0.042 1 T, the magnetic field uniformity is better than ±0.2%; the total rise time (10%−90%) of the kicker magnet system is 193 ns, and the fall time (90%−10%) is 191 ns. Theoretical analysis, PSpice program and Opera program simulation all verify the feasibility of the magnet design scheme.
  • [1]
    The CEPC Study Group. CEPC conceptual design report[R]. Beijing: Institute of High Energy Physics (IHEP), 2018.
    [2]
    Ducimetiere L, Garrel N, Barnes M J, et al. The LHC injection kicker magnet[C]//Proceedings of the 2003 Particle Accelerator Conference. 2003: 1162-1164.
    [3]
    Frick E, Kühn H, Mayer M, et al. Fast pulsed magnet systems for proton and antiproton injection into the CERN 400 GeV proton synchrotron[C]//Proceedings of the 15th Power Modulator Symposium. 1982: 290-298.
    [4]
    Ueda A, Ushiku T, Mitsuhashi T. Construction of travelling wave kicker magnet and pulse power supply for the KEK-Photon factory storage ring[C]//Proceedings of the 2001 Particle Accelerator Conference. 2001: 4050-4052.
    [5]
    Jensen C, Hanna B, Reilly R. A fast injection kicker magnet for the Tevatron[C]//Proceedings of the 2001 Particle Accelerator Conference. 2001: 3720-3722.
    [6]
    Jensen C, Reilly R, Hanna B. A fast injection kicker system for the Tevatron[C]//Proceedings of the 2001 Particle Accelerator Conference. 2001: 3723-3725.
    [7]
    Barnes M J, Ducimetière L, Fowler T, et al. Injection and extraction magnets: kicker magnets[C]//Proceedings of the CERN Accelerator School CAS 2009: Specialised Course on Magnets. 2009: 141-166.
    [8]
    高杰, 李煜辉, 翟纪元. 高能粒子加速器关键技术[M]. 上海: 上海交通大学出版社, 2021: 194-197

    Gao Jie, Li Yuhui, Zhai Jiyuan. Key technologies of high energy particle accelerators[M]. Shanghai: Shanghai Jiao Tong University Press, 2021: 194-197
    [9]
    张洪涛, 董海义, 杨奇. CSNS/RCS二极陶瓷真空盒磁控溅射镀TiN薄膜研究进展[J]. 真空, 2014, 51(4):61-64 doi: 10.13385/j.cnki.vacuum.2014.04.006

    Zhang Hongtao, Dong Haiyi, Yang Qi. Development of titanium nitride coating for the CSNS/RCS dipole ceramic vacuum chambers by DC magnetron sputtering[J]. Vacuum, 2014, 51(4): 61-64 doi: 10.13385/j.cnki.vacuum.2014.04.006
    [10]
    王磊, 康文, 郝耀斗, 等. CSNS\RCS引出系统快脉冲冲击磁铁样机的设计[J]. 强激光与粒子束, 2009, 21(8):1263-1266

    Wang Lei, Kang Wen, Hao Yaodou, et al. Fast kicker magnet prototype for CSNS\RCS extraction system[J]. High Power Laser and Particle Beams, 2009, 21(8): 1263-1266
    [11]
    Dinkel J, Hanna B, Jensen C, et al. Development of a high quality kicker magnet system[C]//Proceedings of International Conference on Particle Accelerators. 1993: 1357-1359.
    [12]
    赵籍九, 尹兆升. 粒子加速器技术[M]. 北京: 高等教育出版社, 2006: 298-299

    Zhao Jijiu, Yin Zhaosheng. Particle accelerator technology[M]. Beijing: Higher Education Press, 2006: 298-299
    [13]
    Stange G. A new delay-line kicker with capacitive loading sandwiches[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1991, 300(3): 425-430.
    [14]
    Fiander D C, Metzmacher K D, Pearce P. Kickers and septa at the PS complex, CERN[C]//Proceedings of the KAON PDS Magnet Design Workshop. 1988: 71-86.
    [15]
    Schröder G. Fast pulsed magnet systems[M]//Chao A W, Tigner M. Handbook of Accelerator Physics and Engineering. Singapore: World Scientific Press, 1999: 460-466.
    [16]
    Forsyth E B, Fruitman M. Fast kickers[J]. Particle Accelerators, 1970, 1: 27-39.
  • Relative Articles

    [1]Jin Hanbing, Kou Ke’nan, Dai Qijun, Li Kun, Liu Dong, Gao Xin, Jia Wenjing. Simulation and experiment study on a horizontally polarized bounded-wave electromagnetic pulse simulator[J]. High Power Laser and Particle Beams, 2022, 34(12): 123003. doi: 10.11884/HPLPB202234.220094
    [2]Wang Weijie, Zhao Zhenguo, Hu Shaoliang, Li Hanyu, Zhou Haijing. High-performance full-wave computational electromagnetic analysis for chip-system under electromagnetic pulse[J]. High Power Laser and Particle Beams, 2021, 33(12): 123015. doi: 10.11884/HPLPB202133.210359
    [3]Xie Linshen, Wu Wei, Zhu Xiangqin. Regularity analysis of leakage-field from vertically polarized bounded wave electromagnetic pulse simulator with distributed load[J]. High Power Laser and Particle Beams, 2020, 32(05): 055002. doi: 10.11884/HPLPB202032.190434
    [4]Jia Wei, Chen Zhiqiang, Guo Fan, Xie Linshen, Yang Tian, Tang Junping, Jin Tingjun, Qiu Aici. Drivers of small and medium scale electromagnetic pulse simulator based on Marx generator[J]. High Power Laser and Particle Beams, 2018, 30(7): 073203. doi: 10.11884/HPLPB201830.170401
    [5]Zhang Fan, He Pengjun, Kong Liang, Tian Chuan. Survey and design study of mesoband high power electromagnetic pulse radiator[J]. High Power Laser and Particle Beams, 2018, 30(1): 013206. doi: 10.11884/HPLPB201830.170172
    [6]Li Hongyi, Guo Chunying, Xu Wei, Lin Yuangen. Equivalent calculation between coupling responses of electromagnetic fields from radiating-wave simulators and actual environment[J]. High Power Laser and Particle Beams, 2016, 28(02): 025002. doi: 10.11884/HPLPB201628.025002
    [7]Zhu Xiangqin, Wang Jianguo, Yuan Keliang, Zhang Guowei, Chen Zaigao. Mode analysis for 10 meter-high bounded wave electromagnetic pulse simulator with distributed terminator[J]. High Power Laser and Particle Beams, 2015, 27(07): 075001. doi: 10.11884/HPLPB201527.075001
    [8]Cao Xuejun, Ma Hongge, Ye Hong. Numerical analysis of time-domain response for building under oblique incidence of spherical electromagnetic wave[J]. High Power Laser and Particle Beams, 2014, 26(07): 073209. doi: 10.11884/HPLPB201426.073209
    [9]Zhu Xiangqin, Wang Jianguo, Chen Weiqing, Chen Zaigao, Cai Libing. Simulation for flat-plate bounded wave electromagnetic pulse simulator with distributed terminator[J]. High Power Laser and Particle Beams, 2014, 26(03): 035001. doi: 10.3788/HPLPB201426.035001
    [10]Ma Rupo, Shi Lihua, Zhang Xiang, Si Rongren, Zhou Yinghui. Bounded-wave simulator with ellipse-arc transitional section[J]. High Power Laser and Particle Beams, 2013, 25(01): 133-137. doi: 10.3788/HPLPB20132501.0133
    [11]Yu Chengda, Xu Xiaojuan, Luo Jin, He Shanhong, Feng Deren. Repetitive frequency electromagnetic pulse simulator based on inductive adding technique[J]. High Power Laser and Particle Beams, 2012, 24(01): 162-166.
    [12]zhu xiangqin, wang jianguo, cai libing, qiao hailiang, chen zaigao. Parallel computation for radiation characteristics of cage antenna of radiating-wave EMP simulator[J]. High Power Laser and Particle Beams, 2011, 23(06): 0- .
    [13]liu shunkun, nie xin, chen xiangyue. Test technique under radiated-wave electromagnetic pulse simulator[J]. High Power Laser and Particle Beams, 2009, 21(06): 0- .
    [14]cao xuejun, ma hongge. Numerical analysis of time-domain response for building to different electromagnetic pulses[J]. High Power Laser and Particle Beams, 2009, 21(07): 0- .
    [15]guo haiguang, wei guanghui, fan lisi, pan xiaodong. Simulation study on vertical field distribution of EMP simulator with fast risetime[J]. High Power Laser and Particle Beams, 2009, 21(03): 0- .
    [16]qi hong-xing, chen shu-de, ye hong, qiao deng-jiang. Numerical simulation of the human body illuminated by lectromagnetic pulse[J]. High Power Laser and Particle Beams, 2004, 16(12): 0- .
    [17]li bao zhong, cheng yin-hui, chen ming, wu wei, zhou hui, zhong yu-feng. Theoretical analysis and design of one-dimension EMP simulator[J]. High Power Laser and Particle Beams, 2004, 16(02): 0- .
    [18]xie qin-chuan, chen ming, li jin-xi, wu wei. Numerical simulation of space-time distribution of field of horizontally polarized electromagnetic pulse simulators[J]. High Power Laser and Particle Beams, 2004, 16(10): 0- .
    [19]lu feng, chen bin, yi yun, zhou bi-hua, pei yu-ling. Numerical analysis on the nearfield of the EMP radiator[J]. High Power Laser and Particle Beams, 2003, 15(03): 0- .
  • Cited by

    Periodical cited type(3)

    1. 张立刚,谭维兵,李小泽,朱晓欣,胡祥刚. 高功率TM_(01)在线选模耦合装置设计. 强激光与粒子束. 2025(01): 151-158 . 本站查看
    2. 何昌杰,张威,巨金川,许流荣,曹鸿昌. 用于X波段模块化相对论速调管放大器在线测量的紧凑型定向耦合器设计. 强激光与粒子束. 2023(05): 60-65 . 本站查看
    3. 涂思语,肖龙,陈俊峰,王可嘉. X波段高功率微波四路合成器的设计与仿真研究. 光学与光电技术. 2021(05): 88-94 .

    Other cited types(3)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-040102030
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 20.0 %FULLTEXT: 20.0 %META: 75.7 %META: 75.7 %PDF: 4.2 %PDF: 4.2 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 3.9 %其他: 3.9 %其他: 0.3 %其他: 0.3 %Canada: 0.2 %Canada: 0.2 %Central District: 0.2 %Central District: 0.2 %China: 1.1 %China: 1.1 %Falls Church: 0.4 %Falls Church: 0.4 %France: 0.4 %France: 0.4 %India: 0.1 %India: 0.1 %Taiwan, China: 0.1 %Taiwan, China: 0.1 %[]: 0.4 %[]: 0.4 %三明: 0.1 %三明: 0.1 %上海: 2.0 %上海: 2.0 %东莞: 0.1 %东莞: 0.1 %中山: 0.1 %中山: 0.1 %临汾: 0.1 %临汾: 0.1 %丹东: 0.1 %丹东: 0.1 %丽水: 0.1 %丽水: 0.1 %乌兰察布: 0.1 %乌兰察布: 0.1 %乌鲁木齐: 0.1 %乌鲁木齐: 0.1 %保定: 0.1 %保定: 0.1 %兰州: 0.1 %兰州: 0.1 %内江: 0.1 %内江: 0.1 %北京: 4.2 %北京: 4.2 %十堰: 0.1 %十堰: 0.1 %南京: 0.9 %南京: 0.9 %博阿努瓦: 0.2 %博阿努瓦: 0.2 %台州: 0.4 %台州: 0.4 %合肥: 0.1 %合肥: 0.1 %咸阳: 0.2 %咸阳: 0.2 %哈尔科夫: 0.4 %哈尔科夫: 0.4 %哥伦布: 0.1 %哥伦布: 0.1 %哥伦比亚: 0.4 %哥伦比亚: 0.4 %大连: 0.1 %大连: 0.1 %天津: 0.1 %天津: 0.1 %安康: 0.2 %安康: 0.2 %宣城: 0.1 %宣城: 0.1 %巴音郭楞蒙古自治州: 0.1 %巴音郭楞蒙古自治州: 0.1 %广州: 0.1 %广州: 0.1 %库比蒂诺: 0.4 %库比蒂诺: 0.4 %张家口: 0.4 %张家口: 0.4 %德里: 0.1 %德里: 0.1 %成都: 0.9 %成都: 0.9 %新乡: 0.1 %新乡: 0.1 %晋城: 0.1 %晋城: 0.1 %普洱: 0.1 %普洱: 0.1 %景德镇: 0.2 %景德镇: 0.2 %杭州: 0.4 %杭州: 0.4 %武汉: 0.1 %武汉: 0.1 %沃思堡: 0.1 %沃思堡: 0.1 %沈阳: 0.1 %沈阳: 0.1 %洛阳: 0.1 %洛阳: 0.1 %济南: 0.1 %济南: 0.1 %淮安: 0.4 %淮安: 0.4 %深圳: 0.2 %深圳: 0.2 %温州: 0.1 %温州: 0.1 %湖州: 0.1 %湖州: 0.1 %漯河: 0.3 %漯河: 0.3 %石家庄: 0.1 %石家庄: 0.1 %福州: 0.1 %福州: 0.1 %绵阳: 0.5 %绵阳: 0.5 %芒廷维尤: 17.2 %芒廷维尤: 17.2 %莫斯科: 0.4 %莫斯科: 0.4 %衡水: 0.1 %衡水: 0.1 %衢州: 0.2 %衢州: 0.2 %西宁: 53.4 %西宁: 53.4 %西安: 2.2 %西安: 2.2 %贵阳: 0.1 %贵阳: 0.1 %达州: 0.1 %达州: 0.1 %运城: 1.6 %运城: 1.6 %邯郸: 0.1 %邯郸: 0.1 %郑州: 0.8 %郑州: 0.8 %重庆: 0.1 %重庆: 0.1 %长春: 0.1 %长春: 0.1 %长沙: 0.2 %长沙: 0.2 %长治: 0.1 %长治: 0.1 %门尼菲: 0.5 %门尼菲: 0.5 %阳泉: 0.3 %阳泉: 0.3 %青岛: 0.1 %青岛: 0.1 %其他其他CanadaCentral DistrictChinaFalls ChurchFranceIndiaTaiwan, China[]三明上海东莞中山临汾丹东丽水乌兰察布乌鲁木齐保定兰州内江北京十堰南京博阿努瓦台州合肥咸阳哈尔科夫哥伦布哥伦比亚大连天津安康宣城巴音郭楞蒙古自治州广州库比蒂诺张家口德里成都新乡晋城普洱景德镇杭州武汉沃思堡沈阳洛阳济南淮安深圳温州湖州漯河石家庄福州绵阳芒廷维尤莫斯科衡水衢州西宁西安贵阳达州运城邯郸郑州重庆长春长沙长治门尼菲阳泉青岛

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(15)  / Tables(3)

    Article views (655) PDF downloads(86) Cited by(6)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return